- Function forecasting::ExponentialSmoothingTrend(dataValues, estimates, noObservations, alpha, beta, ErrorMeasures, Residuals)
 
forecasting::ExponentialSmoothingTrend
The exponential smoothing with trend procedure is a time series forecasting procedure. This procedure is an extension from the exponential smoothing whereby the forecast also captures a trend. The reader interested in the mathematical background is referred to:
Function Prototype
To provide the error measures and residuals only when you need them,
there are three flavors of the ExponentialSmoothingTrend procedure
provided:
forecasting::ExponentialSmoothingTrend(
! Provides the estimates, but not the error measures nor the residuals
        dataValues,      ! Input, parameter indexed over time set
        estimates,       ! Output, parameter indexed over time set
        noObservations,  ! Scalar input, length history
        alpha,           ! Scalar input, weight of observation
        beta)            ! Scalar input, weight of change in observation
forecasting::ExponentialSmoothingTrendEM(
! Provides estimates and error measures, but not the residuals
        dataValues,      ! Input, parameter indexed over time set
        estimates,       ! Output, parameter indexed over time set
        noObservations,  ! Scalar input, length history
        alpha,           ! Scalar input, weight of observation
        beta,            ! Scalar input, weight of change in observation
        ErrorMeasures)   ! Output, indexed over forecasting::ems
forecasting::ExponentialSmoothingTrendEMR(
! Provides estimates, error measures, and residuals
        dataValues,      ! Input, parameter indexed over time set
        estimates,       ! Output, parameter indexed over time set
        noObservations,  ! Scalar input, length history
        alpha,           ! Scalar input, weight of observation
        beta,            ! Scalar input, weight of change in observation
        ErrorMeasures,   ! Output, indexed over forecasting::ems
        Residuals)       ! Output, parameter indexed over time set
Arguments
- dataValues
 A one dimensional parameter containing the observations for the first \(T\) elements of the time set.
- estimates
 A one dimensional parameter containing the estimates for all elements in the time set.
- noObservations
 Specifies the number of elements that belong to the history of the time set. This parameter corresponds to \(T\) in the notation presented in Time Series Forecasting Notation.
- alpha
 Specifies the weighting factor for the observation. This parameter corresponds to \(\alpha\) in the mathematical notation above.
- beta
 Specifies the weighting factor for the change in observation.
- ErrorMeasures
 The error measures as presented in Time Series Forecasting Notation.
- Residuals
 The residuals as presented in Time Series Forecasting Notation.
Note
In order to use this function, the Forecasting system library needs
to be added to the application.
Example
To further understand about this procedure and library, please use the Demand Forecasting example.