
AIMMS
The Language Reference

AIMMS 4

June 28, 2023

AIMMS
The Language Reference

AIMMS

Marcel Roelofs

Johannes Bisschop

Copyright c© 1993–2019 by AIMMS B.V. All rights reserved.

Email: info@aimms.com

WWW: www.aimms.com

Aimms is a registered trademark of AIMMS B.V. IBM ILOG CPLEX and CPLEX is a registered trademark of

IBM Corporation. GUROBI is a registered trademark of Gurobi Optimization, Inc. Knitro is a registered

trademark of Artelys. Windows and Excel are registered trademarks of Microsoft Corporation. TEX, LATEX,

and AMS-LATEX are trademarks of the American Mathematical Society. Lucida is a registered trademark of

Bigelow & Holmes Inc. Acrobat is a registered trademark of Adobe Systems Inc. Other brands and their

products are trademarks of their respective holders.

Information in this document is subject to change without notice and does not represent a commitment on

the part of AIMMS B.V. The software described in this document is furnished under a license agreement and

may only be used and copied in accordance with the terms of the agreement. The documentation may not,

in whole or in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium

or machine-readable form without prior consent, in writing, from AIMMS B.V.

AIMMS B.V. makes no representation or warranty with respect to the adequacy of this documentation or

the programs which it describes for any particular purpose or with respect to its adequacy to produce

any particular result. In no event shall AIMMS B.V., its employees, its contractors or the authors of this

documentation be liable for special, direct, indirect or consequential damages, losses, costs, charges,

claims, demands, or claims for lost profits, fees or expenses of any nature or kind.

In addition to the foregoing, users should recognize that all complex software systems and their docu-

mentation contain errors and omissions. The authors, AIMMS B.V. and its employees, and its contractors

shall not be responsible under any circumstances for providing information or corrections to errors

and omissions discovered at any time in this book or the software it describes, whether or not they

are aware of the errors or omissions. The authors, AIMMS B.V. and its employees, and its contractors

do not recommend the use of the software described in this book for applications in which errors or

omissions could threaten life, injury or significant loss.

This documentation was typeset by AIMMS B.V. using LATEX and the Lucida font family.

http://www.aimms.com

About Aimms

HistoryAimms was introduced as a new type of mathematical modeling tool in 1993—

an integrated combination of a modeling language, a graphical user inter-

face, and numerical solvers. Aimms has proven to be one of the world’s

most advanced development environments for building optimization-based

decision support applications and advanced planning systems. Today, it is

used by leading companies in a wide range of industries in areas such as sup-

ply chain management, energy management, production planning, logistics,

forestry planning, and risk-, revenue-, and asset- management. In addition,

Aimms is used by universities worldwide for courses in Operations Research

and Optimization Modeling, as well as for research and graduation projects.

What is Aimms?Aimms is far more than just another mathematical modeling language. True,

the modeling language is state of the art for sure, but alongside this, Aimms

offers a number of advanced modeling concepts not found in other languages,

as well as a full graphical user interface both for developers and end-users.

Aimms includes world-class solvers (and solver links) for linear, mixed-integer,

and nonlinear programming such as baron, cplex, conopt, gurobi, knitro,

path, snopt and xa, and can be readily extended to incorporate other ad-

vanced commercial solvers available on the market today. In addition, con-

cepts as stochastic programming and robust optimization are available to in-

clude data uncertainty in your models.

Mastering

Aimms

Mastering Aimms is straightforward since the language concepts will be intu-

itive to Operations Research (OR) professionals, and the point-and-click graph-

ical interface is easy to use. Aimms comes with comprehensive documentation,

available electronically and in book form.

Types of Aimms

applications

Aimms provides an ideal platform for creating advanced prototypes that are

then easily transformed into operational end-user systems. Such systems can

than be used either as

� stand-alone applications, or

� optimization components.

About Aimms vi

Stand-alone

applications

Application developers and operations research experts use Aimms to build

complex and large scale optimization models and to create a graphical end-

user interface around the model. Aimms-based applications place the power of

the most advanced mathematical modeling techniques directly into the hands

of end-users, enabling them to rapidly improve the quality, service, profitabil-

ity, and responsiveness of their operations.

Optimization

components

Independent Software Vendors and OEMs use Aimms to create complex and

large scale optimization components that complement their applications and

web services developed in languages such as C++, Java, .NET, or Excel. Appli-

cations built with Aimms-based optimization components have a shorter time-

to-market, are more robust and are richer in features than would be possible

through direct programming alone.

Aimms usersCompanies using Aimms include

� ABN AMRO

� Areva

� Bayer

� Bluescope Steel

� BP

� CST

� ExxonMobil

� Gaz de France

� Heineken

� Innovene

� Lufthansa

� Merck

� Owens Corning

� Perdigão

� Petrobras

� Philips

� PriceWaterhouseCoopers

� Reliance

� Repsol

� Shell

� Statoil

� Unilever

Universities using Aimms include Budapest University of Technology, Carnegie

Mellon University, George Mason University, Georgia Institute of Technology,

Japan Advanced Institute of Science and Technology, London School of Eco-

nomics, Nanyang Technological University, Rutgers University, Technical Uni-

versity of Eindhoven, Technische Universität Berlin, UIC Bioengineering, Uni-

versidade Federal do Rio de Janeiro, University of Groningen, University of

Pittsburgh, University of Warsaw, and University of the West of England.

A more detailed list of Aimms users and reference cases can be found on our

website www.aimms.com.

http://www.aimms.com

Contents

About Aimms v

Contents vii

Preface xvii

What’s new in Aimms 4 . xvii

What is in the Aimms documentation xviii

What is in the Language Reference xx

The authors . xxiii

Part I Preliminaries 2

1 Introduction to the Aimms language 2

1.1 The depot location problem . 2

1.2 Formulation of the mathematical program 5

1.3 Data initialization . 8

1.4 An advanced model extension 10

1.5 General modeling tips . 13

2 Language Preliminaries 16

2.1 Managing your model . 16

2.2 Identifier declarations . 19

2.3 Lexical conventions . 20

2.4 Expressions and statements . 24

2.5 Data initialization . 26

Part II Non-Procedural Language Components 29

3 Set Declaration 29

3.1 Sets and indices . 29

3.2 Set declaration and attributes . 30

3.2.1 Simple sets . 30

Contents viii

3.2.2 Integer sets . 34

3.2.3 Relations . 36

3.2.4 Indexed sets . 37

3.3 INDEX declaration and attributes 38

4 Parameter Declaration 40

4.1 Parameter declaration and attributes 41

4.1.1 Properties and attributes for uncertain data 45

5 Set, Set Element and String Expressions 47

5.1 Set expressions . 47

5.1.1 Enumerated sets . 48

5.1.2 Constructed sets . 51

5.1.3 Set operators . 52

5.1.4 Set functions . 53

5.1.5 Iterative set operators 55

5.1.6 Set element expressions as singleton sets 57

5.2 Set element expressions . 58

5.2.1 Intrinsic functions for sets and set elements 59

5.2.2 Element-valued iterative expressions 60

5.2.3 Lag and lead element operators 62

5.3 String expressions . 63

5.3.1 String operators . 64

5.3.2 Formatting strings . 65

5.3.3 String manipulation . 68

5.3.4 Converting strings to set elements 69

6 Numerical and Logical Expressions 71

6.1 Numerical expressions . 71

6.1.1 Real values and arithmetic extensions 72

6.1.2 List expressions . 73

6.1.3 References . 74

6.1.4 Arithmetic functions . 76

6.1.5 Numerical operators . 76

6.1.6 Numerical iterative operators 78

6.1.7 Statistical functions and operators 79

6.1.8 Financial functions . 82

6.1.9 Conditional expressions 83

6.2 Logical expressions . 85

6.2.1 Logical operator expressions 86

6.2.2 Numerical comparison 87

6.2.3 Set and element comparison 88

6.2.4 String comparison . 90

6.2.5 Logical iterative expressions 90

6.3 Operator precedence . 91

6.4 MACRO declaration and attributes 91

Contents ix

7 Execution of Nonprocedural Components 94

7.1 Dependency structure of definitions 94

7.2 Expressions and statements allowed in definitions 96

7.3 Nonprocedural execution . 99

Part III Procedural Language Components 102

8 Execution Statements 102

8.1 Procedural and nonprocedural execution 102

8.2 Assignment statements . 103

8.3 Flow control statements . 107

8.3.1 The IF-THEN-ELSE statement 108

8.3.2 The WHILE and REPEAT statements 109

8.3.3 Advanced use of WHILE and REPEAT 111

8.3.4 The FOR statement . 112

8.3.5 The SWITCH statement . 115

8.3.6 The HALT statement . 116

8.3.7 The BLOCK statement . 117

8.4 Raising and handling warnings and errors 119

8.4.1 Handling errors . 120

8.4.2 Raising errors and warnings 125

8.4.3 Legacy: intrinsics with a return status 127

8.4.4 Warnings . 128

8.5 The OPTION and PROPERTY statements 129

9 Index Binding 131

9.1 Binding rules . 131

10 Procedures and Functions 135

10.1 Internal procedures . 135

10.2 Internal functions . 140

10.3 Calls to procedures and functions 143

10.3.1 The APPLY operator . 148

11 External Procedures and Functions 151

11.1 Introduction . 151

11.2 Declaration of external procedures and functions 153

11.3 Win32 calling conventions . 162

11.4 External functions in constraints 164

11.4.1 Derivative computation 164

11.5 C versus Fortran conventions 167

Contents x

Part IV Sparse Execution 171

12 The Aimms Sparse Execution Engine 171

12.1 Storage and basic operations of the execution engine 171

12.1.1 The + operator: union behavior 173

12.1.2 The * operator: intersection behavior 173

12.1.3 The = operator: dense behavior 174

12.1.4 Behavior of combined operations 175

12.1.5 Summation . 176

12.1.6 Reordered views . 176

12.2 Modifying the sparsity . 177

12.3 Overview of operator efficiency 180

13 Execution Efficiency Cookbook 183

13.1 Reducing the number of elements 184

13.1.1 Size reduction of one-dimensional sets 185

13.1.2 Size reduction of multidimensional identifiers 188

13.2 Analyzing and tuning statements 191

13.2.1 Consider the use of FOR statements 192

13.2.2 Ordered sets and the condition of a FOR statement . . 195

13.2.3 Combining definitions and FOR loops 197

13.2.4 Identifying lower-dimensional subexpressions 198

13.2.5 Parameters with non-zero defaults 201

13.2.6 Index ordering . 202

13.2.7 Set element ordering . 203

13.2.8 Using Aimms’ advanced diagnostics 204

13.3 Summary . 205

Part V Optimization Modeling Components 208

14 Variable and Constraint Declaration 208

14.1 Variable declaration and attributes 208

14.1.1 The Priority, Nonvar and RelaxStatus attributes . . . 211

14.1.2 Variable properties . 213

14.1.3 Sensitivity related properties 214

14.1.4 Uncertainty related properties and attributes 216

14.2 Constraint declaration and attributes 216

14.2.1 Constraint properties . 218

14.2.2 SOS properties . 218

14.2.3 Solution pool filtering . 220

14.2.4 Indicator constraints, lazy constraints and cut pools 221

14.2.5 Constraint levels, bounds and marginals 223

Contents xi

14.2.6 Constraint suffices for global optimization 225

14.2.7 Chance constraints . 225

15 Solving Mathematical Programs 227

15.1 MathematicalProgram declaration and attributes 228

15.2 Suffices and callbacks . 231

15.3 The SOLVE statement . 236

15.4 Infeasibility analysis . 238

15.4.1 Adding infeasibility analysis to your model 240

15.4.2 Inspecting your model for infeasibilities 242

15.4.3 Application to goal programming 243

16 Implementing Advanced Algorithms for Mathematical Programs 244

16.1 Introduction to the gmp library 244

16.2 Managing generated mathematical program instances 248

16.2.1 Dealing with degeneracy and non-uniqueness 255

16.3 Matrix manipulation procedures 258

16.3.1 When to use matrix manipulation 258

16.3.2 Coefficient modification procedures 260

16.3.3 Quadratic coefficient modification procedures 261

16.3.4 Row modification procedures 261

16.3.5 Column modification procedures 263

16.3.6 More efficient modification procedures 264

16.3.7 Modifying an extended math program instance 265

16.4 Managing the solution repository 267

16.5 Using solver sessions . 270

16.6 Synchronization events . 273

16.7 Multi-objective optimization . 274

16.8 Supporting functions for stochastic programs 275

16.9 Supporting functions for robust optimization models 276

16.10 Supporting functions for Benders’ decomposition 277

16.11 Creating and managing linearizations 277

16.12 Customizing the progress window 279

16.13 Examples of use . 280

16.13.1 Indexed mathematical program instances 280

16.13.2 Sensitivity analysis . 281

16.13.3 Finding a feasible solution for a binary program . . . 281

16.13.4 Column generation . 282

16.13.5 Sequential linear programming 283

17 Advanced Methods for Nonlinear Programs 285

17.1 The Aimms Presolver . 285

17.2 The Aimms multistart algorithm 289

17.3 Control parameters that influence the multistart algorithm . 293

17.3.1 Specifying an iteration limit 293

17.3.2 Specifying a time limit 293

17.3.3 Using multiple threads 294

Contents xii

17.3.4 Deterministic versus opportunistic 294

17.3.5 Getting multiple solutions 294

17.3.6 Shrinking the clusters . 294

17.3.7 Combining multistart and presolver 295

17.3.8 Using a starting point . 295

17.3.9 Improving the sample points 295

17.3.10 Unbounded variables . 295

17.3.11 Solver progress . 296

18 Aimms Outer Approximation Algorithm for MINLP 297

18.1 Problem statement . 298

18.2 Basic algorithm . 298

18.3 Using the AOA algorithm . 301

18.4 Control parameters that influence the AOA algorithm 301

18.4.1 Specifying a time limit 302

18.4.2 Using the AIMMS Presolver 302

18.4.3 Combining outer approximation with multistart . . . 302

18.4.4 Terminate if solution of relaxed model is integer . . . 303

18.4.5 Solving a convex model 303

18.4.6 Starting point strategy for NLP subproblems 303

18.5 The Quesada-Grossmann algorithm 303

18.6 A first and basic implementation 304

18.7 Alternative uses of the open approach 309

19 Stochastic Programming 311

19.1 Basic concepts . 312

19.2 Stochastic parameters and variables 316

19.3 Scenario generation . 318

19.3.1 Distribution-based scenario generation 318

19.3.2 Scenario-based tree generation 321

19.4 Solving stochastic models . 324

19.4.1 Generating and solving the deterministic equivalent . 324

19.4.2 Using the stochastic Benders algorithm 326

20 Robust Optimization 330

20.1 Basic concepts . 331

20.2 Uncertain parameters and uncertainty constraints 333

20.3 Chance constraints . 339

20.4 Adjustable variables . 343

20.5 Solving robust optimization models 345

21 Automatic Benders’ Decomposition 347

21.1 Quick start to using Benders’ decomposition 349

21.2 Problem statement . 352

21.3 Benders’ decomposition - Textbook algorithm 352

21.4 Implementation of the classic algorithm 354

21.5 Control parameters that influence the algorithm 358

Contents xiii

21.5.1 Primal versus dual subproblem 358

21.5.2 Subproblem as pure feasibility problem 359

21.5.3 Normalization of feasibility problem 362

21.5.4 Feasibility problem mode 363

21.5.5 Tightening constraints 363

21.5.6 Using a starting point . 364

21.5.7 Using the AIMMS Presolver 364

21.6 Implementation of the modern algorithm 364

21.7 Implementation of the two phase algorithm 368

22 Constraint Programming 370

22.1 Constraint Programming essentials 371

22.1.1 Variables in constraint programming 372

22.1.2 Constraints in constraint programming 375

22.2 Scheduling problems . 379

22.2.1 Activity . 380

22.2.2 Resource . 386

22.2.3 Functions on Activities and Scheduling constraints . 394

22.2.4 Problem schedule domain 397

22.3 Modeling, solving and searching 402

22.3.1 Constraint programming and units of measurement . 403

22.3.2 Solving a constraint program 405

22.3.3 Search Heuristics . 405

23 Mixed Complementarity Problems 407

23.1 Complementarity problems . 407

23.2 ComplementaryVariable declaration and attributes 411

23.3 Declaration of mixed complementarity models 413

23.4 Declaration of MPCC models . 414

24 Node and Arc Declaration 415

24.1 Networks . 415

24.2 Node declaration and attributes 416

24.3 Arc declaration and attributes . 417

24.4 Declaration of network-based mathematical programs 419

Part VI Data Communication Components 422

25 Data Initialization, Verification and Control 422

25.1 Model initialization and termination 422

25.1.1 Reading data from external sources 424

25.2 Assertions . 425

25.3 Data control . 428

25.4 Working with the set AllIdentifiers 434

Contents xiv

26 The READ and WRITE Statements 437

26.1 A basic example . 437

26.1.1 Simple data transfer . 438

26.1.2 Set initialization and domain checking 439

26.2 Syntax of the READ and WRITE statements 440

27 Communicating With Databases 446

27.1 The DatabaseTable declaration 446

27.2 Indexed database tables . 449

27.3 Database table restrictions . 451

27.4 Data removal . 453

27.5 Executing stored procedures and SQL queries 455

27.6 Database transactions . 458

27.7 Testing the presence of data sources and tables 459

27.8 Dealing with date-time values . 460

28 Format of Text Data Files 462

28.1 Text data files . 462

28.2 Tabular expressions . 464

28.3 Composite tables . 466

29 Reading and Writing Spreadsheet Data 468

29.1 An example . 468

29.2 Function overview . 470

30 Reading and Writing XML Data 473

30.1 XML in 10 points . 473

30.2 Introduction to XML support in Aimms 476

30.3 Reading and writing Aimms-generated XML data 481

30.4 Reading and writing user-defined XML data 484

31 Text Reports and Output Listing 495

31.1 The File declaration . 496

31.2 The PUT statement . 498

31.2.1 Opening files and output redirection 498

31.2.2 Formatting and positioning PUT items 500

31.2.3 Extended example . 502

31.3 The DISPLAY statement . 503

31.4 Structuring a page in page mode 507

31.5 The standard output listing . 509

Part VII Advanced Language Components 513

32 Units of Measurement 513

32.1 Introduction . 513

Contents xv

32.2 The Quantity declaration . 515

32.3 Associating units with model identifiers 518

32.4 Unit analysis . 520

32.4.1 Unit analysis of procedures and functions 524

32.5 Unit-based scaling . 525

32.5.1 Unit-based scaling of mathematical programs 526

32.6 Unit expressions . 528

32.6.1 Unit-valued functions . 530

32.6.2 Converting unit expressions to numerical expressions 531

32.7 Locally overriding units . 532

32.8 Globally overriding units through Conventions 534

32.9 Unit-valued parameters . 537

33 Time-Based Modeling 542

33.1 Introduction . 542

33.2 Calendars . 544

33.3 Horizons . 547

33.4 Creating timetables . 550

33.5 Data conversion of time-dependent identifiers 555

33.6 Implementing a model with a rolling horizon 558

33.7 Format of time slots and periods 560

33.7.1 Date-specific components 561

33.7.2 Time-specific components 563

33.7.3 Period-specific components 563

33.7.4 Support for time zones and daylight saving time . . . 565

33.8 Converting time slots and periods to strings 568

33.9 Working with elapsed time . 569

33.10 Working in multiple time zones 570

34 The Aimms Programming Interface 574

34.1 Introduction . 574

34.2 Obtaining identifier attributes 579

34.3 Managing identifier handles . 584

34.4 Communicating individual identifier values 587

34.5 Accessing sets and set elements 590

34.6 Executing Aimms procedures . 593

34.7 Passing errors and messages . 595

34.8 Raising and handling errors . 596

34.9 Opening and closing a project 598

34.10 Thread synchronization . 599

34.11 Interrupts . 601

34.12 Model Edit Functions . 603

Contents xvi

35 Model Structure and Modules 609

35.1 Introduction . 609

35.2 Model declaration and attributes 613

35.3 Section declaration and attributes 613

35.4 Module declaration and attributes 614

35.5 LibraryModule declaration and attributes 620

35.6 Runtime Libraries and the Model Edit Functions 621

Appendices 629

A Distributions, statistical operators and histogram functions 629

A.1 Discrete distributions . 630

A.2 Continuous distributions . 633

A.3 Distribution operators . 640

A.4 Sample operators . 641

A.5 Scaling of statistical operators 644

A.6 Creating histograms . 645

B Additional Separation Procedures for Benders’ Decomposition 650

Index 653

Bibliography 684

Preface

Three Aimms

books

The printed Aimms documentation consists of three books

� Aimms—The User’s Guide,

� Aimms—The Language Reference, and

� Aimms—Optimization Modeling.

The first two books emphasize different aspects in the use of the Aimms sys-

tem, while the third book is a general introduction to optimization modeling.

All books can be used independently.

Available onlineIn addition to the printed versions, these books are also available on-line in the

Adobe Portable Document Format (PDF). Although new printed versions of the

documentation will become available with every new functional Aimms release,

small additions to the system and small changes in its functionality in between

functional releases are always directly reflected in the online documentation,

but not necessarily in the printed material. Therefore, the online versions of

the Aimms books that come with a particular version of the system should

be considered as the authoritative documentation describing the functionality

regarding that particular Aimms version.

Release notesWhich changes and bug fixes are included in particular Aimms releases are

described in the associated release notes.

What’s new in Aimms 4

From Aimms 4.1 onwards, we will only publish this ”What’s New” section on

our website. It can be found at the following location:

https://aimms.com/english/developers/downloads/product-information/new-features/

https://aimms.com/english/developers/downloads/product-information/new-features/

Preface xviii

What is in the Aimms documentation

The User’s

Guide

The Aimms User’s Guide provides a global overview of how to use the Aimms

system itself. It is aimed at application builders, and explores Aimms’ capabil-

ities to help you create a model-based application in an easy and maintainable

manner. The guide describes the various graphical tools that the Aimms sys-

tem offers for this task. It is divided into five parts.

� Part I—Introduction to Aimms—what is Aimms and how to use it.

� Part II—Creating and Managing a Model—how to create a new model in

Aimms or manage an existing model.

� Part III—Creating an End-User Interface—how to create an intuitive and

interactive end-user interface around a working model formulation.

� Part IV—Data Management—how to work with cases and datasets.

� Part V—Miscellaneous—various other aspects of Aimms which may be

relevant when creating a model-based end-user application.

The Language

Reference

The Aimms Language Reference provides a complete description of the Aimms

modeling language, its underlying data structures and advanced language con-

structs. It is aimed at model builders only, and provides the ultimate reference

to the model constructs that you can use to get the most out of your model

formulations. The guide is divided into seven parts.

� Part I—Preliminaries—provides an introduction to, and overview of, the

basic language concepts.

� Part II—Nonprocedural Language Components—describes Aimms’ basic

data types, expressions, and evaluation structures.

� Part III—Procedural Language Components—describes Aimms’ capabili-

ties to implement customized algorithms using various execution and

flow control statements, as well as internal and external procedures and

functions.

� Part IV—Sparse Execution—describes the fine details of the sparse execu-

tion engine underlying the Aimms system.

� Part V—Optimization Modeling Components—describes the concepts of

variables, constraints and mathematical programs required to specify an

optimization model.

� Part VI—Data Communication Components—how to import and export

data from various data sources, and create customized reports.

� Part VII—Advanced Language Components—describes various advanced

language features, such as the use of units, modeling of time and com-

municating with the end-user.

Preface xix

Optimization

Modeling

The book on optimization modeling provides not only an introduction to mod-

eling but also a suite of worked examples. It is aimed at users who are new

to modeling and those who have limited modeling experience. Both basic con-

cepts and more advanced modeling techniques are discussed. The book is

divided into five parts:

� Part I—Introduction to Optimization Modeling—covers what models are,

where they come from, and how they are used.

� Part II—General Optimization Modeling Tricks—includes mathematical

concepts and general modeling techniques.

� Part III—Basic Optimization Modeling Applications—builds on an under-

standing of general modeling principles and provides introductory appli-

cation-specific examples of models and the modeling process.

� Part IV—Intermediate Optimization Modeling Applications—is similar to

part III, but with examples that require more effort and analysis to con-

struct the corresponding models.

� Part V—Advanced Optimization Modeling Applications—provides appli-

cations where mathematical concepts are required for the formulation

and solution of the underlying models.

Documentation

of deployment

features

In addition to the three major Aimms books, there are several separate docu-

ments describing various deployment features of the Aimms software. They

are:

� Aimms—The Function Reference,

� Aimms—The COM Object User’s Guide and Reference,

� Aimms—The Excel Add-In User’s Guide, and

� Aimms—The Open Solver Interface User’s Guide and Reference.

These documents are only available in PDF format.

Help filesThe Aimms documentation is complemented with a number of help files that

discuss the finer details of particular aspects of the Aimms system. Help files

are available to describe:

� the execution and solver options which you can set to globally influence

the behavior of the Aimms’ execution engine,

� the finer details of working with the graphical modeling tools, and

� a complete description of the properties of end-user screens and the

graphical data objects which you can use to influence the behavior and

appearance of an end-user interface built around your model.

The Aimms help files are both available as Windows help files, as well as in PDF

format.

Preface xx

Aimms tutorialsTwo tutorials on Aimms in PDF format provide you with some initial work-

ing knowledge of the system and its language. One tutorial is intended for

beginning users, while the other is aimed at professional users of Aimms.

Searching the

documentation

As the entire Aimms documentation is available in PDF format, you can use the

search functionality of Acrobat Reader to search through all Aimms documen-

tation for the information you are looking for.

Aimms model

library

Aimms comes with an extensive model library, which contains a variety of ex-

amples to illustrate simple and advanced applications containing particular

aspects of both the language and the graphical user interface. You can find

the Aimms model library in the Examples directory in the Aimms installation

directory. The Examples directory also contains an Aimms project providing an

index to all examples, which you can use to search for examples that illustrate

specific aspects of Aimms.

What is in the Language Reference

PreliminariesPart I of the Language Reference introduces and illustrates the basic concepts

of the Aimms language.

� Chapter 1—Introduction to the Aimms language—provides you with a

quick overview of Aimms’ modeling capabilities through a simple, and

completely worked out example model.

� Chapter 2—Language preliminaries—globally describes the basic struc-

ture of an Aimms model, the available data types and execution state-

ments.

Nonprocedural

language

components

Part II introduces the fundamental concepts of sets and multidimensional pa-

rameters, and discusses the expressions and evaluation mechanisms available

for these data types.

� Chapter 3—Set declaration—discusses the declaration and attributes of

index sets.

� Chapter 4—Parameter declaration—describes the declaration and avail-

able attributes of scalar and multidimensional parameters which can be

used to store and manipulate data.

� Chapter 5—Set, set element and string expressions—provides a complete

overview of all expressions which evaluate to either a set, a set element

or a string.

� Chapter 6—Numerical and logical expressions—describes all expressions

which evaluate to a numerical or logical value, and also explains the con-

cept of macro expansion in Aimms.

Preface xxi

� Chapter 7—Execution of nonprocedural components—describes the de-

pendency and automatic execution structure of the system of functional

relationships formed by all defined sets and parameters.

Procedural

language

components

Part III focuses on the procedural aspects of the Aimms language which allow

you to implement you own algorithms, seamlessly making use of the advanced

built-in functionality already provided by Aimms.

� Chapter 8—Execution statements—provides a complete overview of all

assignment and flow control statements in Aimms.

� Chapter 9—Index binding—specifies the precise rules for the fundamen-

tal concept of index binding underlying Aimms execution engine.

� Chapter 10—Internal procedures and functions—explains how to declare

and call internal Aimms procedures and functions.

� Chapter 11—External procedures and functions—explains how functions

and procedures in an external DLL can be linked to and called from

within an existing Aimms application.

Sparse

execution

Part IV of the reference guide tries to make you aware of the differences be-

tween a dense versus a sparse execution engine (as used by Aimms). It provides

valuable insight into the inner workings of Aimms and may help to implement

large-scale modeling applications in a correct and efficient manner.

� Chapter 12—The Aimms sparse execution engine—provides you with a

basic insight into the inner workings Aimms sparse execution engine, and

provides a number of convenience operators to modify the semantics of

some operators.

� Chapter 13—Execution efficiency cookbook—discusses various techniques

that you may apply to find and address performance issues in your

Aimms models.

Optimization

modeling

components

Part V of the reference guide discusses all concepts offered by Aimms for spec-

ifying and solving optimization models.

� Chapter 14—Variable and constraint declaration—discusses the declara-

tion and attributes of variables and constraints.

� Chapter 15—Solving mathematical programs—describes the steps nec-

essary for specifying and solving an optimization program in Aimms.

� Chapter 24—Node and arc declaration—discusses the declaration and at-

tributes of node and arc types available in Aimms to specify single com-

modity network flow models.

� Chapter 17—Advanced methods for nonlinear programs—discusses the

multistart algorithm and nonlinear presolver available in Aimms for non-

linear models.

� Chapter 23—Mixed complementarity problems—describes the declaration

and attributes of complementarity variables, which can be used to spec-

ify mixed complementarity and MPCC models in Aimms.

Preface xxii

� Chapter 19—Stochastic programming—discusses the facilities in Aimms

to generate stochastic models and associated scenario trees for existing

deterministic model formulations.

� Chapter 20—Robust optimization—introduces the facilities in Aimms to

generate and solve robust optimization models for existing deterministic

model formulations.

� Chapter 16—Implementing advanced algorithms for mathematical pro-

grams—describes a library of procedures which allow you to implement

advanced algorithms for solving linear and mixed-integer linear program-

ming models.

� Chapter 18—Aimms Outer Approximation Algorithm for MINLP—intro-

duces an open approach to solving MINLP models using the well-known

outer approximation algorithm.

Data

communication

components

Part VI introduces the mechanisms provided by Aimms to import data from

files and databases, as well as its capabilities to export data and produce stan-

dardized or customized text reports.

� Chapter 25—Data initialization, verification and control—describes your

options to initialize the identifiers associated with an Aimms model. It

also introduces the concept of assertions which can be used to verify

the consistency of data, as well as a number of data control statements

which can help you to keep the data in a consistent state.

� Chapter 26—The READ and WRITE statements—describes the basic mecha-

nism offered by Aimms for data transfer with various data sources.

� Chapter 27—Communicating with databases—discusses the specific as-

pects of setting up a link between Aimms and a database.

� Chapter 28—Format of text data files—presents the various data formats

offered by Aimms for initializing a model through a number of text data

files.

� Chapter 29—Reading and Writing Spreadsheet Data—provides you with

an overview of Aimms’ capabilities to exchange data with Excel or with

OpenOffice Calc workbooks.

� Chapter 30—Reading and Writing XML Data—discusses Aimms’ facilities

to read and write XML data from within Aimms.

� Chapter 31—Text reports and listing—describes the statements and for-

matting options available for producing standardized and customized

text reports.

Advanced

language

components

Part VII of the reference guide introduces a number of advanced features avail-

able in Aimms both in the area of modeling and communication with external

applications.

� Chapter 32—Units of measurement—discusses the declaration and use

of units and unit conventions in an Aimms model both for checking the

Preface xxiii

consistency of a model formulation, scaling of mathematical programs

and display of data in the interface and reports.

� Chapter 33—Time-based modeling—describes the advanced concepts in

Aimms to deal with time-dependent data and models in a flexible and

easy manner.

� Chapter 34—The Aimms programming interface—offers a complete de-

scription of the application programming interface (API) which can be

used to access Aimms data structures and call Aimms procedures from

within an external DLL or application.

� Chapter 35—Model structure and modules—discusses the organizational

data structures such as the main model, model sections and modules,

which can be used to supply the model with a logical structure, as well

as library modules, which facilitate model development by multiple de-

velopers.

The authors

Marcel RoelofsMarcel Roelofs received his Ph.D. in Applied Mathematics from the Technical

University of Twente in 1993 on the application of Computer Algebra in Math-

ematical Physics. From 1993 to 1995 he worked as a post-doc at the Centre for

Mathematics and Computer Science (CWI) in Amsterdam in the area of Com-

puter Algebra, and had a part-time position at the Research Institute for the

Application of Computer Algebra. In 1995 he accepted his current position as

CTO of AIMMS B.V. His main responsibilities are the design and documentation

of the Aimms language and user interface.

Johannes

Bisschop

Johannes Bisschop received his Ph.D. in Mathematical Sciences from the Johns

Hopkins University in Baltimore USA in 1974. From 1975 to 1980 he worked

as a Researcher in the Development Research Center of the World Bank in

Washington DC, USA. In 1980 he returned to The Netherlands and accepted a

position as a Research Mathematician at Shell Research in Amsterdam. After

some years he also accepted a second part-time position as a full professor in

the Applied Mathematics Department at the Technical University of Twente.

From 1989 to 2003 he combined his part-time position at the University with

managing Paragon Decision Technology B.V. and the continuing development

of Aimms. From 2003 to 2005 he held the position of president of Paragon

Decision Technology B.V. His main interests are in the areas of computational

optimization and modeling.

Other contribu-

tors to Aimms

In addition to the main authors, various current and former employees of

Aimms B.V. (formerly known as Paragon Decision Technology B.V.) and exter-

nal consultants have made a contribution to the Aimms documentation. They

are (in alphabetical order):

Preface xxiv

� Pim Beers

� John Boers

� Peter Bonsma

� Mischa Bronstring

� Ximena Cerda Salzmann

� Michelle Chamalaun

� Horia Constantin

� Guido Diepen

� Robert Entriken

� Floor Goddijn

� Thorsten Gragert

� Koos Heerink

� Nico van den Hijligenberg

� Marcel Hunting

� Roel Janssen

� Gertjan Kloosterman

� Joris Koster

� Chris Kuip

� Gertjan de Lange

� Ovidiu Listes

� Peter Nieuwesteeg

� Franco Peschiera

� Bianca Rosegaar

� Diego Serrano

� Giles Stacey

� Richard Stegeman

� Selvy Suwanto

� Jacques de Swart

� Martine Uyterlinde

Part I

Preliminaries

Chapter 1

Introduction to the Aimms language

Example makes

a good starting

point

This chapter discusses a simple but complete modeling example containing

the most common components of a typical Aimms application. The aim is to

give a quick feel for the language, and to assist you to form a mental picture

of its functionality.

Familiarity with

algebraic

notation

It is assumed that you are familiar with some basic algebraic notation. It is

important that you understand the notions of “summation,” “simultaneous

equations in many variables (unknowns),” and “minimizing or maximizing an

objective function, subject to constraints.” If you are not acquainted with these

notions, refer to the book Aimms—Optimization Modeling.

What to expect

in this chapter

This chapter uses a simple depot location problem to introduce the basic

Aimms concepts necessary to formulate and solve the model. The task con-

sists of the following steps.

� Section 1.1 describes the depot location problem, introduces the set no-

tation, and illustrates how sets can be used to declare multidimensional

identifiers useful for modeling the problem in Aimms.

� Section 1.2 discusses the formulation of a mathematical program that

can be used to compute the optimal solution of the problem.

� Section 1.3 briefly discusses data initialization, and explains how data

can be entered.

� Section 1.4 illustrates how you can use flow control statements in Aimms

to formulate an algorithm for solving your problems in advanced ways.

� Section 1.5 discusses issues to consider when working with more com-

plex models.

1.1 The depot location problem

The modeling

process

In translating any real-life problem into a valid Aimms optimization model

(referred to as a mathematical program) several conceptual steps are required.

They are:

� describe the input and output data using sets and indexed identifiers,

� specify the mathematical program,

Chapter 1. Introduction to the Aimms language 3

� specify procedures for data pre- and post-processing,

� initialize the input data from files and databases,

� solve the mathematical program, and

� display the results (or write them back to a database).

Problem

description

The example in this chapter is based on a simple depot location problem which

can be summarized as follows.

Consider the distribution of a single product from one or more depots to

multiple customers. The objective is to select depots from a predefined

set of possible depots (each with a given capacity) such that

� the demand of each customer is met,

� the capacity of each selected depot is not exceeded, and

� the total cost for both depot rental and transport to the customers

is minimized.

Use of setsIn the above problem you can see that there are two entities that determine the

size of the problem: depots and customers. With these entities a number of

instances are associated, e.g. a particular instance of a depot could be ’Amster-

dam’. The precise collection of instances, however, may differ from run to run.

Therefore, when translating the problem into a symbolic model it is customary

and desirable not to make any explicit reference to individual instances. Such

high-level model specification can be accomplished through the use of sets,

each with an associated index for referencing arbitrary elements in that set.

Initial set

declarations

The following set declarations in Aimms introduce the two sets Depots and

Customers with indices d and c, respectively. Aimms has a convenient graphical

model editor to create your model. It allows you to enter all model input

using graphical forms. However, in the interest of compactness we will use a

textual representation for declarations that closely resembles the contents of

a graphical form throughout this manual.

Set Depots {

Index : d;

}

Set Customers{

Index : c;

}

Parameters for

input data

In most models there is input data that can be naturally associated with a

particular element or tuple of elements in a set. In Aimms, such data is stored

in Parameters. A good example in the depot location problem is the quantity

Distance, which can be defined as the distance between depot d and customer

c. To define Distance a index tuple (d,c) is required and it is referred to as the

associated IndexDomain of this quantity.

Chapter 1. Introduction to the Aimms language 4

ExampleIn Aimms, the identifier Distance is viewed as a Parameter (a known quantity),

and can be declared as follows.

Parameter Distance {

Index : (d,c);

}

In this example the identifier Distance is referred to as an ndexed identifier,

because it has a nonempty index domain.

Scalar dataNot all identifiers in a model need to be indexed. The following declarations

illustrate two scalar parameters which are used later.

Parameter MaxDeliveryDistance;

Parameter UnitTransportRate;

Restricting

permitted

routes

For real-life applications the collection of all possible routes (d,c) may be

huge. In practice, routes (d,c) for which the distance Distance(d,c) is big,

will never become a part of the solution. It, therefore, makes sense to exclude

such routes (d,c) from the entire solution process altogether. We can do this

by computing a set of PermittedRoutes which we will use throughout the sequel

of the example.

ExampleIn Aimms, the relation PermittedRoutes can be declared as follows.

Set PermittedRoutes {

SubsetOf : (Depots, Customers);

Definition : {

{ (d,c) | Distance(d,c) <= MaxDeliveryDistance }

}

}

ExplanationIn the SubsetOf attribute of the above declaration it is indicated that the set

PermittedRoutes is a subset of the Cartesian product of the simple sets Depots

and Customers. The Definition attribute globally defines the set Permitted-

Routes as the set of those tuples (d, c) for which the associated Distance(d,c)

does not exceed the value of the scalar parameter MaxDeliveryDistance. Aimms

will assure that such a global relationship is valid at any time during the ex-

ecution of the model. Note that the set notation in the Definition attribute

resembles the standard set notation found in mathematical literature.

Applying

domain

restrictions

Now that we have restricted the collection of permitted routes, we can use

the relation PermittedRoutes throughout the model to restrict the domain of

identifiers declared over (d,c) to only hold data for permitted routes (d,c).

Chapter 1. Introduction to the Aimms language 5

ExampleIn Aimms, the parameter UnitTransportCost can be declared as follows.

Parameter UnitTransportCost {

IndexDomain : (d,c) in PermittedRoutes;

Definition : UnitTransportRate * Distance(d,c);

}

This parameter is defined through a simple formula. Once an identifier has

its own definition, Aimms will not allow you to make an assignment to this

identifier anywhere else in your model text.

Effects of

domain

restriction

As an effect of applying a domain restriction to the parameter UnitTransport-

Cost, any reference to UnitTransportCost(d,c) for tuples (d,c) outside the set

PermittedRoutes is not defined, and Aimms will evaluate this quantity to 0. In

addition, Aimms will use the domain restriction in its GUI, and will not allow

you to enter numerical values of UnitTransportCost(d,c) outside of its domain.

Additional

parameter

declarations

To further define the depot location problem the following parameters are

required:

� the fixed rental charge for every depot d,

� the available capacity of every depot d, and

� the product demand of every customer c.

The Aimms declarations are as follows.

Parameter DepotRentalCost {

IndexDomain : d;

}

Parameter DepotCapacity {

IndexDomain : d;

}

Parameter CustomerDemand {

IndexDomain : c;

}

1.2 Formulation of the mathematical program

Constraint-

oriented

modeling

In programming languages like C it is customary to solve a particular problem

through the explicit specification of an algorithm to compute the solution. In

Aimms, however, it is sufficient to specify only the Constraints which have to

be satisfied by the solution. Based on these constraints Aimms generates the

input to a specialized numerical solver, which in turn determines the (optimal)

solution satisfying the constraints.

Chapter 1. Introduction to the Aimms language 6

Variables as

unknowns

In constraint-oriented modeling the unknown quantities to be determined are

referred to as variables. Like parameters, these variables can either be scalar

or indexed, and their values can be restricted in various ways. In the depot

location problem it is necessary to solve for two groups of variables.

� There is one variable for each depot d to indicate whether that depot is

to be selected from the available depots.

� There is another variable for each permitted route (d,c) representing the

level of transport on it.

ExampleIn Aimms, the variables described above can be declared as follows.

Variable DepotSelected {

IndexDomain : d;

Range : binary;

}

Variable Transport {

IndexDomain : (d,c) in PermittedRoutes;

Range : nonnegative;

}

The Range

attribute

For unknown variables it is customary to specify their range of values. Various

predefined ranges are available, but you can also specify your own choice of

lower and upper bounds for each variable. In this example only predefined

ranges have been used. The predefined range binary indicates that the variable

can only assume the values 0 and 1, while the range nonnegative indicates that

the value of the corresponding variable must lie in the continuous interval

[0,∞).

Constraints

description

As indicated in the problem description in Section 1.1 a solution to the depot

location problem must satisfy two constraints:

� the demand of each customer must be met, and

� the capacity of each selected depot must not be exceeded.

ExampleIn Aimms, these two constraints can be formulated as follows.

Constraint CustomerDemandRestriction {

IndexDomain : c;

Definition : Sum[d, Transport(d,c)] >= CustomerDemand(c);

}

Constraint DepotCapacityRestriction {

IndexDomain : d;

Definition : Sum[c, Transport(d,c)] <= DepotCapacity(d)*DepotSelected(d);

}

Chapter 1. Introduction to the Aimms language 7

Satisfying

demand

The constraint CustomerDemandRestriction(c) specifies that for every customer

c the sum of transports from every possible depot d to this particular customer

must exceed his demand. Note that the Sum operator behaves as the standard

summation operator
∑

found in mathematical literature. In Aimms the domain

of the summation must be specified as the first argument of the Sum operator,

while the second argument is the expression to be accumulated.

Proper domainAt first glance, it may seem that the (indexed) summation of the quantities

Transport(d,c) takes place over all tuples (d,c). This is not the case. The un-

derlying reason is that the variable Transport has been declared with the index

domain (d,c) in PermittedRoutes. As a result, the transport from a depot d

to a customer c not in the set PermittedRoutes is not considered (i.e. not gen-

erated) by Aimms. This implies that transport to c only accumulates along

permitted routes.

Satisfying

capacity

The interpretation of the constraint DepotCapacityRestriction(d) is twofold.

� Whenever DepotSelected(d) assumes the value 1 (the depot is selected),

the sum of transports leaving depot d along permitted routes may not

exceed the capacity of depot d.

� Whenever DepotSelected(d) assumes the value 0 (the depot is not se-

lected), the sum of transports leaving depot d must be less than or equal

to 0. Because the range of all transports has been declared nonnega-

tive, this constraint causes each individual transport from a nonselected

depot to be 0 as expected.

The objective

function

The objective in the depot location problem is to minimize the total cost re-

sulting from the rental charges of the selected depots together with the cost of

all transports taking place. In Aimms, this objective function can be declared

as follows.

Variable TotalCost {

Definition : {

Sum[d, DepotRentalCost(d)*DepotSelected(d)] +

Sum[(d,c), UnitTransportCost(d,c)*Transport(d,c)];

}

}

Defined

variables

The variable TotalCost is an example of a defined variable. Such a variable will

not only give rise to the introduction of an unknown, but will also cause Aimms

to introduce an additional constraint in which this unknown is set equal to its

definition. Like in the summation in the constraint DepotCapacityRestriction,

Aimms will only consider the tuples (d,c) in PermittedRoutes in the definition

of the variable TotalCost, without you having to (re-)specify this restriction

again.

Chapter 1. Introduction to the Aimms language 8

The

mathematical

program

Using the above, it is now possible to specify a mathematical program to find

an optimal solution of the depot location problem. In Aimms, this can be

declared as follows.

MathematicalProgram DepotLocationDetermination {

Objective : TotalCost;

Direction : minimizing;

Constraints : AllConstraints;

Variables : AllVariables;

Type : mip;

}

ExplanationThe declaration of DepotLocationDetermination specifies a mathematical pro-

gram in which the defined variable TotalCost serves as the objective function

to be minimized. All previously declared constraints and variables are to be part

of this mathematical program. In more advanced applications where there are

multiple mathematical programs it may be necessary to reference subsets of

constraints and variables. The Type attribute specifies that the mathematical

program is a mixed integer program (mip). This reflects the fact that the vari-

able DepotSelected(d) is a binary variable, and must attain either the value 0

or 1.

Solving the

mathematical

program

After providing all input data (see Section 1.3) the mathematical program can

be solved using the following simple execution statement.

Solve DepotLocationDetermination ;

A SOLVE statement can only be called inside a procedure in your model. An

example of such a procedure is provided in Section 1.4.

1.3 Data initialization

Separation of

model and data

In the previous section the entire depot location model was specified without

any reference

� to specific elements in the sets Depots and Customers, or

� to specific values of parameters defined over such elements.

As a result of this clear separation of model and data values, the model can

easily be run for different data sets.

Data sourcesA data set can come from various sources. In Aimms there are six sources you

might consider for your application. They are:

� commercial databases,

� text data files,

� Aimms case files,

� internal procedures,

Chapter 1. Introduction to the Aimms language 9

� external procedures, or

� the Aimms graphical user interface (GUI).

These data sources are self-explanatory with perhaps the Aimms case files as

an exception. Aimms case files are obtained by using the case management

facilities of Aimms to store data values from previous runs of your model.

A simple data

set in text

format

The following fictitious data set is provided in the form of an text data file.

It illustrates the basic constructs available for providing data in text format.

In this file, assignments are made using the ’:=’ operator and the keywords of

DATA TABLE and COMPOSITE TABLE announce the table format. The exclamation

mark denotes a comment line.

Depots := DATA { Amsterdam, Rotterdam };

Customers := DATA { Shell, Philips, Heineken, Unilever };

COMPOSITE TABLE

d DepotRentalCost DepotCapacity

! --------- --------------- -------------

Amsterdam 25550 12500

Rotterdam 31200 14000

;

COMPOSITE TABLE

c CustomerDemand

! --------- --------------

Shell 10000

Philips 5000

Heineken 3000

Unilever 5000

;

Distance(d,c) := DATA TABLE

Shell Philips Heineken Unilever

! ----- ------- -------- --------

Amsterdam 100 200 50 150

Rotterdam 75 100 50 75

;

UnitTransportRate := 1.25 ;

MaxDeliveryDistance := 125 ;

Reading in the

data

Assuming that the text data file specified above was named "initial.dat", then

its data can easily be read using the following READ statement.

read from file "initial.dat" ;

Such READ statements are typically placed in the predefined procedure Main-

Initialization. This procedure is automatically executed at the beginning of

every session immediately following the compilation of your model source.

Chapter 1. Introduction to the Aimms language 10

Automatic

initialization

When Aimms encounters any reference to a set or parameter with its own def-

inition inside a procedure, Aimms will automatically compute its value on the

basis of its definition. When used inside the procedure MainInitialization,

this form of data initialization can be viewed as yet another data source in

addition to the six data sources mentioned at the beginning of this section.

1.4 An advanced model extension

This sectionIn this section a single procedure is developed to illustrate the use of execu-

tion control structures in Aimms. It demonstrates a customized solution ap-

proach to solve the depot location problem subject to fluctuations in demand.

Understanding the precise algorithm described in this section requires more

mathematical background than was required for the previous sections. How-

ever, even without this background the examples in this section may provide

you with a basic understanding of the capabilities of Aimms to manipulate its

data and control the flow of execution.

Finding a robust

solution

The mathematical program developed in Section 1.1 does not take into consid-

eration any fluctuations in customer demand. Selecting the depots on the basis

of a single demand scenario may result in insufficient capacity under changing

demand requirements. While there are several techniques to determine a solu-

tion that remains robust under fluctuations in demand, we will consider here

a customized solution approach for illustrative purposes.

Algorithm in

words

The overall structure of the algorithm can be captured as follows.

� During each major iteration, the algorithm adds a single new depot to a

set of already permanently selected depots.

� To determine a new depot, the algorithm solves the depot location model

for a fixed number of scenarios sampled from normal demand distribu-

tions. During these runs, the variable DepotSelected(d) is fixed to 1 for

each depot d in the set of already permanently selected depots.

� The (nonpermanent) depot for which the highest selection frequency was

observed in the previous step is added to the set of permanently selected

depots.

� The algorithm terminates when there are no more depots to be selected

or when the total capacity of all permanently selected depots first ex-

ceeds the average total demand incremented with the observed standard

deviation in the randomly selected total demand.

Additional

identifiers

In addition to all previously declared identifiers the following algorithmic iden-

tifiers will also be needed:

� the set SelectedDepots, a subset of the set Depots, holding the already

permanently selected depots, as well as

Chapter 1. Introduction to the Aimms language 11

� the parameters AverageDemand(c), DemandDeviation(c), TotalAverageDe-

mand, NrOfTrials, DepotSelectionCount(d), CapacityOfSelectedDepots, To-

talSquaredDemandDifference and TotalDemandDeviation.

The meaning of these identifiers is either self-explanatory or will become clear

when you study the further specification of the algorithm.

Outline of

algorithm

At the highest level you may view the algorithm described above as a single

initialization block followed by a WHILE statement containing a reference to

two additional execution blocks. The corresponding outline is as follows.

<<Initialize algorithmic parameters>>

while (Card(SelectedDepots) < Card(Depots) and

CapacityOfSelectedDepots < TotalAverageDemand + TotalDemandDeviation) do

<<Determine depot frequencies prior to selecting a new depot>>

<<Select a new depot and update algorithmic parameters>>

endwhile;

The Aimms function Card determines the cardinality of a set, that is the number

of elements in the set.

Initializing

model

parameters

The initialization blocks consists of assignment statements to give each rel-

evant set and parameter its initial value. Note that the assignments indexed

with d will be executed for every depot in the Depots, and no explicit FOR state-

ment is required.

TotalAverageDemand := Sum[c, AverageDemand(c)];

SelectedDepots := { };

DepotSelectionCount(d) := 0;

CapacityOfSelectedDepots := 0;

TotalDemandDeviation := 0;

TotalSquaredDemandDifference := 0;

DepotSelected.NonVar(d) := 0;

ExplanationWith the exception of TotalAverageDemand, all identifiers are assigned their de-

fault value 0 or empty. This is superfluous the first time the algorithm is called

during a session, but is required for each subsequent call. The value of global

identifiers such as NrOfTrials, AverageDemand(c) and DemandDeviation(c) must

be set prior to calling the algorithm.

The .NonVar

suffix

The suffix .NonVar indicates a nonvariable status. Whenever the suffix Depot-

Selected.NonVar(d) is nonzero for a particular d, the corresponding variable

DepotSelected(d) is considered to be a parameter (and thus fixed inside a math-

ematical program).

Chapter 1. Introduction to the Aimms language 12

Determining

depot

frequencies

The Aimms program that determines the depot frequencies prior to selecting

a new depot consists of just five statements.

while (LoopCount <= NrOfTrials) do

CustomerDemand(c) := Normal(AverageDemand(c), DemandDeviation(c));

Solve DepotLocationDetermination;

DepotSelectionCount(d | DepotSelected(d)) += 1;

TotalSquaredDemandDifference += Sum[c, (CustomerDemand(c) - AverageDemand(c))ˆ2];

endwhile;

ExplanationInside the WHILE statement the following steps are executed.

� Determine a demand scenario.

� Solve the corresponding mathematical program.

� Increment the depot selection frequency accordingly.

� Register squared deviations from the average for total demand.

Functions usedThe operator LoopCount is predefined in Aimms, and counts the number of the

current iteration in any of Aimms’ loop statements. Its initial value is 1. The

function Normal is also predefined, and generates a number from the normal

distribution with known mean (the first argument) and known standard devi-

ation (the second argument). The operator += increments the identifier on the

left of it with the amount on the right. The operator ˆ represents exponentia-

tion.

Selecting a new

depot

The Aimms program to select a new depot and update the relevant algorithmic

parameters also consists of just five statements.

SelectedDepots += ArgMax[d | not d in SelectedDepots,

DepotSelectionCount(d)];

CapacityOfSelectedDepots := Sum[d in SelectedDepots, DepotCapacity(d)];

TotalDemandDeviation := Sqrt(TotalSquaredDemandDifference) /

(Card(SelectedDepots)*NrOfTrials) ;

DepotSelected(d in SelectedDepots) := 1;

DepotSelected.NonVar(d in SelectedDepots) := 1;

ExplanationIn the above Aimms program the following steps are executed.

� Determine the not already permanently selected depot with the highest

frequency, and increment the set of permanently selected depots accord-

ingly.

� Register the new current total capacity as the sum of all capacities of

depots that have been permanently selected.

� Register the new value of the estimated standard deviation in total de-

mand.

Chapter 1. Introduction to the Aimms language 13

� Assign 1 to all permanently selected depots, and fix their nonvariable

status accordingly.

Functions usedThe iterative operator ArgMax considers all relevant depots from its first argu-

ment, and takes as its value that depot for which the corresponding second ar-

guments is maximal. The Aimms function Sqrt denotes the well-known square

root operation.

1.5 General modeling tips

From beginner

to advanced

The previous sections introduced you to optimization modeling in Aimms. In

such a small application, the model structure is quite transparent and the

formulation in Aimms is straightforward. This section discusses issues to con-

sider when your model is larger and more complex.

Separation of

model and data

The Aimms language is geared to strictly separate between model formulation

and the supply of its data. While this may seem unnatural at first (when your

models are still small), there are several major advantages in using this ap-

proach.

� By formulating the definitions and assignments associated with your

problem in a completely symbolic form (i.e. without any reference to

numbers or particular set elements) the intention of the expressions

present in your model is more apparent. This is especially true when

you have chosen clear and descriptive names for all the identifiers in

your model.

� With the separation of model and data it becomes possible to run your

model with several data sets. Such data sets may describe completely

different problem topologies, all of which is perfectly fine as long as

your model formulation has been set up transparently.

� Keeping your model free from explicit references to numbers or partic-

ular set elements improves maintainability considerably. Explicit data

references inside assignment statements and constraints are essentially

undocumented, and therefore subsequent changes in values are error-

prone.

Intellectual

challenge

Translating a real-life problem into a working modeling application is not al-

ways an easy task. In fact, finding a formulation or implementing a solution

method that works in all cases is quite often a demanding (but also a very

satisfying) intellectual challenge.

Chapter 1. Introduction to the Aimms language 14

Levels of

abstraction

Setting up a transparent model involves incorporating an appropriate level of

abstraction. For example, when modeling a specific plant with two production

units and two products, you might be tempted to introduce just four dedicated

identifiers to store the individual production values. Instead, it is better to

introduce a single generic identifier for storing production values for all units

and all products. By doing so, you incorporate genericity in your application

and it will be possible to re-use the application at a later date for a different

plant with minimum reformulation.

Finding the

proper level

Finding the proper level of abstraction is not always obvious but it becomes

easier as your modeling experience increases. In general, it is a good strat-

egy to re-think the consequences—with an eye on the extensibility of your

application—before implementing the most straightforward data structures.

In most cases the time spent finding a more generic structure is paid back,

because the better structure helps you to formulate and extend the model in a

clear and structured way.

From small to

large-scale

Transforming a small working demo application into a large scale real-life ap-

plication may result in problems if care is not taken to specify variables and

constraints in an accurate manner. In a small model, there is usually no run-

time penalty to poorly specified mathematical programs. In contrast, when

working with large multidimensional data sets, a poor formulation of a math-

ematical program can easily cause that

� the available memory resources are exhausted, or

� runtime requirements are not met.

Under these conditions, the physical constraints should be reassessed and ap-

propriate domains, parameter definitions and constraints added as outlined

below.

Formulating

proper domains

of definition

For large applications you should always ask the following questions.

� Have you adequately constrained the domains of high-dimensional iden-

tifiers? Often by reassessing the physical situation the domain range can

be further reduced. Usually such domain restrictions can be expressed

through logical conditions referring to other (input) identifiers.

� Can you predict, for whatever reason, that some index combinations are

very unlikely to appear in the solution of a mathematical program, even

though they should be allowed formally? If so, you might experiment

with omitting such combinations from their respective domains of defi-

nition, and see how this domain reduction reduces the size of the math-

ematical program and affects its solution.

As a result of carefully re-designing index domains you may find that your

model no longer exhausts available memory resources and runs in an accept-

able amount of time.

Chapter 1. Introduction to the Aimms language 15

ExampleIn the depot location problem discussed in this chapter, the domain of the

variable Transport has already restricted to the set of allowed PermittedRoutes,

as computed on page 4. Thus, the mathematical program will never consider

transports on a route that is not desirable. Without this restriction, the math-

ematical program would consider the transports from every depot d to every

customer c. The latter may cause the mathematical program size to explode,

when the number of depots and customers become large.

Reformulation

of algorithm

Finally, you may run into mathematical programs where the runtime of a so-

lution method does not scale well even after careful domain definition. In this

case, it may be necessary to reformulate the problem entirely. One approach

may be to decompose the original mathematical program into subprograms,

and use these together with a customized sequential solution method to ob-

tain acceptable solutions. You can find pointers to many of such decomposi-

tion methods in the Aimms Modeling Guide.

Chapter 2

Language Preliminaries

This reference

guide

This language reference describes the syntax and semantics of the Aimms lan-

guage. It is recommended that you read the chapters in sequence, but this is

not essential. Both the contents and index are useful for locating the specifics

of any topic. Illustrative examples throughout the text will give you a quick

understanding of each subject.

2.1 Managing your model

Models in

Aimms

Aimms is a language for the specification and implementation of multidimen-

sional modeling applications. An Aimms model consists of

� a declarative part which specifies all sets and multidimensional identi-

fiers defined over these sets, together with the fixed functional relation-

ships defined over these identifiers,

� an algorithmic part consisting of one or more procedures which de-

scribes the sequence of statements that transform the input data of a

model into the output data, and

� a utility part consisting of additional identifier declarations and proce-

dures to support a graphical end-user interface for your application.

Optimization

included . . .

The declarative part of a model in Aimms may include the specification of

optimization problems containing simultaneous systems of equations. In the

algorithmic part you can call a special SOLVE statement to translate such opti-

mization problems to a format suitable for a linear or nonlinear solver.

. . . but not

necessary

Although optimization modeling will be an important part of most Aimms ap-

plications, Aimms is also a convenient tool for other types of applications.

� The purely symbolic representation of set and parameter definitions with

their automatic dependency structure provides spreadsheet-like func-

tionality but with the benefit of much greater maintainability.

� Because of its simple data structures and power of expression, Aimms

lends itself for use as a rapid prototyping language.

Chapter 2. Language Preliminaries 17

Interfacing with

the GUI

Although it is possible to create a simple end-user interface showing your

model’s data in the form of tables and graphs, a much more advanced user in-

terface is possible by exploiting the capabilities of the Aimms interface builder.

Mostly, this involves the introduction of various additional sets and parame-

ters in your model, as well as the implementation of additional procedures to

perform special interface-related tasks.

The model treeModeling in Aimms is centered around a graphical tool called the model ex-

plorer. In the model explorer the contents and structure of your model is

presented in a tree-like fashion, which is also referred to as the model tree.

The model tree can contain various types of nodes, each with their own use.

They are:

� structuring sections, which you can use to partition the declarations and

procedures that are part of your model into logical groups,

� declaration sections which contain the declarations of the global identi-

fiers (like sets, parameters and variables) in your model, and

� procedures and functions which contain the statements that describe the

algorithmic part of your application.

Creating new

models

When you start a new model Aimms will automatically create a skeleton model

tree which is suitable for small applications. The skeleton contains the follow-

ing nodes:

� a single declaration section where you can store the declarations used in

your model,

� the predefined procedure MainInitialization which is called directly af-

ter compiling your model and can be used to initialize your model,

� the predefined procedure MainExecution where you can put all the state-

ments necessary to execute the algorithmic part of your application, and

� the predefined procedure MainTermination which is called just prior to

leaving Aimms.

Changing the

skeleton

Whenever the number of declarations in your model grows too large to be

easily managed within a single declaration section, or when you want to divide

the execution associated with your application into several procedures, you

are free to change the skeleton model tree created by Aimms. You can group

particular declarations into separate declaration sections with a meaningful

name, and introduce new procedures and functions.

Structuring

your model

When you feel that particular groups of declarations, procedures and functions

belong together in a logical manner, you are encouraged to create a new struc-

turing section with a descriptive name within the model tree, and store the

associated model components underneath it. When your application grows

in size, a clear hierarchical structure of all the information stored will help

tremendously to find your way within your application easily and quickly.

Chapter 2. Language Preliminaries 18

Storage on diskThe contents of a model is stored in one or more text files with the “.ams”

(Aimms model source) extension. By default the entire model is stored in a

single file, but for each structural section you can indicate that you want to

store the subtree underneath it in a separate source file. This is especially

useful when particular parts of your application are shared with other Aimms

applications, or when there are multiple developers, each responsible for a

particular part of the model.

Character

encoding used

in text files

A text is a sequence of characters. A text file contains such a text whereby

the characters are encoded into numbers. The mapping between these char-

acters in a text and these numbers in a file is called an encoding. The histori-

cally prevailing encoding is ASCII which defines the encoding for some control

characters, the English alphabet, digits, and frequently used punctuation char-

acters for the values 1 .. 127. However, as characters are stored in bytes, the

values 128 .. 255 are free and these are used at different locales for different

purposes. These locale specific extensions of ASCII are also called code pages.

As a consequence, the characters displayed of an ASCII file containing some of

the numbers 128 .. 255, depend on the active code page selected. The problem

here is that the contents of ASCII files were ambiguous when the code page to

be used was not known (see also en.wikipedia.org/wiki/Codepage). In or-

der to circumvent this problem, the Unicode consortium enumerated all char-

acters into more than 64 thousand so-called code points. The first 127 Uni-

code code points match the first 127 characters of ASCII. These Unicode code

points can be encoded, again, in various ways in a file. To emphasize that

a particular number is a Unicode point, such a number is often denoted as

U+xxxx whereby xxxx is a hexadecimal number. An example Unicode encoding

is UTF8, which stores the first 127 code points in a single byte. This makes a

UTF8 file closely resemble ASCII when no values above 127 are used. To iden-

tify the Unicode encoding used in a file, a so-called Byte Order Mark (BOM)

can be used in the first few bytes of that file. See also www.unicode.org and

en.wikipedia.org/wiki/Byte_order_mark.

UTF8 encoding

preferred

UTF8 is a popular encoding; it resembles ASCII for the first 127 code points

and can be used by applications deployed at different locales to unambigu-

ously exchange data. Most modern text editors, including the one in Aimms,

are able to handle UTF8 text files. We recommend UTF8 encoding for Aimms

files, especially when Aimms is used inside international organizations. Aimms

system files, including the .ams model file and the .aimms project file, use the

UTF8 encoding.

Version controlAfter each editing session Aimms will only save the last version of your model

files, and will not retain a backup of the previous version of your model files.

You are therefore strongly encouraged to use a version control system to keep

a history of the changes you made to your model.

en.wikipedia.org/wiki/Codepage
www.unicode.org
en.wikipedia.org/wiki/Byte_order_mark

Chapter 2. Language Preliminaries 19

Other model

files

In addition to the model files Aimms stores a number of other files with each

model. They are:

� a project file containing the pages of the graphical (end-)user interface

that you have created for your application and all other relevant infor-

mation such as project options, user menus, fonts, etc., and

� a data tree file containing all the stored datasets and cases associated

with your application.

2.2 Identifier declarations

Identifier typesIdentifiers are the unique names through which you can refer to entities in

your model. The most common identifier types in Aimms are:

� set—used for indexing parameters and variables,

� parameter—for (multidimensional) data storage,

� variable and arc—entities of constraints that must be determined,

� constraint and node—relationships between variables or arcs, usually in

the form of (in)equalities,

� mathematical program—an objective and a collection of constraints, and

� procedure and function—code segments to initiate execution.

Declaration

forms

The declarations of all identifiers, procedures and functions within an Aimms

application can be provided by means of a uniform attribute notation. For

every node within the model tree you can view and change the value of these

attributes through a graphical declaration form. This form will show all the

attributes that are associated with a particular identifier type, along with their

values for the identifier at hand.

Notation used in

this manual

In this manual we have chosen to use a textual style representation of all

model declarations, which closely resembles the graphical representation in

the model tree. In view of the large number of declarations in this manual, we

found that a purely graphical presentation in the text was visually distracting.

In contrast, the adopted textual representation is succinct and integrates well

with the surrounding text.

The Text and

Comment

attributes

With every declaration in a model you can associate a Text and a Comment at-

tribute. The Comment attribute is aimed at the modeler, and can be used to

describe the contents of a particular node in the model tree, or make remarks

that are relevant for later reference. The Text attribute is intended for use in

the graphical user interface and reporting. It can contain a single line descrip-

tion of the identifier at hand. Many objects in the Aimms user interface allow

you to display this text along with the identifier value(s).

Chapter 2. Language Preliminaries 20

Predefined

identifiers

Not only does an Aimms model consist of sets, parameters and variables that

have been defined by you, and thus are specific for your application, Aimms

also provides a number of predefined system identifiers. These identifiers

characterize either

� a set of all objects with a particular property, for instance the set of

AllIdentifiers or the set of AllCases, or

� the current value of a particular modeling aspect, for instance the pa-

rameter CurrentCase or the parameter CurrentPageNumber.

In most cases these identifiers are read-only, and get their value based on the

declarations and settings of your model.

Section

identifiers

The structuring sections in your model tree are also considered as Aimms iden-

tifiers. The blanks in a section description are replaced by underscores to

form a legal Aimms identifier name. The identifier thus formed is a subset of

AllIdentifiers. This subset contains all the model identifiers that have been

declared underneath the associated node. You can conveniently use such sets

in, for instance, the EMPTY statement to clean a entire group of identifiers in a

single statement, or to construct your own subsets of AllIdentifiers using the

set operations available in Aimms.

2.3 Lexical conventions

Lexical

conventions

Before treating the more intricate features of the Aimms language, we have to

discuss its lexical conventions. That is, we have to define the basic building

blocks of the Aimms language. Each one is described in a separate paragraph.

CharactersThe set of characters recognized by Aimms consists of the set of all printable

characters, together with the tab character. Tab characters are not expanded

by Aimms. The character immediately following a tab character is positioned

at column 9, 17, 25, 33, etc. All other unprintable or control characters are

illegal. The presence of an illegal character causes a compiler error.

NumbersNumerical values are entered in a style similar to that in other computer lan-

guages. For data storage Aimms supports the integer data type as well as the

real data type (floating point numbers). During execution, however, Aimms will

always use a double precision floating point representation.

Scientific

notation

Following standard practice, the letter e denotes the scientific notation allow-

ing convenient representation of very large or small numbers. The number

following the e can only be a positive or negative integer. Two examples of the

Chapter 2. Language Preliminaries 21

use of scientific notation are given by

1.2e5 = 1.2× 105 = 120,000

2.72e− 4 = 2.72× 10−4 = 0.000272

Special numbersIn addition to the ordinary real numbers, Aimms allows the special symbols

INF, -INF, UNDF, NA, and ZERO as numbers. The precise meaning and use of these

symbols is described later in Section 6.1.1.

No blanks

within numbers

Blanks cannot be used inside a number since Aimms treats a blank as a sepa-

rator. Thus, valid examples of expressions recognized as numbers by Aimms

are

0 0.0 .0 0. +1 1.

0.5 .5 +0.5 +.5 -0.3 -.3

2e10 2e+10 2.e10 0.3e-5 .3e-5 -.3e-05

INF -INF NA ZERO

Machine

precision

The range of values allowed by Aimms and the number of significant digits is

machine-dependent. Aimms takes advantage of the accuracy of your machine.

This may cause different results when a single model is run on two different

machines. Expressions that cause arithmetic under- or overflow evaluate to

the symbols ZERO and INF, respectively. Functions and operators requiring in-

teger arguments also accept real numbers that lie within a machine-dependent

tolerance of an integer.

IdentifiersIdentifiers are the unique names given to sets, indices, parameters, variables,

etc. Identifiers can be any sequence of the letters a–z, the digits 0–9 and the

underscore _. They must start with either a letter or an underscore. The

length of an identifier is limited to 255 characters. Examples of legal identifiers

include:

a b78 _c_

A_very_long_but_legal_identifier_containing_underscores

The following are not identifiers:

39 39id A-ident a&b

NamespacesIn principle, Aimms operates with a global namespace for all declared iden-

tifiers. By introducing modules into your model (see also Section 35.4), you

can introduce multiple namespaces, which can be convenient when a particu-

lar model section contains logic that can be shared by multiple Aimms models.

Procedures and functions automatically create a separate namespace, allowing

for local identifiers with the same name as global identifiers in your model.

You can use the namespace resolution operator :: to refer to an identifier in a

particular namespace (see also Section 35.4).

Chapter 2. Language Preliminaries 22

Redeclaring

Aimms

keywords

In general, you are not allowed to redeclare Aimms keywords as identifiers,

unless a keyword refers to a non-essential feature of the language. Whenever

you try to redeclare an existing Aimms keyword, Aimms will produce a compiler

error when a keyword cannot be redeclared, or will give you a one-time option

to redeclare a non-essential keyword as a model identifier. In the latter case,

the non-essential feature will be permanently unavailable within your project.

Case sensitivityThe Aimms language is not case sensitive. This means that upper and lower

case letters can be mixed freely in identifier names but are treated identically

by Aimms. However, Aimms is case aware, in the sense that it will try to pre-

serve or restore the original case wherever possible.

Identifiers with

suffices

Some Aimms data types have additional data associated with them. You have

access to this extra data through the identifier name plus a suffix, where the

suffix is separated from the identifier by a dot. Examples of suffices are:

c.Derivative Transport.ReducedCost OutputFile.PageSize

You can use a suffix expression associated with a particular identifier as if it

were an identifier itself.

Case

referencing

In addition, Aimms also uses the dot notation to refer to the data associated

from another case file. An example is given below.

CaseDifference(i,j) := Transport(i,j) - ReferenceCase.Transport(i,j);

In this example the values of a variable Transport(i,j) currently in memory

are compared to the values in a particular reference case on disk, identified by

the case identifier ReferenceCase. You will find more information about case

references in Section 6.1.3.

Value typesAny constant or parameter in Aimms must assume one of the following value

types:

� number (either integer or floating point),

� string,

� set element, or

� unit expression.

All value types except unit expressions are discussed below. Unit expressions

are explained in Section 32.6.

StringsConstants of string type in Aimms are delimited by a double quote character

“"”. To include the double quote character itself in a string, it should be es-

caped by the backslash character “\” (see also Section 5.3.2). Strings can be

used as constants in expressions, as arguments of procedures and functions,

and in the initialization of string-valued parameters. The size of strings is

limited to 64 Kb.

Chapter 2. Language Preliminaries 23

Sets and set

elements

A set is a group of like elements. Sets can be simple (one-dimensional) or

a relation (multi-dimensional). The elements of a simple set are represented

either by

� an integer number,

� a single-quoted string of a length less than 255 characters, or

� an unquoted string subject to conditions explained below.

The elements of a relation are represented by tuples of such integers or strings.

Integer

elements

The elements of an integer set can be used in expressions as if they were

integer numbers. Reversely, you can use integer-valued numerical expressions

to indicate an element of an integer set. Some operations with integer set

elements are ambiguous, and you have to indicate to Aimms how you want

such operations to be interpreted. This is discussed in Section 3.2.2.

Quoted string

elements

The characters allowed in a quoted string elements are the set printable char-

acters except for tab and newline.

Unquoted string

elements

For your convenience, the elements of a string set need not be delimited by a

single quote when all of the following conditions are met:

� the string used as a set element consists only of letters, digits, under-

scores and the sign characters “+” and “-,”

� the set element is not a reserved word or token, and

� the set element is used inside a constant expression such as a constant

enumerated set or list expression (see also Sections 5.1.1 and 6.1.2), or

inside table or a composite table used for the initialization of parameters

and variables (see also Sections 28.2 and 28.3).

String-valued set elements that are referenced explicitly under any circum-

stance other than the ones mentioned above, must be quoted unconditionally.

To include a single quote character in a set element, it should be preceded by

the backslash character “\”.

Examples of set

elements

The following set elements are examples of set elements that can be used

without quotation marks under the conditions mentioned above:

label1 1998 1997-12 1997_12

january january-1998 h2so4 04-Mar-47

The following character strings are also valid as set elements, but must be

quoted in all cases.

’An element containing spaces’

’label with nested quotes: "a*b"’

Chapter 2. Language Preliminaries 24

String elements

do not have a

value

Contrary to integer set elements, string elements do not have an associated

number value. Thus, the string element ’1993’ does not have the value 1993.

If you use string elements to represent numbers, you can use the Val function

to obtain the associated value. Thus, Val(’1993’) represents the number 1993.

DelimitersThe following delimiters are used by Aimms:

� a space “ ” separates keywords, identifiers and numbers,

� a pair of single quotes “’” or double quotes “”” delimits set elements and

strings, respectively,

� a semicolon “;” separates statements,

� braces “{” and “}” denote the beginning and end of sets and lists,

� a comma “,” separates elements of sets and lists,

� parentheses “(” and “)” delimit expressions, tuples of indices and set

elements, as well as argument lists of functions and references, and

� square brackets “[” and “]” are used to delimit unit expressions as well

as numeric and element ranges. They can also be used as parenthe-

ses in expressions and argument lists of functions and references, and

for grouping elements in components of an element tuple (see also Sec-

tion 5.1.1).

In most other expressions parentheses and square brackets can be used inter-

changeably as long as they match. This feature is useful for making deeply

nested expressions more readable.

Limits in AimmsThe following limits apply within Aimms.

� the length of a line is limited to 255 characters,

� the number of set elements per set is at most 230,

� the number of indices associated with an identifier is at most 32, and

� the number of running indices used in iterative operations such as SUM

and FOR is at most 16.

2.4 Expressions and statements

Model executionThe creation of an Aimms model is implemented using two separate but inter-

acting mechanisms. They are:

� automatic updating of the functional relationships specified through ex-

pressions in the Definition attributes of sets and parameters in your

model, and

� manual execution of the statements that constitute the Body attribute of

the procedures and functions defined in your application.

The precise manner in which these components are executed, and the way

they interact, is discussed in detail in Chapters 7 and 8. This section discusses

Chapter 2. Language Preliminaries 25

the general structure of an Aimms model as well as the requirements for the

Definition and Body attributes.

Line length and

empty lines

The length of any particular line in the Definition attribute of an identifier

or the Body attribute of a procedure or function is limited to 255 characters.

Although this full line length may be convenient for data instantiation in the

form of large tables, it is recommended that you do not exceed a line length

of 80 characters in these attributes in order to preserve maximum readability.

Empty lines can be inserted anywhere for easier reading.

CommentingExpressions and statements in the Body attribute of a procedure or function can

be interspersed with comments that are ignored during compilation. Aimms

supports two kinds of comments:

� the tokens “/*” and “*/” for a block comment, and

� the exclamation mark “!” for a one line comment.

Each block comment starts with a “/*” token, and runs up to the matching

“*/” token, and cannot be nested. It is a useful method for entering pieces

of explanatory text, as well as for temporarily commenting out one or more

execution statements. A one-line comment starts anywhere on a line with an

exclamation mark “!”, and runs up to the end of that line.

ExpressionsThe value of a Definition attribute must be a valid expression of the appropri-

ate type. An expression in Aimms can result in either

� a set,

� a set element,

� a string,

� a numerical value,

� a logical value, or

� a unit expression.

Set, element and string expressions are discussed in full detail in Chapter 5,

numerical and logical expressions in Chapter 6, while unit expressions are

discussed in Chapter 32.

StatementsAimms statements in the body of procedures and functions constitute the al-

gorithmic part of a modeling application. All statements are terminated by

a semicolon. You may enter multiple statements on a single line, or a single

statement over several lines.

Chapter 2. Language Preliminaries 26

Execution

statements

To specify the algorithmic part of your modeling application, the following

statements can be used:

� assignments—to compute a new value for a data item,

� the SOLVE statement—to solve a mathematical program for the values of

its variables,

� flow control statements like IF-THEN-ELSE, FOR, WHILE, REPEAT, SWITCH, and

HALT—to manage the flow of execution,

� the OPTION and Property statements—to set identifier properties and op-

tions dealing with execution, output, progress, and solvers,

� the data control statements EMPTY, CLEANUP, READ, WRITE, DISPLAY, and PUT—

to manage the contents of internal and external data.

� procedure calls—to execute the statements contained in a procedure.

The precise syntax of these execution statements is discussed in Chapters 8

and further.

2.5 Data initialization

Initialization

syntax

The initialization of sets, parameters, and variables in an Aimms application

can be done in several ways:

� through the InitialData attribute of sets, and parameters,

� by reading in data from an text file in Aimms data format,

� by reading in data from a previous Aimms session stored in a binary case

file,

� by reading in the data from an external ODBC-compliant database, or

� by initializing an identifier through algebraic assignment statements.

Order of

initialization

When starting up your Aimms application, Aimms will initialize your model

identifiers in the following order.

� Following compilation each identifier is initialized with the contents of

its InitialData attribute.

� Subsequently, Aimms will execute the predefined procedure MainInitial-

ization. You can use it to specify READ statements to read in data from

text files, case files or databases. In addition, it can contain any other

algebraic statement necessary to initialize one or more identifiers in your

model. Of course, you can also leave this procedure empty if you so

desire.

The full details of model initialization are discussed in Chapter 25.

Chapter 2. Language Preliminaries 27

Entering the

InitialData

attribute

The InitialData attribute of an identifier can contain any constant set-valued,

set element-valued, string-valued, or numerical expression. In order to con-

struct such expressions (consisting of mostly tables and lists), Aimms offers

so-called data pages which can be created on demand. These pages help you

enter the data in a convenient and graphical manner.

Part II

Non-Procedural Language

Components

Chapter 3

Set Declaration

This chapterThis chapter covers all aspects associated with the declaration and use of sets

in Aimms models. The main topics are indexing with sets, simple sets with

strings, simple sets with integers, relations and indexed sets.

3.1 Sets and indices

GeneralSets and indices give your Aimms model dimension and depth by providing

a mechanism for grouping parameters, variables, and constraints. Sets and

indices are also used as driving mechanism in arithmetic operations such as

summation. The use of sets for indexing expressions helps to describe large

models in a concise and understandable way.

ExampleConsider a set of Cities and an identifier called Transport defined between

several pairs of cities (i, j), representing the amount of product transported

from supply city i to destination city j. Suppose that you are interested in the

quantities arriving in each city. Rather than adding many individual terms, the

following mathematical notation, using sets and indices, concisely describes

the desired computation of these quantities.

(∀j ∈ Cities) Arrivalj =
∑

i∈Cities

Transportij .

This multidimensional index notation forms the foundation of the Aimms mod-

eling language, and can be used in all expressions. In this example, i and j are

indices that refer to individual Cities.

Several types of

sets

A set in Aimms

� has either strings or integers as elements,

� is either a simple set, or a relation, and

� is either indexed or not indexed.

Chapter 3. Set Declaration 30

String versus

integer

Sets can either have strings as elements (such as the set Cities discussed above),

or have integers as elements. An example of an integer set could be a set of

Trials represented by the numbers 1, . . . , n. The resulting integer set can then

be used to refer to the results of each single experiment.

Simple versus

relation

A simple set is a one-dimensional set, such as the set Cities mentioned above,

while a relation or multidimensional set is the Cartesian product of a number

of simple sets or a subset thereof. An example of a relation is the set of possi-

ble Routes between supply and destination cities, which can be represented as

a subset of the Cartesian product Cities × Cities.

Indexing as

basic

mechanism

Sets in Aimms are the basis for creating multidimensional identifiers in your

model. Through indices into sets you have access to individual values of these

identifiers for each tuple of elements. In addition, the indexing notation in

Aimms is your basic mechanism for expressing iterative operations such as

repeated addition, repeated multiplication, sequential search for a maximum

or minimum, etc.

Indexed setsSimple sets may be indexed. An indexed set is a family of sets defined for every

element in the index domain of the indexed set. An example of an indexed set

is the set of transport destination cities defined for each supply city. On the

other hand, the set Cities discussed above is not an indexed set.

Sorting of setsThe contents of any simple can be sorted in Aimms. Sorting can take place

either automatically or manually. Automatic sorting is based on the value of

some expression defined for all elements of the set. By using an index into a

sorted subset, you can access any subselection of data in the specified order.

Such a subselection may be of interest in your end-user interface or at a certain

stage in your model.

3.2 Set declaration and attributes

Set attributesEach set has an optional list of attributes which further specify its intended

behavior in the model. The attributes of sets are given in Table 3.1. The

attributes IndexDomain is only relevant to indexed sets.

3.2.1 Simple sets

DefinitionA simple set in Aimms is a finite collection of elements. These elements are

either strings or integers. Strings are typically used to identify real-world ob-

jects such as products, locations, persons, etc.. Integers are typically used for

algorithmic purposes. With every simple set you can associate indices through

Chapter 3. Set Declaration 31

Attribute Value-type See also

page

IndexDomain index-domain 37

SubsetOf subset-domain

Index identifier-list

Parameter identifier-list

Text string 19

Comment comment string 19

Property NoSave, ElementsAreNumerical, ElementsAreLabels

Definition set-expression

OrderBy expression-list

Table 3.1: Set attributes

which you can refer (in succession) to all individual elements of that set in

indexed statements and expressions.

Most basic

example

An example of the most basic declaration for the set Cities from the previous

example follows.

Set Cities {

Index : i,j;

}

This declares the identifier Cities as a simple set, and binds the identifiers i

and j as indices to Cities throughout your model text.

More detailed

example

Consider a set SupplyCities which is declared as follows:

Set SupplyCities {

SubsetOf : Cities;

Parameter : LargestSupplyCity;

Text : The subset of cities that act as supply city;

Definition : {

{ i | Exists(j | Transport(i,j)) }

}

OrderBy : i;

}

The “|” operator used in the definition is to be read as “such that” (it is ex-

plained in Chapter 5). Thus, SupplyCities is defined as the set of all cities from

which there is transport to at least one other city. All elements in the set are

ordered lexicographically. The set has no index of its own, but does have an el-

ement parameter LargestSupplyCity that can hold any particular element with

a specific property. For instance, the following assignment forms one way to

specify the value of this element parameter:

LargestSupplyCity := ArgMax(i in SupplyCities, sum(j, Transport(i,j)));

Chapter 3. Set Declaration 32

Note that this assignment selects that particular element from the subset of

SupplyCities for which the total amount of Transport leaving that element is

the largest.

The SubsetOf

attribute

With the SubsetOf attribute you can tell Aimms that the set at hand is a subset

of another set, called the subset domain. For simple sets, such a subset domain

is denoted by a single set identifier. During the execution of the model Aimms

will assert that this subset relationship is satisfied at all times.

Root setsEach simple set that is not a subset of another set is called a root set. As will

be explained later on, root sets have a special role in Aimms with respect to

data storage and ordering.

The Index

attribute

An index takes the value of all elements of a set successively and in the order

specified by its declaration. It is used in operations like summation and in-

dexed assignment over the elements of a set. With the Index attribute you can

associate identifiers as indices into the set at hand. The index attributes of all

sets must be unique identifiers, i.e. every index can be declared only once.

The Parameter

attribute

A parameter declared in the Parameter attribute of a set takes the value of a

specific element of that set. Throughout the sequel we will refer to such a

parameter as an element parameter. It is a very useful device for referring to

set elements that have a special meaning in your model (as illustrated in the

previous example). In a later chapter you will see that an element parameter

can also be defined separately as a parameter which has a set as its range.

The Text and

Comment

attributes

With the Text attribute you can specify one line of descriptive text for the

end-user. This description can be made visible in the graphical user interface

when the data of an identifier is displayed in a page object. You can use the

Comment attribute to provide a longer description of the identifier at hand. This

description is intended for the modeler and cannot be made visible to an end-

user. The Comment attribute is a multi-line string attribute.

Quoting

identifier names

in Comment

You can make Aimms aware that specific words in your comment text are in-

tended as identifier names by putting them in single quotes. This has the

advantage that Aimms will update your comment when you change the name

of that identifier in the model editor, or, that Aimms will warn you when a

quoted name does not refer to an existing identifier.

The OrderBy

attribute

With the OrderBy attribute you can indicate that you want the elements of a

certain set to be ordered according to a single or multiple ordering criteria.

Only simple sets can be ordered.

Chapter 3. Set Declaration 33

Ordering root

sets

A special word of caution is in place with respect to specifying an ordering

principle for root sets. Root sets play a special role within Aimms because

all data defined over a root set or any of its subsets is stored in the original

data entry order in which elements have been added to that root set. Thus,

the data entry order defines the natural order of execution over a particular

domain, and specifying the OrderBy attribute of a root set may influence overall

execution times of your model in a negative manner. Section 13.2.7 discusses

these efficiency aspects in more detail, and provides alternative solutions.

Ordering

criteria

The value of the OrderBy attribute can be a comma-separated list of one or

more ordering criteria. The following ordering criteria (numeric, string or user-

defined) can be specified.

� If the value of the OrderBy attribute is an indexed numerical expression

defined over the elements of the set, Aimms will order its elements in

increasing order according to the numerical values of the expression.

� If the value of the OrderBy attribute is either an index into the set, a set

element-valued expression, or a string expression over the set, then its

elements will be ordered lexicographically with respect to the strings as-

sociated with the expression. By preceding the expression with a minus

sign, the elements will be ordered reverse lexicographically.

� If the value of the OrderBy attribute is the keyword User, the elements will

be ordered according to the order in which they have been added to the

subset, either by the user, the model, or by means of the Sort operator.

Specifying

multiple criteria

When applying a single ordering criterion, the resulting ordering may not be

unique. For instance, when you order according to the size of transport taking

place from a city, there may be multiple cities with equal transport. You may

want these cities to be ordered too. In this case, you can enforce a more refined

ordering principle by specifying multiple criteria. Aimms applies all criteria

in succession, and will order only those elements that could not be uniquely

distinguished by previous criteria.

ExampleThe following set declarations give examples of various types of automatic

ordering. In the last declaration, the cities with equal transport are placed in a

lexicographical order.

Set LexicographicSupplyCities {

SubsetOf : SupplyCities;

OrderBy : i;

}

Set ReverseLexicographicSupplyCities {

SubsetOf : SupplyCities;

OrderBy : - i;

}

Set SupplyCitiesByIncreasingTransport {

SubsetOf : SupplyCities;

OrderBy : sum(j, Transport(i,j));

}

Chapter 3. Set Declaration 34

Set SupplyCitiesByDecreasingTransportThenLexicographic {

SubsetOf : SupplyCities;

OrderBy : - sum(j, Transport(i,j)), i;

}

The Property

attribute

In general, you can use the Property attribute to assign additional properties to

an identifier in your model. The applicable properties depend on the identifier

type. Sets, at the moment, only support a single property.

� The property NoSave specifies that the contents of the set at hand will

never be stored in a case file. This can be useful, for instance, for inter-

mediate sets that are necessary during the model’s computation, but are

never important to an end-user.

� The properites ElementsAreNumerical and ElementsAreLabels are only rel-

evant for integer sets (see also Section 3.2.2). They will ignored for non-

integer sets.

Dynamic

property

selection

The properties selected in the Property attribute of an identifier are on by de-

fault, while the nonselected properties are off by default. During execution of

your model you can also dynamically change a property setting through the

Property statement. The PROPERTY statement is discussed in Section 8.5.

The Definition

attribute

If an identifier can be uniquely defined throughout your model by a single

expression, you can (and should) use the Definition attribute to specify this

global relationship. Aimms stores the result of a Definition and recomputes

it only when necessary. For sets where a global Definition is not possible,

you can make assignments in procedures and functions. The value of the

Definition attribute must be a valid expression of the appropriate type, as

exemplified in the declaration

Set SupplyCities {

SubsetOf : Cities;

Definition : {

{ i | Exists(j | Transport(i,j)) }

}

}

3.2.2 Integer sets

Integer setsA special type of simple set is an integer set. Such a set is characterized by the

fact that the value of the SubsetOf attribute must be equal to the predefined set

Integers or a subset thereof. Integer sets are most often used for algorithmic

purposes.

Chapter 3. Set Declaration 35

Usage in

expressions

Elements of integer sets can also be used as integer values in numerical ex-

pressions. In addition, the result of an integer-valued expression can be added

as an element to an integer set. Elements of non-integer sets that represent

numerical values cannot be used directly in numerical expressions. To obtain

the numerical value of such non-integer elements, you can use the Val function

(see Section 5.2.1).

Interpret values

as integer or

label?

The interpretation of integer set elements will as integer values in numerical

expressions, raises an ambiguity for certain types of expressions. If anInteger

is an element parameter into an integer set anIntegerSet,

� how should Aimms handle the expression

if (anInteger) then

...

endif;

where anInteger holds the value ’0’. On the one hand, it is not the empty

element, so if Aimms would interpret this as a logical expression with a

non-empty element parameter, the if statement would evaluate to true.

If Aimms would interpret this as a numerical expression, the element

parameter would evaluate to the numerical value 0, and the if statement

would evaluate to false.

� how should Aimms handle the assignment

anInteger := anInteger + 3;

if the values in anIntegerSet are non-contiguous? If Aimms would inter-

pret anInteger as an ordinary element parameter, the + operator would

refer to a lead operator (see also Section 5.2.3), and the assignment would

assign the third next element of anInteger in the set anIntegerSet. If

Aimms would interpret anInteger as an numerical value, the assignment

would assign the numerical value of anInteger plus 3, assuming that this

is an element of anIntegerSet.

You can resolve this ambiguity assigning one of the properties ElementsAreLabels

and ElementsAreNumerical to anIntegerSet. If you don’t assign either property,

and you use one of these expressions in your model, Aimms will issue a warn-

ing about the ambiguity, and the end result might be unpredictable.

ConstructionIn order to fill an integer set Aimms provides the special operator “..” to

specify an entire range of integer elements. This powerful feature is discussed

in more detail in Section 5.1.1.

Chapter 3. Set Declaration 36

ExampleThe following somewhat abstract example demonstrates some of the features

of integer sets. Consider the following declarations.

Parameter LowInt {

Range : Integer;

}

Parameter HighInt {

Range : Integer;

}

Set EvenNumbers {

SubsetOf : Integers;

Index : i;

Parameter : LargestPolynomialValue;

OrderBy : - i;

}

The following statements illustrate some of the possibilities to compute in-

teger sets on the basis of integer expressions, or to use the elements of an

integer set in expressions.

! Fill the integer set with the even numbers between

! LowInt and HighInt. The first term in the expression

! ensures that the first integer is even.

EvenNumbers := { (LowInt + mod(LowInt,2)) .. HighInt by 2 };

! Next the square of each element i of EvenNumbers is added

! to the set, if not already part of it (i.e. the union results)

for (i | i <= HighInt) do

EvenNumbers += iˆ2;

endfor;

! Finally, compute that element of the set EvenNumbers, for

! which the polynomial expression assumes the maximum value.

LargestPolynomialValue := ArgMax(i, iˆ4 - 10*iˆ3 + 10*iˆ2 - 100*i);

Ordering

integer sets

By default, integer sets are ordered according to the numeric value of their el-

ements. Like with ordinary simple sets, you can override this default ordering

by using the OrderBy attribute. When you use an index in specifying the order

of an integer set, Aimms will interpret it as a numeric expression.

3.2.3 Relations

RelationA relation or multidimensional set is the Cartesian product of a number of

simple sets or a subset thereof. Relations are typically used as the domain

space for multidimensional identifiers. Unlike simple sets, the elements of a

relation cannot be referenced using a single index.

Chapter 3. Set Declaration 37

Tuples and

index

components

An element of a relation is called a tuple and is denoted by the usual math-

ematical notation, i.e. as a parenthesized list of comma-separated elements.

Throughout, the word index component will be used to denote the index of a

particular position inside a tuple.

Index tupleTo reference an element in a relation, you can use an index tuple, in which each

tuple component contains an index corresponding to a simple set.

The SubsetOf

attribute

The SubsetOf attribute is mandatory for relations, and must contain the subset

domain of the set. This subset domain is denoted either as a parenthesized

comma-separated list of simple set identifiers, or, if it is a subset of another

relation, just the name of that set.

ExampleThe following example demonstrates some elementary declarations of a re-

lation, given the two-dimensional parameters Distance(i,j) and Transport-

Cost(i,j). The following set declaration defines a relation.

Set HighCostConnections {

SubsetOf : (Cities, Cities);

Definition : {

{ (i,j) | Distance(i,j) > 0 and TransportCost(i,j) > 100 }

}

}

3.2.4 Indexed sets

DefinitionAn indexed set represents a family of sets defined for all elements in another

set, called the index domain. The elements of all members of the family must

be from a single (sub)set. Although membership tables allow you to reach the

same effect, indexed sets often make it possible to express certain operations

very concisely and intuitively.

The IndexDomain

attribute

A set becomes an indexed set by specifying a value for the IndexDomain at-

tribute. The value of this attribute must be a single index or a tuple of in-

dices, optionally followed by a logical condition. The precise syntax of the

IndexDomain attribute is discussed on page 42.

ExampleThe following declarations illustrate some indexed sets with a content that

varies for all elements in their respective index domains.

Set SupplyCitiesToDestination {

IndexDomain : j;

SubsetOf : Cities;

Definition : {

{ i | Transport(i,j) }

}

}

Chapter 3. Set Declaration 38

Set DestinationCitiesFromSupply {

IndexDomain : i;

SubsetOf : Cities;

Definition : {

{ j | Transport(i,j) }

}

}

Set IntermediateTransportCities {

IndexDomain : (i,j);

SubsetOf : Cities;

Definition : DestinationCitiesFromSupply(i) * SupplyCitiesToDestination(j);

Comment : {

All intermediate cities via which an indirect transport

from city i to city j with one intermediate city takes place

}

}

The first two declarations both define a one-dimensional family of subsets of

Cities, while the third declaration defines a two-dimensional family of subsets

of Cities. Note that the * operator is applied to sets, and therefore denotes

intersection.

Subset domainsThe subset domain of an indexed set family can be either a simple set identi-

fier, or another family of indexed simple sets of the same or lower dimension.

The subset domain of an indexed set cannot be a relation.

No default

indices

Declarations of indexed sets do not allow you to specify either the Index or

Parameter attribute. Consequently, if you want to use an indexed set for index-

ing, you must locally bind an index to it. For more details on the use of indices

and index binding refer to Sections 3.3 and 9.1.

3.3 INDEX declaration and attributes

Direct versus

indirect

declaration

Every index used in your model must be declared exactly once. You can declare

indices indirectly, through the Index attribute of a simple set, or directly using

an Index declaration. Note that all previous examples show indirect declaration

of indices.

Index

declaration

When you choose to declare an index not as an attribute of a set declaration,

you can use the Index declaration. The attributes of each single index declara-

tion are given in Table 3.2.

The Range

attribute

You can assign a default binding with a specific set to directly declared indices

by specifying the Range attribute. If you omit this Range attribute, the index

has no default binding to a specific set and can only be used in the context of

local or implicit index binding. The details of index binding are discussed in

Section 9.1.

Chapter 3. Set Declaration 39

Attribute Value-type See also

page

Range set-identifier

Text string 19

Comment comment string 19

Table 3.2: Index attributes

ExampleThe following declaration illustrates a direct Index declaration.

Index c {

Range : Customers;

}

Chapter 4

Parameter Declaration

TerminologyThe word parameter does not have a uniform meaning in the scientific com-

munity. When you are a statistician, you are likely to view a parameter as an

unknown quantity to be estimated from observed data. In Aimms the word

parameter denotes a known quantity that holds either numeric or string-valued

data. In programming languages the term variable is used for this purpose.

However, this is not the convention adopted in Aimms, where, in the context of

a mathematical program, the word variable is reserved for an unknown quan-

tity. Outside this context, a variable behaves as if it were a parameter. The

terminology in Aimms is consistent with the standard operations research ter-

minology that distinguishes between parameters and variables.

Why use

parameters

Rather than putting the explicit data values directly into your expressions, it

is a much better practice to group these values together in parameters and

to write all your expressions using these symbolic parameters. Maintaining a

model that contains explicit data is a painstaking task and error prone, because

the meaning of each separate number is not clear. Maintaining a model in

symbolic form, however, is much easier and frequently boils down to simply

adjusting the data of a few clearly named parameters at a single point.

ExampleConsider the set Cities introduced in the previous chapter and a parameter

FixedTransport(i,j). Suppose that the cost of each unit of transport between

cities i and j is stored in the parameter UnitTransportCost(i,j). Then the

definition of TotalTransportCost can be expressed as

TotalTransportCost := sum[(i,j), UnitTransportCost(i,j)*FixedTransport(i,j)];

Not only is this expression easy to understand, it also makes your model

extendible. For instance, an extra city can be added to your model by sim-

ply adding an extra element to the set Cities as well as updating the tables

containing the data for the parameters UnitTransportCost and FixedTransport.

After these changes the above statement will automatically compute Total-

TransportCost based on the new settings without any explicit change to the

symbolic model formulation.

Chapter 4. Parameter Declaration 41

4.1 Parameter declaration and attributes

Declaration and

attributes

There are four parameter types in Aimms that can hold data of the following

four data types:

� Parameter for numeric values,

� StringParameter for strings,

� ElementParameter for set elements, and

� UnitParameter for unit expressions.

Prior to declaring a parameter in the model editor you need to decide on its

data type. In the model tree parameters of each type have their own icon. The

attributes of parameters are given in Table 4.1.

Attribute Value-type See also

page

IndexDomain index-domain

Range range

Default constant-expression

Unit unit-expression

Property NoSave, Stochastic,

Uncertain, Random,

numeric-storage-property 45

Text string 19

Comment comment string 19, 32

Definiton expression 34

InitialData data enumeration 423

Uncertainty expression 46, 337

Region expression 46, 334

Distribution expression 46, 340

Table 4.1: Parameter attributes

Basic examplesThe following declarations demonstrate some basic parameter declarations

Parameter Population {

IndexDomain : i;

Range : [0,inf);

Unit : [1000];

Text : Population of city i in thousands;

}

Parameter Distance {

IndexDomain : (i,j);

Range : [0,inf);

Unit : [km];

Text : Distance from city i to city j in km;

}

Chapter 4. Parameter Declaration 42

ElementParameter cityWithLargestPopulation {

Range : cities;

Definition : argMax(i, Population(i));

}

StringParameter emergencyMessage {

InitialData : "Warning";

}

Quantity Currencies {

BaseUnit : dollar;

Conversions : euro -> dollar : # -> # * 1.3;

}

UnitParameter selectedCurrency {

InitialData : [euro];

}

The IndexDomain

attribute

For each multidimensional identifier you need to specify its dimensions by pro-

viding a list of index bindings at the IndexDomain attribute. Identifiers without

an IndexDomain are said to be scalar. In the index domain you can specify de-

fault or local bindings to simple sets. The totality of dimensions of all bindings

determine the total dimension of the identifier. Any references outside the in-

dex domain, either through execution statements or from within the graphical

user interface are skipped.

Domain

condition

You can also use the IndexDomain attribute to specify a logical expression which

further restricts the valid tuples in the domain. During execution, assignments

to tuples that do not satisfy the domain condition are ignored. Also, evaluation

of references to such tuples in expressions will result in the value zero. Note

that, if the domain condition contains references to other data in your model,

the set of valid tuples in the domain may change during a single interactive

session.

ExampleConsider the sets ConnectedCities with default index cc and DestinationCities-

FromSupply(i) from the previous chapter. The following statements illustrate

a number of possible declarations of the two-dimensional identifier UnitTrans-

portCost with varying index domains.

Parameter UnitTransportCost {

IndexDomain : (i,j);

}

Parameter UnitTransportCostWithCondition {

IndexDomain : (i,j) in ConnectedCities;

}

Parameter UnitTransportCostWithIndexedDomain {

IndexDomain : (i, j in DestinationCitiesFromSupply(i));

}

Chapter 4. Parameter Declaration 43

ExplanationThe identifiers defined in the previous example will behave as follows.

� The identifier UnitTransportCost is defined over the full Cartesian prod-

uct Cities × Cities by means of the default bindings of the indices i

and j. You will be able to assign values to every pair of cities (i,j), even

though there is no connection between them.

� The identifier UnitTransportCostWithCondition is defined over the same

Cartesian product of sets. Its domain, however, is restricted by an ad-

ditional condition (i,j) in ConnectedCities which will exclude assign-

ments to tuples that do not satisfy this condition, or evaluate to zero

when referenced.

� Finally, the identifier UnitTransportCostWithIndexedDomain is defined over

a subset of the Cartesian product Cities × Cities. The second element

j must lie in the subset DestinationCities(i) associated with i. Aimms

will produce a domain error if this condition is not satisfied.

The Range

attribute

With the Range attribute you can restrict the values to certain intervals or

sets. The Range attribute is not applicable to a StringParameter nor to a Unit-

Parameter. The possible values for the Range attribute are:

� one of the predefined ranges Real, Nonnegative, Nonpositive, Integer, or

Binary,

� any one of the interval expressions [a,b], [a,b), (a,b], or (a,b), where

a square bracket implies inclusion into the interval and a round bracket

implies exclusion,

� any enumerated integer set expression, e.g. {a .. b} covering all integers

from a until and including b,

� a set reference, if you want the values to be elements of that set. For set

element-valued parameters this entry is mandatory.

The values for a and b can be a constant number, inf, -inf, or a parameter ref-

erence involving some or all of the indices on the index domain of the declared

identifier.

ExampleConsider the following declarations.

Parameter UnitTransportCost {

IndexDomain : (i,j);

Range : [UnitLoadingCost(i), 100];

}

Parameter DefaultUnitsShipped {

IndexDomain : (i,j);

Range : {

{ MinShipment(i) .. MaxShipment(j) }

}

}

Set States {

Index : s;

}

Set adjacentStates {

SubsetOf : States;

Chapter 4. Parameter Declaration 44

IndexDomain : s;

}

ElementParameter nextState {

IndexDomain : s;

Range : adjacentStates(s);

}

It limits the values of the identifier UnitTransportCost(i,j) to an interval from

UnitLoadingCost(i) to 100. Note that the lower bound of the interval has a

smaller dimension than the identifier itself. The integer identifier Default-

UnitsShipped(i,j) is limited to an integer range through an enumerated integer

range inside the set brackets.

The Default

attribute

In Aimms, parameters that have not been assigned an explicit value are given a

default value automatically. You can specify the default value with the Default

attribute. The value of this attribute must be a constant expression. If you do

not provide a default value for the parameter, Aimms will assume the following

defaults:

� 0 for numbers,

� 1 for unit-valued parameters,

� the empty string "" for strings, and

� the empty element ’’ for set elements.

The Definition

attribute

The Definition attribute of a parameter can contain a valid (indexed) numerical

expression. Whenever a defined parameter is referenced inside your model,

Aimms will, by default, recompute the associated data if (data) changes to any

of the identifiers referenced in its definition make its current data out-of-date.

In the definition expression you can refer to any of the indices in the index

domain as if the definition was the right-hand side of an assignment statement

to the parameter at hand (see also Section 8.2).

ExampleThe following declaration illustrates an indexed Definition attribute.

Parameter MaxTransportFrom {

IndexDomain : i;

Definition : Max(j, Transport(i,j));

}

Care when used

in loops

Whenever you provide a definition for an indexed parameter, you should care-

fully verify whether and how that parameter is used in the context of one of

Aimms’ loop statements (see also Section 8.3). When, due to changes in only a

slice of the dependent data of a definition during a previous iteration, Aimms

(in fact) only needs to evaluate a single slice of a defined parameter during the

actual iteration, you should probably not be using a defined parameter. Aimms’

automatic evaluation scheme for defined identifiers will always recompute the

data for such identifiers for the whole domain of definition, which can lead to

Chapter 4. Parameter Declaration 45

severe inefficiencies for high-dimensional defined parameters. You can find a

more detailed discussion on this issue in Section 13.2.3.

The Unit

attribute

By associating a Unit to every numerical identifier in your model, you can let

Aimms help you check your model’s consistency. Aimms also uses the Unit

attribute when presenting data and results in both the output files of a model

and the graphical user interface. You can find more information on the use of

units in Chapter 32.

The Property

attribute

The Property attribute can hold various properties of the identifier at hand.

The allowed properties for a parameter are NoSave or one of the numerical

storage properties Integer, Integer32, Integer16, Integer8 or Double, in addi-

tion to the properties Stochastic, Uncertain, Random which are discussed in Sec-

tion 4.1.1.

� The property NoSave indicates whether the identifier values are stored in

cases. It is discussed in detail in Section 3.2.

� By default, the values of numeric parameters are stored as double preci-

sion floating point numbers. By specifying one of the storage properties

Integer, Integer32, Integer16, Integer8, or Double Aimms will store the

values of the identifier as (signed) integers of default machine length, 4

bytes, 2 bytes or 1 byte, or as a double precision floating point number

respectively. These properties are only applicable to parameters with an

integer range.

The Property

statement

During execution you can change the properties of a parameter through the

Property statement. The syntax of the Property statement and examples of its

use can be found in Section 8.5.

The Text

attribute

With the Text attribute you can provide one line of descriptive text for the

end-user. If the Text string of an indexed parameter or variable contains a

reference to one or more indices in the index domain, then the corresponding

elements are substituted for these indices in any display of the identifier text.

4.1.1 Properties and attributes for uncertain data

Stochastic

programming

and robust

optimization

The Aimms modeling language allows you to specify both stochastic programs

and robust optimization models. Both methodologies are designed to deal

with models involving data uncertainty. In stochastic programming the uncer-

tainty is expressed by specifying multiple scenarios, each of which can define

scenario-specific values for certain parameters in your model. Stochastic pro-

gramming is discussed in full detail in Chapter 19. For robust optimization,

parameters can be declared to not have a single fixed value, but to take their

Chapter 4. Parameter Declaration 46

values from an user-defined uncertainty set. Robust optimization is discussed

in Chapter 20.

PropertiesThe following Parameter properties are available in support of stochastic pro-

gramming and robust optimization models.

� The property Stochastic indicates that the identifier can hold stochastic

event data for a stochastic model. It is discussed in detail in Section 19.2.

� The property Uncertain indicates that the identifier can hold uncertain

values from an uncertainty set specified through the Uncertainty and/or

Region attributes. Uncertain parameters are used in Aimms’ robust opti-

mization facilities, and are discussed in detail in Section 20.2.

� The property Random indicates that the identifier can hold random values

with respect to a distribution with characteristics specified through the

Distribution attribute. Random parameters are used in Aimms’ robust

optimization facilities, and are discussed in detail in Section 20.3.

The Uncertainty

and Region

attributes

The Uncertainty and Region attributes are available if the parameter at hand

has been declared uncertain using the Uncertain property. Uncertain param-

eters are used by Aimms’ robust optimization framework, and are discussed

in full detail in Section 20.2. With the Region attribute you can specify an un-

certainty set using one of the predefined uncertainty sets Box, ConvexHull or

Ellipsoid. The Uncertainty attribute specifies a relationship between the un-

certain parameter at hand, and one or more other (uncertain) parameters in

your model. The Uncertainty and Region attributes are not exclusive, i.e., you

are allowed to specify both, in which case Aimms’ generation process of the ro-

bust counterpart will make sure that both conditions are satisfied by the final

solution.

The

Distribution

attribute

The Distribution attribute is available if the parameter at hand has been de-

clared random using the Random property. Random parameters are used by

Aimms’ robust optimization framework, and are discussed in full detail in Sec-

tion 20.3. With the Distribution attribute you can declare that the values for

the random parameter at hand adhere to one of the predefined distributions

discussed in Section 20.3.

Chapter 5

Set, Set Element and String Expressions

Several types of

expressions

Expressions are organized arrangements of operators, constants, sets, indices,

parameters, and variables that evaluate to either a set, a set element, a numer-

ical value, a logical value, a string value, or a unit value. Expressions form the

core of the Aimms language. In the previous chapters you already have seen

some elementary examples of expressions.

This chapterIn this chapter, set, set element and string expressions are presented in detail.

For expressions that evaluate to either numerical or logical values, you are

referred to Chapter 6. Expressions that evaluate to unit values are discussed

in Section 32.6

5.1 Set expressions

Set expressionsSet expressions play an important role in the construction of index domains

of indexed identifiers, as well as in constructing the domain of execution of

particular indexed statements. The Aimms language offers a powerful set of

set expressions, allowing you to express complex set constructs in a clear and

concise manner.

Constant set

expressions

A set expression is evaluated to yield the value of a set. As with all expressions

in Aimms, set expressions come in two forms, constant and symbolic. Constant

set expressions refer to explicit set elements directly, and are mainly intended

for set initialization. The tabular format of set initialization is treated in Sec-

tion 28.2.

Symbolic set

expressions

Symbolic set expressions are formulas that can be executed to result in a set.

The contents of this set can vary throughout the execution of your model de-

pending on the values of the other model identifiers referenced inside the

symbolic formulas. Symbolic set expressions are typically used for specifying

index domains. In this section various forms of set expressions will be treated.

Chapter 5. Set, Set Element and String Expressions 48

Syntaxabcdefghijklmnopqrstuvwxyz-ABCDEFGHIJKLMNOPQRSTUVWXYZ ˆ\set-primary :

(set-expression)

reference

enumerated-set

constructed-set

iterative-expression

function-call

element-expression

set-expression :

operator-expression

set-primary

Set referencesThe simplest form of set expression is the reference to a set. The reference

can be scalar or indexed, and evaluates to the current contents of that set.

5.1.1 Enumerated sets

Enumerated setsAn enumerated set is a set defined by an explicit enumeration of its elements.

Such an enumeration includes literal elements, set element expressions, and

(constant or symbolic) element ranges. An enumerated set can be either a

simple or a relation. If you use an integer element range, an integer set will

result.

Constant

enumerated sets

Enumerated sets come in two flavors: constant and symbolic. Constant enu-

merated sets are preceded by the keyword DATA, and must only contain literal

set elements. These set elements do not have to be contained in single quotes

unless they contain characters other than the alpha-numeric characters, the

underscore, the plus or the minus sign.

ExampleThe following simple set and relation assignments illustrate constant enumer-

ated set expressions.

Cities := DATA { Amsterdam, Rotterdam, ’The Hague’, London, Paris, Berlin, Madrid } ;

DutchRoutes := DATA { (Amsterdam, Rotterdam), (Amsterdam, ’The Hague’),

(Rotterdam, Amsterdam), (Rotterdam, ’The Hague’) } ;

Chapter 5. Set, Set Element and String Expressions 49

Symbolic

enumerated sets

Any enumerated set not preceded by the keyword DATA is considered symbolic.

Symbolic enumerated sets can also contain element parameters. In order to

distinguish between literal set elements and element parameters, all literal

elements inside symbolic enumerated sets must be quoted.

ExamplesThe following two set assignments illustrate the use of enumerated sets that

depend on the value of the element parameters SmallestCity, LargestCity and

AirportCity.

ExtremeCities := { SmallestCity, LargestCity } ;

Routes := { (LargestCity, SmallestCity), (AirportCity, LargestCity) } ;

The following two set assignments contrast the semantics between constant

and symbolic enumerated sets.

SillyExtremes := DATA { SmallestCity, LargestCity } ;

! contents equals { ’SmallestCity’, ’LargestCity’ }

ExtremeCities := { SmallestCity, LargestCity, ’Amsterdam’ };

! contents equals e.g. { ’The Hague’, ’London’, ’Amsterdam’ }

The syntax of enumerated set expressions is as follows.

Syntaxenumerated-set :

DATA { element-tuple

,

}

element-tuple :

(tuple-component

,

)

element-expression

element-range

tuple-component :

[element-expression

,

]

element-range

element-expression

All elements in an enumerated set must have the same dimension.

Element rangeBy using the .. operator, you can specify an element range. An element range

is a sequence of consecutively numbered elements. The following set assign-

ments illustrate both constant and symbolic element ranges. Their difference

is explained below.

NodeSet := DATA { node1 .. node100 } ;

Chapter 5. Set, Set Element and String Expressions 50

FirstNode := 1;

LastNode := 100;

IntegerNodes := { FirstNode .. LastNode } ;

The syntax of element ranges is as follows.

Syntaxelement-range :

range-bound .. range-bound BY numerical-expression

range-bound :

prefix-string integer postfix-string

numerical-expression

Prefix and

postfix strings

A range bound must consists of an integer number, and can be preceded or

followed by a common prefix or postfix string, respectively. The prefix and

postfix strings used in the lower and upper range bounds must coincide.

Constant rangeIf you use an element range in a static enumerated set expression (i.e. preceded

by the keyword DATA), the range can only refer to explicitly numbered elements,

which need not be quoted. By padding the numbered elements with zeroes,

you indicate that Aimms should create all elements with the same element

length.

Constant range

versus

ElementRange

As the begin and end elements of a constant element range are literal ele-

ments, you cannot use a constant element range to create sets with dynami-

cally changing border elements. If you want to accomplish this, you should use

the ElementRange function, which is explained in detail in Section 5.1.4. Its use

in the following example is self-explanatory. The following set assignments

illustrate a constant element range and its equivalent formulation using the

ElementRange function.

NodeSet := DATA { node1 .. node100 } ;

PaddedNodes := DATA { node001 .. node100 } ;

NodeSet := ElementRange(1, 100, prefix: "node", fill: 0);

PaddedNodes := ElementRange(1, 100, prefix: "node", fill: 1);

Chapter 5. Set, Set Element and String Expressions 51

Symbolic

integer range

Element ranges in a symbolic enumerated set can be used to create integer

ranges. Now, both bounds can be numerical expressions. Such a construct will

result in the dynamic creation of a number of integer elements based on the

value of the numerical expressions at the range bounds. Such integer element

ranges can only be assigned to integer sets (see Section 3.2.2). An example of

a dynamic integer range follows.

IntegerNodes := { FirstNode .. LastNode } ;

In this example IntegerNodes must be an integer set.

Nonconsecutive

range

If the elements in the range are not consecutive but lie at regular intervals from

one another, you can indicate this by adding a BY modifier with the proper

interval length. For static enumerated sets the interval length must be a con-

stant, for dynamic enumerated sets it can be any numerical expression. The

following set assignments illustrate a constant and symbolic element range

with nonconsecutive elements.

EvenNodes := DATA { node2 .. node100 by 2 } ;

StepSize := 2;

EvenIntegerNodes := { FirstNode .. LastNode by StepSize } ;

Element tuplesWhen specifying element tuples in an enumerated set expression, it is possible

to create multiple tuples in a concise manner using cross products. You can

specify multiple elements for a particular tuple component in the cross prod-

uct either by grouping single elements using the [and] operators or by using

an element range, as shown below.

DutchRoutes := DATA { (Amsterdam, [Rotterdam, ’The Hague’]),

(Rotterdam, [Amsterdam, ’The Hague’]) } ;

! creates { (’Amsterdam’, ’Rotterdam’), (’Amsterdam’, ’The Hague’),

! (’Rotterdam’, ’Amsterdam’), (’Rotterdam’, ’The Hague’) }

Network := DATA { (node1 .. node100, node1 .. node100) } ;

The assignment to the set Network will create a set with 10,000 elements.

5.1.2 Constructed sets

Constructed setsA constructed set expression is one in which the selection of elements is con-

structed through filtering on the basis of a particular condition. When a con-

structed set expression contains an index, Aimms will consider the resulting

tuples for every element in the binding set.

Chapter 5. Set, Set Element and String Expressions 52

ExampleThe following set assignments illustrate some constructed set expressions, as-

suming that i and j are indices into the set Cities.

LargeCities := { i | Population(i) > 500000 } ;

Routes := { (i,j) | Distance(i,j) } ;

RoutesFromLargestCity := { (LargestCity, j) in Routes } ;

In the latter assignment route tuples are constructed from LargestCity (an

element-valued parameter) to every city j, where additionally each created tu-

ple is required to lie in the set Routes.

Syntaxconstructed-set :

{ binding-domain }

binding-domain :

binding-tuple IN set-primary | logical-expression

binding-tuple :

(binding-element

,

)

binding-element

binding-element :

index IN set-primary

element-expression

Binding domainThe tuple selection in a constructed set expression behaves exactly the same

as the tuple selection on the left-hand side of an assignment to an indexed

parameter. This means that all tuple components can be either an explicit

quoted set element, a general set element expression, or a binding index. The

tuple can be subject to a logical condition, further restricting the number of

elements constructed.

5.1.3 Set operators

Four set

operators

There are four binary set operators in Aimms: Cartesian product, intersection,

union, and difference. Their notation and precedence are given in Table 5.1.

Expressions containing these set operators are read from left to right and the

operands can be any set expression. There are no unary set operators.

Chapter 5. Set, Set Element and String Expressions 53

Operator Notation Precedence

intersection * 3 (high)

difference - 2

union + 2

Cartesian product CROSS 1 (low)

Table 5.1: Set operators

ExampleThe following set assignments to integer sets and Cartesian products of integer

sets illustrate the use of all available set operators.

S := {1,2,3,4} * {3,4,5,6} ; ! Intersection of integer sets: {3,4}.

S := {1,2} + {3,4} ; ! Union of simple sets:

S := {1,3,4} + {2} + {1,2} ; ! {1,2,3,4}

S := {1,2,3,4} - {2,4,5,7} ; ! Difference of integer sets: {1,3}.

T := {1,2} cross {1,2} ; ! The cross of two integer sets:

! {(1,1),(1,2),(2,1),(2,2)}.

The precedence and associativity of the operators is demonstrated by the as-

signments

T := A cross B - C ; ! Same as A cross (B - C).

T := A - B * C + D ; ! Same as (A - (B * C)) + D.

T := A - B * C + D * E ; ! Same as (A - (B * C)) + (D * E).

The operands of union, difference, and intersection must have the same di-

mensions.

T := {(1,2),(1,3)} * {(1,3)} ; ! Same as {(1,3)}.

T := {(1,2),(1,3)} + {(i,j) | a(i,j) > 1} ; ! Union of enumerated

! and constructed set of

! the same dimension.

T := {(1,2),(1,3)} + {(1,2,3)} ; ! ERROR: dimensions differ.

5.1.4 Set functions

Set functionsA special type of set expression is a call to one of the following set-valued

functions

� ElementRange,

� SubRange,

� ConstraintVariables,

� VariableConstraints, or

� A user-defined function.

Chapter 5. Set, Set Element and String Expressions 54

The ElementRange and SubRange functions are discussed in this section, while

the functions ConstraintVariables and VariableConstraints are discussed in

Section 15.1. The syntax of and use of tags in function calls is discussed in

Section 10.2.

The function

ElementRange

The ElementRange function allows you to dynamically create or change the con-

tents of a set of non-integer elements based on the value of integer-valued

scalars expressions.

ArgumentsThe ElementRange function has two mandatory integer arguments.

� first, the integer value for which the first element must be created, and

� last, the integer value for which the last element must be created.

In addition, it allows the following four optional arguments.

� incr, the integer-valued interval length between two consecutive elements

(default value 1),

� prefix, the prefix string for every element (by default, the empty string),

� postfix, the postfix string (by default, the empty string), and

� fill, a logical indicator (0 or 1) whether the numbers must be padded with

zeroes (default value 1).

If you use any of the optional arguments you must use their formal argument

names as tags.

ExampleConsider the sets S and T initialized by the constant set expressions

NodeSet := DATA { node1 .. node100 } ;

PaddedNodes := DATA { node001 .. node100 } ;

EvenNodes := DATA { node2 .. node100 by 2 } ;

These sets can also be created in a dynamic manner by the following applica-

tions of the ElementRange function.

NodeSet := ElementRange(1, 100, prefix: "node", fill: 0);

PaddedNodes := ElementRange(1, 100, prefix: "node", fill: 1);

EvenNodes := ElementRange(2, 100, prefix: "node", fill: 0, incr: 2);

The SubRange

function

The SubRange function has three arguments:

� a simple set,

� the first element, and

� the last element.

The result of the function is the subset ranging from the first to the last ele-

ment. If the first element is positioned after the last element, the empty set

will result.

Chapter 5. Set, Set Element and String Expressions 55

ExampleAssume that the set Cities is organized such that all foreign cities are con-

secutive, and that FirstForeignCity and LastForeignCity are element-valued

parameters into the set Cities. Then the following assignment will create the

subset ForeignCities of Cities

ForeignCities := SubRange(Cities, FirstForeignCity, LastForeignCity) ;

5.1.5 Iterative set operators

Iterative

operators

Iterative operators form an important class of operators that are especially

designed for indexed expressions in Aimms. There are set, element-valued,

arithmetic, statistical, and logical iterative operators. The syntax is always

similar.

Syntaxiterative-expression :

iterative-operator (binding-domain , expression)

ExplanationThe first argument of all iterative operators is a binding domain. It consists of

a single index or tuple of indices, optionally qualified by a logical condition.

The second argument and further arguments must be expressions. These ex-

pressions are evaluated for every index or tuple in the binding domain, and

the result is input for the particular iterative operator at hand. Indices in the

expressions that are not part of the binding domain of the iterative operators

are referred to as outer indices, and must be bound elsewhere.

Set-related

iterative

operators

Aimms possesses the following set-related iterative operators:

� the Sort operator for sorting the elements in a domain,

� the NBest operator for obtaining the n best elements in a domain accord-

ing to a certain criterion, and

� the Intersection and Union operators for repeated intersection or union

of indexed sets.

Reordering your

data

Sorting the elements of a set is a useful tool for controlling the flow of execu-

tion and for presenting reordered data in the graphical user interface. There

are two mechanism available to you for sorting set elements

� the OrderBy attribute of a set, and

� the Sort operator.

Chapter 5. Set, Set Element and String Expressions 56

Sorting

semantics

The second and further operands of the Sort operator must be numerical,

element-valued or string expressions. The result of the Sort operator will con-

sist of precisely those elements that satisfy the domain condition, sorted ac-

cording to the single or multiple ordering criteria specified by the second and

further operands. Section 3.2 discusses the expressions that can be used for

specifying an ordering principle.

Receiving setNote that the set to which the result of the Sort operator is assigned must have

the OrderBy attribute set to User (see also Section 3.2.1) for the operation to be

useful. Without this setting Aimms will store the elements of the result set of

the Sort operator, but will discard the underlying ordering.

ExampleThe following assignments will result in the same set orderings as in the ex-

ample of the OrderBy attribute in Section 3.2.

LexicographicSupplyCities := Sort(i in SupplyCities, i) ;

ReverseLexicographicSupplyCities := Sort(i in SupplyCities, -i);

SupplyCitiesByIncreasingTransport :=

Sort(i in SupplyCities, Sum(j, Transport(i,j));

SupplyCitiesByDecreasingTransportThenLexicographic :=

Sort(i in SupplyCities, - Sum(j, Transport(i,j)), i);

Sorting root setsAimms will even allow you to sort the elements of a root set. Because the entire

execution system of Aimms is built around a fixed ordering of the root sets,

sorting root sets may influence the overall execution in a negative manner. Sec-

tion 13.2.7 explains the efficiency considerations regarding root set ordering

in more detail.

Obtaining the n

best elements

You can use the NBest operator, when you need the n best elements in a set

according to a single ordering criterion. The syntax of the NBest is similar to

that of the Sort operator. The first expression after the binding domain is the

criterion with respect to which you want elements in the binding domain to be

ordered. The second expression refers to the number of elements n in which

you are interested.

ExampleThe following assignment will, for every city i, select the three cities to which

the largest transports emanating from i take place. The result is stored in the

indexed set LargestTransportCities(i).

LargestTransportCities(i) := NBest(j, Transport(i,j), 3);

Chapter 5. Set, Set Element and String Expressions 57

Repeated

intersection

and union

With the Intersection and Union operators you can perform repeated set in-

tersection or union respectively. A typical application is to take the repeated

intersection or union of all instances of an indexed set. However, any set val-

ued expression can be used on the second argument.

ExampleConsider the following indexed set declarations.

Set IndSet1 {

IndexDomain : s1;

SubsetOf : S;

}

Set IndSet2 {

IndexDomain : s1;

SubsetOf : S;

}

With these declarations, the following assignments illustrate valid uses of the

Union and Intersection operators.

SubS := Union(s1, IndSet1(s1));

SubS := Intersection(s1, IndSet1(s1) + IndSet2(s1));

5.1.6 Set element expressions as singleton sets

Element

expressions . . .

Element expressions can be used in a set expression as well. In the context of

a set expression, Aimms will interpret an element expression as the singleton

set containing only the element represented by the element expression. Set

element expressions are discussed in full detail in Section 5.2.

. . . versus

enumerated sets

Using an element expression as a set expression can equivalently be expressed

as a symbolic enumerated set containing the element expression as its sole

element. Whenever there is no need to group multiple elements, Aimms allows

you to omit the surrounding braces.

ExampleThe following set assignment illustrate some simple set element expressions

used as a singleton set expression.

! Remove LargestCity from the set of Cities

Cities -= LargestCity ;

! Remove first element from the set of Cities

Cities -= Element(Cities,1) ;

! Remove LargestCity and SmallestCity from Cities

Cities -= LargestCity + SmallestCity ;

! The set of Cities minus the CapitalCity

NonCapitalCities := Cities - CapitalCity ;

Chapter 5. Set, Set Element and String Expressions 58

5.2 Set element expressions

Use of set

element

expressions

Set element expressions reference a particular element or element tuple model

from a set or a tuple domain. Set element expressions allow for sliced assign-

ment—executing an assignment only for a lesser-dimensional subdomain by

fixing certain dimensions to a specific set element. Potentially, this may lead

to a vast reduction in execution times for time-consuming calculations.

Passing

elements from

the GUI

The most elementary form of a set element expression is an element param-

eter, which turns out to be a useful device for communicating set element

information with the graphical interface. You can instruct Aimms to locate

the position in a table or other object where an end-user made changes to a

numerical value, and have Aimms pass the corresponding set element(s) to an

element parameter. As a result, you can execute data input checks defined over

these element parameters, thereby limiting the amount of computation. This

issue is discussed in more detail in the help regarding the Identifier Selection

dialog.

Element

expressions

Aimms supports several types of set element expressions, including references

to parameters and (bound) indices, lag-lead-expressions, element-valued func-

tions, and iterative-expressions. The last category turns out to be a useful de-

vice for computing the proper value of element parameters in your model.

Syntaxelement-expression :

iterative-expression

function-call

quoted-element

element-reference

enumerated-list

operator-expression

The format of list expressions are the same for element and numerical expres-

sions. They are discussed in Section 6.1.2.

Element

references

An element reference is any reference to either an element parameter or a

(bound) index.

Chapter 5. Set, Set Element and String Expressions 59

5.2.1 Intrinsic functions for sets and set elements

The

element-related

functions. . .

Aimms supports functions to obtain the position of an element within a set,

the cardinality (i.e. number of elements) of a set, the n-th element in a set, the

element in a non-compatible set with the identical string representation, and

the numerical value represented by a set element. If S is a set identifier, i an

index bound to S, l an element, and n a positive integer, then possible calls to

the Ord, Card, Element, ElementCast and Val functions are given in Table 5.2.

Function Value Meaning

Ord(i) integer Ordinal, returns the relative position of the

index i in the set S. Does not bind i.

Ord(l,S) integer Returns the relative position of the element

l in set S. Returns zero if l is not an element

of S.

Card(S) integer Cardinality of set S.

Element(S,n) element Returns the element in set S at relative po-

sition n. Returns the empty element tuple

if S contains less then n elements.

ElementCast(S,l) element Returns the element in set S, which corre-

sponds to the textual representation of an

element l in any other index set.

Val(l) numerical Returns the numerical value represented

by l, or a runtime error if l cannot be in-

terpreted as a number

Max(e1, . . . , en) Max Returns the set element with the highest

ordinal

Min(e1, . . . , en) Min Returns the set element with the lowest or-

dinal

Table 5.2: Intrinsic functions operating on sets and set elements

. . . for simple

sets

The Ord, Card and Element functions can be applied to simple sets. In fact you

can even apply Card to parameters and variables—it simply returns the number

of nondefault elements associated with a certain data structure.

Crossing root

set boundaries

By default, Aimms does not allow you to use indices associated with one root

set hierarchy in your model, in references to index domains associated with

another root set hierarchy of your model. The function ElementCast allows

you to cross root set boundaries, by returning the set element in the root

set associated with the first (set) argument that has the identical name as the

element (in another root set) passed as the second argument. The function

ElementCast has an optional third argument create (values 0 or 1, with a default

Chapter 5. Set, Set Element and String Expressions 60

of 0), through which you can indicate whether you want elements which cannot

be cast to the indicated set must be created within that set. In this case, a call

to ElementCast will never fail. You can find more information about root sets,

as well as an illustrative example of the use of ElementCast, in Section 9.1.

ExampleIn this example, we again use the set Cities initialized through the statement

Cities := DATA { Amsterdam, Rotterdam, ’The Hague’, London, Paris, Berlin, Madrid } ;

The following table illustrates the intrinsic element-valued functions.

Expression Result

Ord(’Amsterdam’, Cities) 1

Ord(’New York’, Cities) 0 (i.e. not in the set)

Card(Cities) 7

Element(Cities, 1) ’Amsterdam’

Element(Cities, 8) ’’ (i.e. no 8-th element)

The Val functionIf your model contains a set with elements that represent numerical values,

you cannot directly use such elements as a numerical value in numerical ex-

pressions, unless the set is an integer set (see Section 3.2.2). To obtain the

numerical value of such set elements, you can use the Val function. You can

also apply the Val function to strings that represent a numerical value. In both

cases, a runtime error will occur if the element or string argument of the Val

function cannot be interpreted as a numerical value.

The Min and Max

functions

The element-valued Min and Max functions operate on two or more element-

valued expressions in the same (sub-)set hierarchy. If the arguments are ref-

erences to element parameters (or bound indices), then the Range attributes

of these element parameters or indices must be sets in a single set hierarchy.

Through these functions you can obtain the elements with the lowest and high-

est ordinal relative to the set equal to highest ranking range set in the subset

hierarchy of all its arguments. If one or more of the arguments are explicit

labels, then Aimms will verify that these labels are contained in that set, or will

return an error otherwise. A compiler error will result, if no such set can be

determined (i.e., when the function call refers to explicit labels only).

5.2.2 Element-valued iterative expressions

Selecting

elements

Aimms offers special iterative operators that let you select a specific element

from a domain. Table 5.3 shows all such operators that result in a set ele-

ment value. The syntax of iterative operators is explained in Section 5.1.5.

Chapter 5. Set, Set Element and String Expressions 61

The second column in this table refers to the required number of expression

arguments following the binding domain argument.

Name # Expr. Computes for all elements in the domain

First 0 the first element (tuple)

Last 0 the last element (tuple)

Nth 1 the n-th element (tuple)

Min 1 the value of the element expression for

which the expression reaches its minimum

ordinal value

Max 1 the value of the element expression for

which the expression reaches its maximum

ordinal value

ArgMin 1 the first element (tuple) for which the

expression reaches its minimum value

ArgMax 1 the first element (tuple) for which the

expression reaches its maximum value

Table 5.3: Element-valued iterative operators

Single indexThe binding domain of the First, Last, Nth, Min, Max, ArgMin, and ArgMax operator

can only consist of a single index in either a simple set, and the result is a

single element in that domain. You can use this result directly for indexing or

referencing an indexed parameter or variable. Alternatively, you can assign it

to an element parameter in the appropriate domain.

Compared

expressions

The ArgMin and ArgMax operators return the element for which an expression

reaches its minimum or maximum value. The allowed expressions are:

� numerical expressions, in which case Aimms performs a numerical com-

parison,

� string expressions, in which case Aimms uses the normal alphabetic or-

dering, and

� element expressions, in which case Aimms compares the ordinal num-

bers of the resulting elements.

For element expressions, the iterative Min and Max operators return expression

values with the minimum and maximum ordinal value.

ExampleThe following assignments illustrate the use of some of the domain related

iterative operators. The identifiers on the left are all element parameters.

FirstNonSupplyCity := First (i | not Exists(j | Transport(i,j))) ;

SecondSupplyCity := Nth (i | Exists(j | Transport(i,j)), 2) ;

SmallestSupplyCity := ArgMin(i, Sum(j, Transport(i,j))) ;

LargestTransportRoute := ArgMax(r, Transport(r)) ;

Chapter 5. Set, Set Element and String Expressions 62

Note that the iterative operators Exists and Sum are used here for illustra-

tive purposes, and are not set- or element-related. They are treated in Sec-

tions 6.2.5 and 6.1.6, respectively.

5.2.3 Lag and lead element operators

Lag and lead

operators. . .

There are four binary element operators, namely the lag and lead operators

+, ++, - and --. The first operand of each of these operators must be an el-

ement reference (such as an index or element parameter), while the second

operand must be an integer numerical expression. There are no unary element

operators.

. . . explainedLag and lead operators are used to relate an index or element parameter to

preceding and subsequent elements in a set. Such correspondence is well-

defined, except when a request extends beyond the bounds of the set.

Noncircular

versus circular

There are two kinds of lag and lead operators, namely noncircular and circular

operators which behave differently when pushed beyond the beginning and

the end of a set.

� The noncircular operators (+ and -) consider the ordered set elements

as a sequence with no elements before the first element or after the last

element.

� The circular operators (++ and --) consider ordered set elements as a

circular chain, in which the first and last elements are linked.

DefinitionLet S be a set, i a set element expression, and k an integer-valued expression.

The lag and lead operators +, ++, -, -- return the element of S as defined in

Table 5.4. Please note that these operators are also available in the form of +=,

-=, ++= and --=. The operators in this form can be used in statements like:

CurrentCity := ’Amsterdam’;

CurrentCity --= 1; ! Equal to CurrentCity := CurrentCity -- 1;

Lag/lead expr. Meaning

i+ k The element of S positioned k elements after i; the

empty element if there is no such element.

i++ k The circular version of i+ k.

i− k The member of S positioned k elements before i; the

empty element if there is no such element.

i−− k The circular version of i− k.

Table 5.4: Lag and lead operators

Chapter 5. Set, Set Element and String Expressions 63

Lag and lead

operators for

integer sets

For elements in integer sets, Aimms may interpret the + and - operators either

as lag/lead operators or as numerical operators. Section 3.2.2 discusses the

way in which you can steer which interpretation Aimms will employ.

Not for literal

elements

You cannot always use lag and lead operators in combination with literal set

elements. The reason for this is clear: a literal element can be an element of

more than one set, and in general, unless the context in which the lag or lead

operator is used dictates a particular (domain) set, it is impossible for Aimms

to determine which set to work with.

Verify the effect

of lags and

leads

Lag and lead operators are frequently used in indexed parameters and vari-

ables, and may appear on the left- and right-hand side of assignments. You

should be careful to check the correct use of the lag and lead operators to

avoid making conceptual errors. For more specific information on the lag and

lead operators refer to Section 8.2, which treats assignments to parameters

and variables.

ExampleConsider the set Cities initialized through the assignment

Cities := DATA { Amsterdam, Rotterdam, ’The Hague’, London, Paris, Berlin, Madrid } ;

Assuming that the index i and the element parameter CurrentCity both cur-

rently refer to ’Rotterdam’, Table 5.5 illustrates the results of various lag/lead

expressions.

Lag/lead expression Result

i+1 ’The Hague’

i+6 ’’

i++6 ’Amsterdam’

i++7 ’Rotterdam’

i-2 ’’

i--2 ’Madrid’

CurrentCity+2 ’London’

’Rotterdam’ + 1 ERROR

Table 5.5: Example of lag and lead operators

5.3 String expressions

String

expressions

String expressions are useful for

� creating descriptive texts associated with particular set elements and

identifiers, or

Chapter 5. Set, Set Element and String Expressions 64

� forming customized messages for display in the graphical user interface

or in output reports.

This section discusses all available string expressions in Aimms.

Syntaxstring-expression :

constant-string-expression

operator-expression

enumerated-list

function-call

element-expression

The format of list expressions are the same for string-valued and numerical

expressions. They are discussed in Section 6.1.2.

5.3.1 String operators

String operatorsThere are three binary string operators in Aimms, string concatenation (+ oper-

ator), string subtraction (- operator), and string repetition (* operator). There

are no unary string operators.

String

concatenation

The simplest form of composing strings in Aimms is by the concatenation of

two existing strings. String concatenation is represented as a simple addition

of strings by means of the + operator.

String

subtraction

In addition to string concatenation, Aimms also supports subtraction of two

strings by means of the - operator. The result of the operation s1 − s2 where

s1 and s2 are string expressions will be the substring of s1 obtained by

� omitting s2 on the right of s1 when s1 ends in the string s2, or

� just s1 otherwise.

String repetitionYou can use the multiplication operator * to obtain the string that is the result

of a given number of repetitions of a string. The left-hand operand of the

repetition operator * must be a string expression, while the right-hand operand

must be an integer numerical expression.

Chapter 5. Set, Set Element and String Expressions 65

ExamplesThe following examples illustrate some basic string manipulations in Aimms.

"This is " + "a string" ! "This is a string"

"Filename.txt" - ".txt" ! "Filename"

"Filename" - ".txt" ! "Filename"

"--" * 5 ! "----------"

5.3.2 Formatting strings

The function

FormatString

With the FormatString function you can compose a string that is built up from

combinations of numbers, strings and set elements. Its arguments are:

� a format string, which specifies how the string is composed, and

� one or more arguments (number, string or element) which are used to

form the string as specified.

The format

string

The first argument of the function FormatString is a mixture of ordinary text

plus conversion specifiers for each of the subsequent arguments. A conversion

specifier is a code to indicate that data of a specified type is to be inserted as

text. Each conversion specifier starts with the % character followed by a letter

indicating its type. The conversion specifier for every argument type are given

in Table 5.6.

Conversion Argument type

specifiers

%s String expression

%e Element expression

%f Floating point number

%g Exponential format number

%i Integer expression

%n Numerical expression

%u Unit expression

%% % sign

Table 5.6: Conversion codes for the FormatString function

Floating point

vs. exponential

format

When using the %f or %g conversion specifier you explicitly choose a floating

point or exponential format, respectively. The %n conversion specifier makes

this choice for you. If the absolute value of the corresponding argument is

greater or equal to 1, %n assures that you get the shortest representation of %f

or %g (or even %i if the argument value is integral). However when a non zero

width is specified, Aimms assumes that the alignment of the decimal point is

important and thus %n will stick to the use of the floating point format as long

as that fits within the given width. If the absolute value of the corresponding

Chapter 5. Set, Set Element and String Expressions 66

argument is less than 1, %n uses the floating point format as long as the result

shows at least 1 significant digit.

ExampleIn the example below, the current value of the parameter SmallVal and LargeVal

are 10 and 20, the current value of CapitalCity is the element ’Amsterdam’, and

UnitPar is a unit-valued parameter with value kton/hr. The following calls to

FormatString illustrate its use.

FormatString("The numbers %i and %i", 10, 20) ! "The numbers 10 and 20"

FormatString("The numbers %i and %i", SmallVal, LargeVal) ! "The numbers 10 and 20"

FormatString("The string %s", "is printed") ! "The string is printed"

FormatString("The element %e", CapitalCity) ! "The element Amsterdam"

FormatString("The unit is %u", UnitPar) ! "The unit is kton/hr"

FormatString("The number %n", 4*ArcTan(1)) ! "The number 3.141"

FormatString("The large number %n", 1e+6) ! "The large number 1.000e+06"

FormatString("The integer %n", 10) ! "The integer 10"

FormatString("The fraction %n", 0.01) ! "The fraction 0.010"

FormatString("The fraction %n", 0.0001) ! "The fraction 1.000e-04"

Modification

flags

By default, Aimms will use a default representation for arguments of each type.

By modifying the conversion specifier, you further dictate the manner in which

a particular argument of the FormatString function is printed. This is done by

inserting modification flags in between the %-sign and the conversion character.

The following modification directives can be added:

� flags:

< for left alignment

<> for centered alignment

> for right alignment

+ add a plus sign (nonnegative numbers)

add a space (instead of the above + sign)

0 fill with zeroes (right-aligned numbers only)

t print number using thousand separators, using local convention

for both the thousand separator and decimal separator. Control-

ling these separators is via the options Number 1000 separator and

Number decimal separator.

� field width: the converted argument will be printed in a field of at least

this width, or wider if necessary

� dot: separating the field width from the precision

� precision: the number of decimals for numbers, or the maximal number

of characters for strings or set elements.

Note the orderIt is important to note that the modification flags must be inserted in the order

as described above.

Chapter 5. Set, Set Element and String Expressions 67

Field width and

precision

Both the field width and precision of a conversion specifier can be either an

integer constant, or a wildcard, *. In the latter case the FormatString expects

one additional integer argument for each wildcard just before the argument of

the associated conversion specifier. This allows you to compute and specify

either the field width or precision in a dynamic manner. If you do not specify

a precision as modification directive, the default precision is taken from the

option Listing number precision. Similarly, the default width is taken from the

option Listing number width.

ExampleThe following calls to FormatString illustrate the use of modification flags.

FormatString("The number %>+08i", 10) ! "The number +0000010"

FormatString("The number %>t8i", 100000) ! "The number 100,000"

FormatString("The number %> 8.2n", 4*ArcTan(1)) ! "The number 3.14"

FormatString("The number %> *.*n", 8,2,4*ArcTan(1)) ! "The number 3.14"

FormatString("The element %<5e", CapitalCity) ! "The element Amsterdam"

FormatString("The element %<>5.3e", CapitalCity) ! "The element Ams "

FormatString("The large number %10.1n", 1e+6) ! "The large number 1000000.0"

Special

characters

Aimms offers a number of special characters to allow you to use the full range

of characters in composing strings. These special characters are contained in

Table 5.7.

Special character text code Meaning

\f FF Form feed

\t HT Horizontal tab

\n LF Newline character

\" " Double quote

\\ \ Backslash

\n n character n (001 ≤ n ≤ 65535)

Table 5.7: Special characters

ExampleExamples of the use of special characters within FormatString follow.

FormatString("%i \037 \t %i %%", 10, 11) ! "10 % 11 %"

FormatString("This is a \"%s\" ", "string") ! "This is a "string" "

Case conversion

functions

With the functions StringToUpper, StringToLower and StringCapitalize you can

convert the case of a string to upper case, to lower case, or capitalize it, as

illustrated in the following example.

StringToUpper("Convert to upper case") ! "CONVERT TO UPPER CASE"

StringToLower("CONVERT to lower case") ! "convert to lower case"

StringCapitalize("capitaLIZED senTENCE") ! "Capitalized sentence"

Chapter 5. Set, Set Element and String Expressions 68

5.3.3 String manipulation

Other string

related

functions

In addition to the FormatString function, Aimms offers a number of other func-

tions for string manipulation. They are:

� Substring to obtain a substring of a particular string,

� StringLength to determine the length of a particular string,

� FindString to obtain the position of the first occurrence of a particular

substring,

� FindNthString to obtain the position of the n-th occurrence of a particular

substring, and

� StringOccurrences to obtain the number of occurrences of a particular

substring.

The function

SubString

With the SubString function you can obtain a substring from a particular begin

positionm to an end position n (or to the end of the string if the requested end

position exceeds the total string length). The positions m and n can both be

negative (but with m ≤ n), in which case Aimms will start counting backwards

from the end of the string. Examples are:

SubString("Take a substring of me", 8, 16) ! returns "substring"

SubString("Take a substring of me", 18, 100) ! returns "of me"

SubString("Take a substring of me", -5, -1) ! returns "of me"

The function

StringLength

The function StringLength can be used to determine the length of a string in

Aimms. The function will return 0 for an empty string, and the total number

of characters for a nonempty string. An example follows.

StringLength("Guess my length") ! returns 15

The functions

FindString and

FindNthString

With the functions FindString and FindNthString you can determine the posi-

tion of the second argument, the key, within the first argument, the search

string. The functions return zero if the key is not contained in the search

string. The function FindString returns the position of the first occurrence of

the key in the search string starting from the left, while the function FindNth-

String will return the position of the n-th appearance of the key. If n is nega-

tive, the function FindNthString will search backwards starting from the right.

Examples are:

FindString ("Find a string in a string", "string") ! returns 8

FindNthString ("Find a string in a string", "string", 2) ! returns 20

FindNthString ("Find a string in a string", "string", -1) ! returns 20

FindString ("Find a string in a string", "this string") ! returns 0

FindNthString ("Find a string in a string", "string", 3) ! returns 0

Chapter 5. Set, Set Element and String Expressions 69

Case sensitivityBy default, the functions FindString and FindNthString will use a case sensitive

string comparison when searching for the key. You can modify this behavior

through the option Case Sensitive String Comparison.

The function

StringOccur-

rences

The function StringOccurrences allows you to determine the number of occur-

rences of the second argument, the key, within the first argument, the search

string. You can use this function, for instance, to delimit the number of calls

to the function FindNthString a priori. An example follows.

StringOccurrences("Find a string in a string", "string") ! returns 2

5.3.4 Converting strings to set elements

Converting

strings to set

elements

Converting strings to new elements to or renaming existing elements in a set

is not an uncommon action when end-users of your application are entering

new element interactively or when you are obtaining strings (to be used as set

elements) from other applications through external procedures. Aimms offers

the following support for dealing with such situations:

� the procedure SetElementAdd to add a new element to a set,

� the procedure SetElementRename to rename an existing element in a set,

and

� the function StringToElement to convert strings to set elements.

Adding new set

elements

The procedure SetElementAdd lets you add new elements to a set. Its arguments

are:

� the set to which you want to add the new element,

� an element parameter into set which holds the new element after addi-

tion, and

� the stringname of the new element to be added.

When you apply SetElementAdd to a root set, the element will be added to that

root set. When you apply it to a subset, the element will be added to the subset

as well as to all its supersets, up to and including its associated root set.

Renaming set

elements

Through the procedure SetElementRename you can provide a new name for an

existing element in a particular set whenever this is necessary in your applica-

tion. Its arguments are:

� the set which contains the element to be renamed,

� the element to be renamed, and

� the stringname to which the element should be renamed.

After renaming the element, all data defined over the old element name will be

available under the new element name.

Chapter 5. Set, Set Element and String Expressions 70

The function

StringToElement

With the function StringToElement you can convert string arguments into (ex-

isting) elements of a set. If there is no such element, the function evaluates to

the empty element. Its arguments are:

� the set from which the element corresponding to stringname must be

returned,

� the stringname for which you want to retrieve the corresponding ele-

ment, and

� the optional create argument (values 0 or 1, with a default of 0) indicating

whether nonexisting elements must be added to the set.

With the create argument set to 1, a call to StringToElement will always return

an element in set. Alternatively to setting the create argument to 1, you can

call the procedure SetElementAdd to add the element to the set.

ExampleThe following example illustrates the combined use of StringToElement and

SetElementAdd. It checks for the existence of the string parameter CityString

in the set Cities, and adds it if necessary.

ThisCity := StringToElement(Cities, CityString);

if (not ThisCity) then

SetElementAdd(Cities, ThisCity, CityString);

endif;

Alternatively, you can combine both statements by setting the optional create

argument of the function StringToElement to 1.

ThisCity := StringToElement(Cities, CityString, create: 1);

Converting

element to

string

Reversely, you can use the %e specifier in the FormatString function to get a

pure textual representation of a set element, as illustrated in the following

assignment.

CityString := FormatString("%e", ThisCity);

Chapter 6

Numerical and Logical Expressions

This chapterAimms has a comprehensive set of built-in numerical and logical operators

which allow you quickly and concisely express the details of your model. The

subject of Macros, which are a parametric form of expression, is also explained.

For expressions that evaluate to sets, set elements or strings, see Chapter 5.

6.1 Numerical expressions

Constant

numerical

expressions

Like any expression in Aimms, a numerical expression can either be a constant

or a symbolic expression. Constant expressions are those that contain refer-

ences to explicit set elements and values, but do not contain references to

other identifiers. Constant expressions are mostly intended for the initializa-

tion of sets, parameters and variables. Such an initialization must conform to

one of the following formats:

� a scalar value,

� a list expression,

� a table expression, or

� a composite table.

Table expressions and composite tables are mostly used for data initialization

from external files. They are discussed in Chapter 28.

Symbolic

numerical

expressions

Symbolic expressions are those expressions that contain references to other

Aimms identifiers. They can be used in the Definition attributes of sets, pa-

rameters and variables, or as the right-hand side of assignment statements.

Aimms provides a powerful notation for expressions, and complicated numer-

ical manipulations can be expressed in a clear and concise manner.

Chapter 6. Numerical and Logical Expressions 72

Syntaxnumerical-expression :

(numerical-expression)

constant

reference

enumerated-list

operator-expression

function-call

iterative-expression

logical-expression

conditional-expression

6.1.1 Real values and arithmetic extensions

Extension of the

real line

Traditional arithmetic is defined on the real line, R = (−∞,∞), which does not

contain either +∞ or −∞. Aimms’ arithmetic is defined on the set R ∪ {-INF,

INF, NA, UNDF, ZERO} and summarized in Table 6.1. The symbols INF and -INF are

mostly used to model unbounded variables. The symbols NA and UNDF stand for

not available and undefined data values respectively. The symbol ZERO denotes

the numerical value zero, but has the logical value true (not zero).

Symbol Description Logical MapVal

value value

number any valid real number 0

UNDF undefined (result of an arithmetic error) 1 4

NA not available 1 5

INF +∞ 1 6

-INF −∞ 1 7

ZERO numerically indistinguishable from

zero, but has the logical value of one.

1 8

Table 6.1: Extended values of the Aimms language

Numerical

behavior

Aimms treats these special symbols as ordinary real numbers, and the results

of the available arithmetic operations and functions on these symbols are de-

fined. The values INF, -INF and ZERO are accessible by the user and are dealt

with as expected: 1+INF evaluates to INF, 1/INF to 0, 1+ ZERO to 1, etc. How-

ever, the values of INF and -INF are undetermined and therefore, it makes no

Chapter 6. Numerical and Logical Expressions 73

sense to consider INF/INF, −INF + INF, etc. These expressions are therefore

evaluated to UNDF. A runtime error will occur if the value UNDF is assigned to an

identifier.

The symbol ZEROThe symbol ZERO behaves like zero numerically, but its logical value is one. Us-

ing this symbol, you can make a distinction between the default value of 0 and

an assigned ZERO. As an illustration, consider a distance matrix with distances

between selected factory-depot combinations. A missing distance value evalu-

ates to 0, and could mean that the particular factory-depot combination should

not be considered. A ZERO value in that case could be used to indicate that the

combination should be considered even though the corresponding distance is

zero because the depot and factory happen to be one facility.

Expressions with

0 and ZERO

Whenever the values 0 and ZERO appear in the same expression with equal

priority, the value of ZERO prevails. For example, the expressions 0 + ZERO

or max(0,ZERO) will both result in a numerical value of ZERO. In this way, the

logically distinctive effect of ZERO is retained as long as possible. You should

note, however, that Aimms will evaluate the multiplication of 0 with any special

number to 0.

The symbol NAThe symbol NA can be used for missing data. The interpretation is “this number

is not yet known”. Any operation that uses NA and does not use the symbol

UNDF will also produce the result NA. Aimms can reason with this value as it

propagates the value NA through its computations and assignments. The only

exception is the condition in control flow statements where it must be known

whether the result of that condition is equal to 0.0 or not, see also Section 8.3.

The symbol UNDFThe symbol UNDF cannot be input directly by a user, but is, besides an error

message, the result of an undefined or illegal arithmetic operation. For exam-

ple, 1/ZERO, 0/0, (-2)ˆ0.1 all result in UNDF. Any operation containing the UNDF

symbol evaluates to UNDF.

6.1.2 List expressions

Element-value

pairs

A list is a collection of element-value pairs. In a list a single element or range of

elements is combined with a numerical, element-, or string-valued expression,

separated by a colon. List expressions are the numerical extension of enumer-

ated set expressions. The elements to which a value is assigned inside a list,

are specified in exactly the same manner as in an enumerated set expression

as explained in Section 5.1.1.

Chapter 6. Numerical and Logical Expressions 74

Syntaxenumerated-list :

DATA { element-tuple : expression

,

}

Constant versus

symbolic

By preceding the list expression with the keyword DATA, it becomes a constant

list expression, in a similar fashion as with constant set expressions (see Sec-

tion 5.1.1). In a constant list expression, set elements need not be quoted and

the assigned values must be constants. All other list expressions are symbolic,

in which both the elements and the assigned values are the result of expression

evaluation.

ExampleThe following assignments illustrate the use of list expressions.

� The following constant list expression assigns distances to tuples of

cities.

Distance(i,j) := DATA {

(Amsterdam, Rotterdam) : 85 [km] ,

(Amsterdam, ’The Hague’) : 65 [km] ,

(Rotterdam, ’The Hague’) : 25 [km]

} ;

� The following symbolic list expression assigns a certain status to every

node in a number of dynamically computed ranges.

NodeUsage(i) := {

FirstNode .. FirstNode + Batch - 1 : ’InUse’ ,

FirstNode + Batch .. FirstNode + 2*Batch - 1 : ’StandBy’ ,

FirstNode + 2*Batch .. LastNode : ’Reserve’

} ;

6.1.3 References

ReferencesSets, parameters and variables can be referred to by name resulting in a set-,

set element-, string-valued, or numerical quantity. A reference can be scalar or

multidimensional, and index positions may contain either indices or element

expressions. By specifying a case reference in front, a reference can refer to

data from cases that are not in memory.

Syntaxreference :

case-reference . identifier-part (element-expression

,

)

Chapter 6. Numerical and Logical Expressions 75

identifier-part :

module-prefix :: identifier . suffix

Scalar versus

indexed

A scalar set, parameter or variable has no indexing (dimension) and is refer-

enced simply by using its identifier. Indexed sets, parameters and variables

have dimensions equal to the number of indices.

ExampleThe right-hand sides of the following assignments are examples of references

to scalar and indexed identifiers.

MainCity := ’Amsterdam’ ;

DistanceFromMainCity(i) := Distance(MainCity, i);

SecondNextCity(i) := NextCity(NextCity(i));

NextPeriodStock(t) := Stock(t + 1);

Undefined

references

The last two references, which make use of lag and lead operators and element

parameters, may sometimes be undefined. When used in an expression such

undefined references evaluate to the empty set, zero, the empty element, or the

empty string, depending on the value type of the identifier. When an undefined

lag or lead operator or element parameter occurs on the left-hand side of an

assignment, the assignment is skipped. For more details, refer to Section 8.2.

Referring to

module

identifiers

When your model contains one or more Modules, your model will be supplied

multiple additional namespaces besides the global namespace, one for each

module. Identifiers declared within a module are, by default, not contained

in the global namespace. To refer to such identifiers outside the module, you

have to prefix the identifier name with a module-specific prefix and the ::

namespace resolution operator. Modules and the namespace resolution opera-

tor are discussed in full detail in Section 35.4.

Referring to

other cases

When a reference is preceded by a case reference, Aimms will not retrieve the

requested identifier data from the case in memory, but from the case file as-

sociated with the case reference. Case references are elements of the (prede-

fined) set AllCases, which contains all the cases available in the data manager

of Aimms. The Aimms User’s Guide describes all the mechanisms that are

available and functions that you can use to let an end-user of your application

select one or more cases from the set of all available cases. Case referencing

is useful when you want to perform advanced case comparison over multiple

cases.

Chapter 6. Numerical and Logical Expressions 76

ExampleThe following computes the differences of the values of the variable Transport

in the current case compared to its values in all cases in the set CurrentCase-

Selection.

for (c in CurrentCaseSelection) do

Difference(c,i,j) := c.Transport(i,j) - Transport(i,j) ;

endfor;

During execution, Aimms will (temporarily) retrieve the values of Transport

from all requested cases to compute the difference with the data of the current

case.

6.1.4 Arithmetic functions

Standard

functions

Aimms provides the commonly used standard arithmetic functions such as the

trigonometric functions, logarithms, and exponentiations. Table 6.2 lists the

available arithmetic functions with their arguments and result, where x is an

extended range arithmetic expressions, m, n are integer expressions, i is an

index, l is a set element, I is a set identifier, and e is a scalar reference.

Functions and

extended

arithmetic

Special caution is required when one or more of the arguments in the functions

are special symbols of Aimms’ extended range arithmetic. If the value of any of

the arguments is UNDF or NA, then the result will also be UNDF or NA. If the value

of any of the arguments is ZERO and the numerical value of the result is zero,

the function will return ZERO.

6.1.5 Numerical operators

Using unary or binary numerical operators you can construct numerical ex-

pressions that consist of multiple terms and/or factors. The syntax follows.

Syntaxoperator-expression :

expression binary-operator expression

unary-operator expression

Standard

numerical

operators

The order of precedence of the standard numerical operators in Aimms is given

in Table 6.3. Parentheses may be used to override the precedence order. Ex-

pression evaluation is from left to right.

Chapter 6. Numerical and Logical Expressions 77

Function Meaning

Abs(x) absolute value |x|
Exp(x) ex

Log(x) loge(x) for x > 0,UNDF otherwise

Log10(x) log10(x) for x > 0, UNDF otherwise

Max(x1, . . . , xn) max(x1, . . . , xn) (n > 1)

Min(x1, . . . , xn) min(x1, . . . , xn) (n > 1)

Mod(x1, x2) x1 mod x2 ∈ [0, x2) for x2 > 0 or ∈ (x2,0] for x2 < 0

Div(x1, x2) x1 divx2

Sign(x) sign(x) = +1 if x > 0, −1 if x < 0 and 0 if x = 0

Sqr(x) x2

Sqrt(x)
√
x for x ≥ 0, UNDF otherwise

Power(x1, x2) x
x2

1 , alternative for xˆy (see Section 6.1.5)

ErrorF(x) 1√
2π

∫ x
−∞ e

− t2

2 dt

Cos(x) cos(x); x in radians

Sin(x) sin(x); x in radians

Tan(x) tan(x); x in radians

ArcCos(x) arccos(x); result in radians

ArcSin(x) arcsin(x); result in radians

ArcTan(x) arctan(x); result in radians

Degrees(x) converts x from radians to degrees

Radians(x) converts x from degrees to radians

Cosh(x) cosh(x)

Sinh(x) sinh(x)

Tanh(x) tanh(x)

ArcCosh(x) arccosh(x)

ArcSinh(x) arcsinh(x)

ArcTanh(x) arctanh(x)

Card(I[, suffix]) cardinality of (suffix of) set, parameter or variable I

Ord(i) ordinal number of index i in set I (see also Table 5.2)

Ord(l[, I]) ordinal number of element l in set I

Ceil(x) ⌈x⌉ = smallest integer ≥ x
Floor(x) ⌊x⌋ = largest integer ≤ x
Precision(x,n) x rounded to n significant digits

Round(x) x rounded to nearest integer

Round(x,n) x rounded to n decimal places left (n < 0) or right

(n > 0) of the decimal point

Trunc(x) truncated value of x: Sign(x)∗Floor(Abs(x))
NonDefault(e) 1 if e is not at its default value, 0 otherwise

MapVal(x) MapVal value of x according to Table 6.1

Table 6.2: Intrinsic numerical functions of Aimms

Chapter 6. Numerical and Logical Expressions 78

Operator Meaning Precedence

Unary

+ positive n/a

- negative n/a

Binary

ˆ exponentiation 3 (high)

* multiplication 2

/ division 2

+ addition 1

- subtraction 1 (low)

Table 6.3: Numerical operators

ExampleThe expression

p1 + p2 * p3 / p4ˆp5

is parsed by Aimms as if it had been written

p1 + [(p2 * p3) / (p4ˆp5)]

In general, it is better to use parentheses than to rely on the precedence and

associativity of the operators. Not only because it prevents you from making

unwanted mistakes, but also because it makes your intentions clearer.

Exponential

operator

Special restrictions apply to the exponential operator “ˆ”. Aimms accepts the

following combinations of left-hand side operand (called the base), and right-

hand side operand (called the exponent):

� a positive base with a real exponent,

� a negative base with an integer exponent,

� a zero base with a positive exponent, and

� a zero base with a zero exponent results in one (as controlled by the

option power 0 0).

6.1.6 Numerical iterative operators

Arithmetic

iterative

operators

Iterative operators are used to express repeated arithmetic operations, such as

summation, in a concise manner. The arithmetic iterative operators supported

by Aimms are listed in Table 6.4. The second column in this table refers to

the required number of expression arguments following the binding domain

argument, while the last column refers to the result of the operator in case of

an empty domain.

Chapter 6. Numerical and Logical Expressions 79

Name # Expr. Computes over all elements in the domain Default

Sum 1 the sum of the expression 0

Prod 1 the product of the expression 1

Count 0 the total number of elements in the domain 0

Min 1 the minimum value of the expression INF

Max 1 the maximum value of the expression -INF

Table 6.4: Arithmetic iterative operators

Compared

expressions

The Min and Max operators return the minimum or maximum value of an ex-

pression. The allowed expressions are:

� numerical expressions, in which case Aimms returns the lowest or high-

est numerical values,

� string expressions, in which case Aimms returns the strings which are

first or last with respect to the normal alphabetic ordering, and

� element expressions, in which case Aimms returns the elements with the

lowest or highest ordinal numbers (see also Section 5.2.1).

ExampleThe following assignments are valid examples of the use of the arithmetic

iterative operators.

NumberOfRoutes := Count((i,j) | Distance(i,j)) ;

NettoTransport(i) := Sum(j, Transport(i,j) - Transport(j,i)) ;

MaximumTransport(i) := Max(j, Transport(i,j)) ;

6.1.7 Statistical functions and operators

DistributionsAimms provides the most commonly used distributions. They are listed in

Table 6.5, together with the required type of arguments and a description of

the result. You can find a more detailed description of these distributions in

Appendices A.1 and A.2. When called as functions inside your model, they

behave as random number generators.

Setting the seedYou can set the seed of the random number generators for all distributions us-

ing the execution option seed. By setting the seed explicitly you can guarantee

that your model results are reproducible.

Cumulative

distributions

and their

derivatives

Each distribution in Table 6.5 can be used as an argument for four operators:

DistributionCumulative and DistributionInverseCumulative, and their deriva-

tives DistributionDensity and DistributionInverseDensity. In the explanation

below it is assumed that α ∈ [0,1], x ∈ (−∞,∞), and X a random variable

distributed according to the given distribution distr.

� DistributionCumulative(distr,x) computes the probability P(X ≤ x).

Chapter 6. Numerical and Logical Expressions 80

Distribution Meaning

Binomial(p,n) Binomial distribution with probability p and

number of trials n

NegativeBinomial(p, r) Negative Binomial distribution with

probability p and number of successes r

Poisson(λ) Poisson distribution with rate λ

Geometric(p) Geometric distribution with probability p

HyperGeometric(p,n,N) Hypergeometric distribution with initial

probability of success p, number of trials n

and population size N

Uniform(min,max) Uniform distribution with lower bound min

and upper bound max

Triangular(β,min,max) Triangular distribution with shape β, lower

bound min, and upper bound max, where

β = (xpeak −min)/(max−min)

Beta(α,β,min,max) Beta distribution with shapes α, β, lower

bound min, and upper bound max

LogNormal(β,min, s) Lognormal distribution with shape β, lower

bound min, and scale s

Exponential(min, s) Exponential distribution with lower bound

min and scale s

Gamma(β,min, s) Gamma distribution with shape β, lower

bound min, and scale s

Weibull(β,min, s) Weibull distribution with shape β, lower

bound min, and scale s

Pareto(β, l, s) Pareto distribution with shape β, location l,

and scale s (lower bound = l+ s)
Normal(µ,σ) Normal distribution with mean µ and

standard deviation σ

Logistic(µ, s) Logistic distribution with mean µ and scale s

ExtremeValue(l, s) Extreme Value distribution with location l

and scale s

Table 6.5: Distributions available in Aimms

� DistributionInverseCumulative(distr,α) computes the smallest x such

that the probability P(X ≤ x) ≥ α, except for α = 0 which returns the

lowest possible value for X.

� DistributionDensity(distr,x) computes for continuous distributions the

probability density limα↓0 P(x ≤ X ≤ x+α)/α. For discrete distributions,

the operator is only defined for integer values of x and returns P(X = x).
� DistributionInverseDensity(distr,α) is the derivative of DistributionIn-

verseCumulative. For more details you are referred to Appendix A.3.

Chapter 6. Numerical and Logical Expressions 81

Use in

constraints

For the continuous distributions in Table 6.5 Aimms can compute the deriva-

tives of the cumulative and inverse cumulative distribution functions. As a

consequence, you may use these functions in the constraints of a nonlinear

model when the second argument is a variable.

ExampleThe following statements demonstrate how the distributions can be used to

perform statistical tasks.

1. Draw a random number from a distribution.

Draw := Normal(0,1);

Draw := Uniform(LowestValue, HighestValue);

2. Compute the probability of at most 10 successes out of 50 trials, with a

0.25 probability of success.

Probability := DistributionCumulative(Binomial(0.25,50), 10);

3. Compute a two-sided 90% confidence interval of a Normal(0,1) distribu-

tion.

LeftBound := DistributionInverseCumulative(Normal(0,1), 0.05);

RightBound := DistributionInverseCumulative(Normal(0,1), 0.95);

Statistical

operators

The distributions, listed in Table 6.5, make it possible for you to execute a

stochastic experiment based on your model representation. In order to ana-

lyze the subsequent results, Aimms provides a number of statistical iterative

operators which are listed in Table 6.6. The second column in this table refers

to the required number of expression arguments following the binding domain

argument. For the most common sample operators, Aimms provides distribu-

tion operators to calculate the corresponding expected values, assuming the

sample is drawn from a given distribution. These distribution operators are

listed in Table 6.7. A more detailed description of these operators is provided

in Appendix A.

ExampleAssume that p is an index into a set that has been used to index a number

of experiments resulting in observables x(p) and y(p). Then the following

assignments demonstrate the use of the statistical operators in Aimms.

MeanX := Mean(p, x(p));

MeanX := Mean(p | x(p), x(p));

DeviationX := SampleDeviation(p, x(p));

CorrelationXY := Correlation(p, x(p), y(p));

In case the x values are drawn from a Binomial(0.6,8) distribution the ex-

pected value of MeanX is given by

ExpectedMeanX := DistributionMean(Binomial(0.6,8));

Chapter 6. Numerical and Logical Expressions 82

Name # Expr. Computes over all elements in the domain

Mean, 1 the (arithmetic) mean

GeometricMean 1 the geometric mean

HarmonicMean 1 the harmonic mean

RootMeanSquare 1 the root mean square

Median 1 the median

SampleDeviation 1 the standard deviation of a sample

PopulationDeviation 1 the standard deviation of a population

Skewness 1 the coefficient of skewness

Kurtosis 1 the coefficient of kurtosis

Correlation 2 the correlation coefficient

RankCorrelation 2 the rank correlation coefficient

Table 6.6: Statistical sample operators

Units of

measurement

For all distributions, the units of measurement (see also Chapter 32) of param-

eters and result should be consistent. The unit relationships for each distri-

bution are described in Appendix A in full detail. In the presence of units of

measurement within your model, Aimms will perform a unit consistency check.

Histogram

support

For easy visualization of statistical data, Aimms offers support for creating

histograms based on a large collection of observed values. Through a number

of predefined procedures and functions, Aimms allows you to flexibly create

interval-based histogram data, which can easily be displayed, for instance, us-

ing the standard (graphical) Aimms bar chart object. For further information

about creating and displaying histograms, as well as an illustrative example,

you are referred to section A.6 in the Appendix.

Combinatoric

functions

In addition to the distribution and statistical operators listed above, Aimms

also offers support for the most common combinatoric calculations. Table 6.8

contains the list of combinatoric functions that are available in Aimms.

6.1.8 Financial functions

Financial

functions

Aimms provides an extensive library of financial functions for a variety of fi-

nancial applications. The available functions can be classified as follows.

� Functions for the computation of the depreciation of assets using var-

ious methods such as fixed-declining balance method, double-declining

balance method, etc.

� Functions for computing various quantities regarding investments that

consist of a series of constant or variable periodic cash flows. The com-

puted quantities include present value, net present value, future value,

internal rate of return, interest and principal payments, etc.

Chapter 6. Numerical and Logical Expressions 83

Name Computes for a given distribution

DistributionMean the (arithmetic) mean

DistributionDeviation the (standard) deviation

DistributionVariance the variance (the square of the deviation)

DistributionSkewness the coefficient of skewness

DistributionKurtosis the coefficient of kurtosis

Table 6.7: Statistical distribution operators

� Functions for computing various security-related quantities of, for in-

stance, discounted securities, securities that pay periodic interest and

securities that pay interest at maturity. The computed quantities include

yield, interest rate, redemption, price, accrued interest, etc.

Consult the

online function

reference

The precise description of all financial functions available in Aimms is not in-

cluded in this Language Reference. You can find a complete list of the available

financial functions on pages ?? and further of the Aimms Function Reference.

The Function Reference provides a description as well as the prototype of ev-

ery financial function present in Aimms.

6.1.9 Conditional expressions

Two conditional

expressions

There are two ways to specify expressions that adopt different values depend-

ing on one or more logical conditions. The ONLYIF operator is the simpler and

operates as it sounds. The IF-THEN-ELSE expression is more powerful in its

ability to distinguish several cases.

Syntaxconditional-expression :

if-then-else-expression

onlyif-expression

The ONLYIF

operator

The simplest way of specifying a conditional expression is to use the ONLYIF

operator. Its syntax is given by

onlyif-expression :

expression ONLYIF

$

logical-expression

The ONLYIF expression evaluates to the arithmetic expression in the first argu-

Chapter 6. Numerical and Logical Expressions 84

Function Meaning

Factorial(n) n!

Combination(n,m)
(
n
m

)

Permutation(n,m) m! ·
(
n
m

)

Table 6.8: Combinatoric functions

ment if the logical condition of the second argument is true. Otherwise, it is

zero. The “$” symbol can be used as a synonym for the ONLYIF operator.

ExampleA simple example of the use of the ONLYIF operator is given by the assignment

AverageVelocity := (Distance / TravelTime) ONLYIF TravelTime ;

or equivalently, using the $ operator,

AverageVelocity := (Distance / TravelTime) $ TravelTime ;

Both expressions evaluate to Distance / TravelTime if TravelTime assumes a

nonzero value, or to zero otherwise. In Section 12.2 you will see that this

particular expression can be written even more concisely using the sparsity

modifier “$”.

IF-THEN-ELSE

expressions

A much more flexible way for specifying conditional expressions is given by

the IF-THEN-ELSE operator. The syntax of the IF-THEN-ELSE expression is given

below.

Syntaxif-then-else-expression :

IF logical-expression THEN expression

ELSEIF

ELSE expression ENDIF

ExplanationThe IF-THEN-ELSE expression works like a switch statement—a series of ELSEIFs

can be used to denote numerous special cases. The value of the IF-THEN-ELSE

expression is the first numerical expression for which the corresponding logi-

cal condition is true. If none of the conditions are true, then the value will be

the numerical expression after the ELSE keyword if present or zero otherwise.

Chapter 6. Numerical and Logical Expressions 85

ExampleA simple illustration of the use of the IF-THEN-ELSE construction is given by

the assignments

AverageVelocity := IF TravelTime THEN Distance / TravelTime ENDIF ;

which is equivalent to the ONLYIF expression above. A more elaborate example

is given by the assignment

WeightedDistance(i) :=

IF Distance(i) <= 100 THEN Distance(i)

ELSEIF Distance(i) <= 200 THEN (100 + Distance(i)) / 2

ELSEIF Distance(i) <= 300 THEN (250 + Distance(i)) / 3

ELSE 550 / 3

ENDIF ;

The expression takes the value associated with the first logical expression that

is true.

6.2 Logical expressions

Logical

expressions

Logical expressions are expressions that evaluate to a logical value—0.0 for

false and 1.0 for true. Aimms supports several types of logical expressions.

logical-expression :

(logical-expression)

operator-expression

expression-relationship

expression-inclusion

set-relationship

string-relationship

iterative-expression

numerical-expression

Numerical

expressions

as logical

As Aimms permits numerical expressions as logical expressions it is important

to discuss how numerical expressions are interpreted logically, and how logical

expressions are interpreted numerically. Numerical expressions that evaluate

to zero (0.0) are false, while all others (including ZERO, NA and UNDF) are true. A

false logical expression evaluates to zero (0.0), while a true logical expression

evaluates to one (1.0). If one or more of the operands of a logical operator

is UNDF or NA, the numerical value is also UNDF or NA. Note that Aimms will not

accept expressions that evaluate to UNDF or NA in the condition in control flow

Chapter 6. Numerical and Logical Expressions 86

statements, where it must be known whether the result of that condition is

equal to 0.0 or not (see also Section 8.3).

ExampleTable 6.9 illustrates the different interpretation of a number of numerical and

logical expressions as either a numerical or a logical expression. See also Ta-

ble 6.10 for the results associated with the AND operator.

Expression Numerical value Logical value

3*(2 > 1) 3.0 true

3*(1 > 2) 0.0 false

(1 < 2) + (2 < 3) 2.0 true

max((1 < 2),(2 < 3)) 1.0 true

2 AND 0.0 0.0 false

2 AND ZERO 1.0 true

2 AND NA NA true

UNDF < 0 UNDF true

Table 6.9: Numerical and logical values

6.2.1 Logical operator expressions

Unary and

binary logical

operators

Aimms supports the unary logical operator NOT and the binary logical operators

AND, OR, and XOR. Table 6.10 gives the logical results of these operators for zero

and nonzero operands.

Operands Result

a b a AND b a OR b a XOR b NOT a

0 0 0 0 0 1

0 nonzero 0 1 1 1

nonzero 0 0 1 1 0

nonzero nonzero 1 1 0 0

Table 6.10: Logical operators

Precedence

order

The precedence order of these operators from highest to lowest is given by

NOT, AND, OR, and XOR respectively. Whenever the precedence order is not imme-

diately clear, it is advisable to use parentheses. Besides preventing unwanted

mistakes, it also make your model easier to understand and maintain.

Chapter 6. Numerical and Logical Expressions 87

ExampleThe expression

NOT a AND b XOR c OR d

is parsed by Aimms as if it were written

((NOT a) AND b) XOR (c OR d).

Execution orderDue to the sparse execution system underlying Aimms it is not guaranteed that

logical expressions containing binary logical operators are executed in a strict

left-to-right order. If you are a C/C++ programmer (where logical conditions

are executed in a strict left-to-right order), you should take extra care to ensure

that your logical conditions do not depend on this assumption.

6.2.2 Numerical comparison

Numerical

comparison

Numerical relationships compare two numerical expressions, using one of the

relational operators =, <>, >, >=, <, or <=. Numerical inclusions are equivalent

to two numerical relationships, and indicate whether a given expression lies

within two bounds.

Syntaxexpression-relationship :

expression relational-operator expression

expression-inclusion :

expression

< expression <

<= expression <= expression

Numerical

tolerances

For two real numbers x and y the result of the comparison x ≷ y , where ≷
denotes any relational operator, depends on two tolerances

� Equality Absolute Tolerance (denoted as εa), and

� Equality Relative Tolerance (denoted as εr).

You can set these tolerances through the options dialog box. Their default

values are 0 and 10−13, respectively. If the number εx,y is given by the formula

εx,y = max(εa, εr · x, εr ·y),

then the relational operators evaluate as shown in the Table 6.11.

Chapter 6. Numerical and Logical Expressions 88

Aimms expression Evaluates as

x=y |x −y| ≤ εx,y
x<>y |x −y| > εx,y
x<=y x −y ≤ εx,y
x<y x −y < −εx,y

Table 6.11: Interpretation of numerical tolerances

Comparison for

extended

arithmetic

For any combination of an ordinary real number with one of the special sym-

bols ZERO, INF, and -INF, the relational operators behave as expected. If any of

the operands is either NA or UNDF, relationships other than = and <> also eval-

uate to NA or UNDF and hence, as a logical expression, to true. In addition, the

logical expressions INF = INF and -INF = -INF evaluate to true.

Testing for zero

value

One can formulate numerous logical expressions to test for a zero value, and

one should be clear on the desired result. The following example makes the

point.

p_inv(i) := 1 / p(i);

p_inv(i | p(i)) := 1 / p(i);

p_inv(i | p(i) <> 0) := 1 / p(i);

The first assignment will produce a runtime error when p(i) assumes a value

of 0 or ZERO. The second assignment will filter out the 0’s, but not the ZERO

values because ZERO evaluates to the logical value “true”. The last assignment

will never produce runtime errors, because of the numerical comparison to 0.

6.2.3 Set and element comparison

Set relationshipsAimms features very powerful logical set comparison operators. Not only can

sets and their elements be compared using relational operators, but you can

also check for set membership with the IN operator.

Syntaxset-relationship :

element-tuple IN set-primary

expression-relationship

expression-inclusion

Element

relationship and

inclusion

Set elements that lie in the same set can be compared according to their rela-

tive position inside that set. You can also compare the positions of arbitrary

set element expressions, as long as Aimms is able to determine a unique do-

main set in which the comparison has to take place. The allowed relational

Chapter 6. Numerical and Logical Expressions 89

operators are =, <>, <, <=, >, and >=. As with numerical expression, Aimms also

allows you to specify an inclusion relationship as a form of repeated compari-

son to verify whether an element lies within two boundary elements.

Element

comparison

The relational operators for element relationships are conveniently defined in

terms of the Ord function. Let S be a simple set, i and j indices or element

parameters in S, ± any of the lag or lead operators +, ++, - or --, m and n

integer expressions, and ≷ one of the operators =, <>, <, <=, >, or >=. The

relational operators ≷ have the following definition for set elements, provided

that the set elements on both sides of the relational operator exist.

i±m ≷ j±n ⇔




i±m and j±n are both defined, and

Ord(i± m,S) ≷ Ord(j± n,S)

Note that this type of relational expression evaluates to “false” if one or both

of the operands do not refer to existing set elements.

Compare within

the same set

Only elements that lie in the same set are comparable using the <, <=, >, and >=

operators. The = and <> operators can also be used when the operands merely

share the same root set.

ExampleThe following set assignments demonstrate the correct use of element com-

parisons.

FuturePeriods := { t in Periods | CurrentPeriod <= t <= PlanningHorizon } ;

BandMatrix := { (i,j) | i - BandWidth <= j <= i + BandWidth } ;

Set membershipSet membership can be tested using the IN operator. This operator checks

whether a set element or an element tuple on the left-hand side is a member

of the set expression on the right-hand side. Both operands must have the

same root set.

ExampleAssume that all one-dimensional sets in the following two assignments share

the same root set Cities. Then these statements illustrate the correct use of

the logical IN operator.

NeighborhoodRoutes := { (i,j) in Routes | j in NeighborhoodCities(i) } ;

ExcludedCities := { i in (SmallCities + ForeignCities) } ;

Set comparisonsSets can be logically compared using any of the relational operators =, <>, <,

<=, > and >=. The inequality operators denote the usual subset relationships.

They replace the standard ”contained in” operators ⊊, ⊆, ⊋ and ⊇ which are

not available on many keyboards.

Chapter 6. Numerical and Logical Expressions 90

ExampleThe following statement illustrates a logical set comparison operator.

IF (RoutesWithTransport <= NeighborhoodRoutes) THEN

DialogMessage("Solution only contains neighborhood transports");

ENDIF;

6.2.4 String comparison

String

comparison

Besides their use for comparison of numerical, element- and set-valued expres-

sions, the relational operators =, <>, <, <=, >, and >= can also be used for string

comparison. When used for string comparison, Aimms employs the usual lexi-

cographical ordering. String comparison in Aimms is case sensitive by default,

i.e. strings that only differ in case are considered to be unequal. You can mod-

ify this behavior through the option Case Sensitive String Comparison.

ExamplesAll the following string comparisons evaluate to true.

"The city of Amsterdam" <> "the city of amsterdam" ! Note case

"The city of Amsterdam" <> "The city of Amsterdam " ! Note last space

"The city of Amsterdam" < "The city of Rotterdam"

6.2.5 Logical iterative expressions

Logical iterative

operators

Logical iterative operators verify whether some or all elements in a domain

satisfy a certain logical condition. Table 6.12 lists all logical iterative operators

supported by Aimms. The second column in this table refers to the required

number of expression arguments following the binding domain argument.

Name # Expr. Meaning

Exists 0 true if the domain is not empty

Atleast 1 true if the domain contains at least n elements

Atmost 1 true if the domain contains at most n elements

Exactly 1 true if the domain contains at exactly n elements

ForAll 1 true if the expression is true for all elements in the

domain

Table 6.12: Logical iterative operators

ExampleThe following statements illustrate the use of some of the logical iterative

operators listed in Table 6.12.

MultipleSupplyCities := { i | Atleast(j | Transport(i,j), 2) } ;

IF (ForAll(i, Exists(j | Transport(i,j)))) THEN

DialogMessage("There are no cities without a transport");

ENDIF ;

Chapter 6. Numerical and Logical Expressions 91

6.3 Operator precedence

Combined

precedence

order

In the previous sections we have introduced unary and binary operators for

several types of expressions, together with their relative precedence order. Ta-

ble 6.13 provides an overview of all of them. The last column lists the expres-

sion types in which the operator is used, where the letters “N”, “L”, “E”, and “S”

stand for Numerical, Logical, set E lement and Set expressions, respectively.

Precedence Name Type

14 ONLYIF $ N

13 ˆ N

12 + - (unary) N

11 * / N,S

10 + - ++ -- (binary) N,E,S

9 CROSS S

8 IN L

7 < <= > >= = <> L

6 NOT L

5 AND L

4 OR L

3 XOR L

2 | S

1 IF THEN ELSEIF ELSE ENDIF N

Table 6.13: Operator precedence (highest to lowest)

6.4 MACRO declaration and attributes

Macro facilityThe MACRO facility offers a mechanism for parameterizing expressions. Macros

are useful for enhancing the readability of models, and avoiding inconsisten-

cies in frequently used expressions.

Declaration and

attributes

Macros are declared as ordinary identifiers in your model. They can have ar-

guments. The attributes of a Macro declaration are listed in Table 6.14.

The Definition

attribute

The Definiton attribute of a macro declaration is the replacement text that is

substituted when a macro is used in the model text. The (optional) Arguments

of a macro must be scalar entities. Unlike function arguments, however, you

do not have to declare Macro arguments as local identifiers. The Definition of

a macro must be a valid expression in its arguments.

Chapter 6. Numerical and Logical Expressions 92

Attribute Value-type See also page

Text string 19

Arguments argument-list

Comment comment string 19

Definition expression 34

Table 6.14: Macro attributes

ExampleWhen you define a macro with arguments, the actual replacement text depends

on the arguments that are supplied to it, as illustrated in the following exam-

ple. Using the macro declaration

Macro MyAverage {

Arguments : (dom, expr);

Definition : Sum(dom, expr) / Count(dom);

}

the assignments

AverageTransport := MyAverage((i,j), Transport(i,j));

AverageNZTransport := MyAverage((i,j) | Transport(i,j), Transport(i,j));

are compiled as if they read:

AverageTransport := Sum((i,j), Transport(i,j)) / Count((i,j));

AverageNZTransport :=

Sum ((i,j) | Transport(i,j), Transport(i,j)) /

Count((i,j) | Transport(i,j));

Expression

substitution

When you use a macro with arguments, the actual arguments must be valid

expressions. As a result, there is no need to add additional braces to the re-

placement text of the macro, like, for instance, in the C programming language.

The following example illustrates this point.

Macro MyMult {

Arguments : (x,y);

Definition : x*y;

}

Using this macro, the expression

a + MyMult(b+c,d+e) + f

will evaluate to

a + ((b+c)*(d+ e)) + f

instead of

a + b + c*d + e + f

Chapter 6. Numerical and Logical Expressions 93

Macro versus

defined

parameters

In many execution statements you have a choice to use either macros or de-

fined parameters as a mechanism to replace complicated expressions by de-

scriptive names. While a macro is purely substituted by its replacement text,

the current value of a defined parameter is stored and looked up when needed.

When deciding whether to use a macro or a defined parameter, you should con-

sider both storage and computational consequences. Macros are recomputed

every time they are referenced, and therefore there may be an unnecessary

time penalty if the macro is called with identical arguments in more than one

place within your model. When storage considerations are important, a macro

may be attractive since it does not introduce additional parameters.

Macro versus

defined

variables

You should also consider your choices when you use a macro with variables

as arguments in a constraint. In this case, you also have the option to use

a defined variable, or a defined Inline variable (see also Section 14.1). The

following considerations are of interest.

� A macro can produce different expressions of the same structure for dif-

ferent identifier arguments, but does not allow you to specify a domain

restriction that will reduce the number of generated columns in the ma-

trix.

� Defined and Inline variables support an index domain to restrict the

number of generated columns, but only allow an expression in terms of

fixed identifiers. Compared to a macro or an Inline variable, the number

of rows and columns increases for a defined variable, but if the variable

is referenced more than once in the other constraints, it will result in a

smaller number of nonzeros.

� An advantage of variables (both defined and Inline) over macros is that

their final values are stored by Aimms, and can be retrieved in other

execution statements or in the graphical user interface, whereas a macro

has to be recomputed all the time.

Chapter 7

Execution of Nonprocedural Components

This chapterThe collection of all set and parameter definitions form a system of functional

relationships which Aimms keeps up-to-date automatically. This chapter dis-

cusses the dependency structure of the system, the kind of expressions and

statements allowed inside the definitions, and the way in which the relation-

ships are re-computed.

SpreadsheetsThe nonprocedural execution mechanism discussed in this chapter resembles

the execution of spreadsheets. Definitions can be placed in any order by the

model builder, but the logical order of execution is determined by the sys-

tem. As a result, you can easily formulate spreadsheet-based applications in

the Aimms modeling language by merely using definitions for sets and param-

eters. Of course, the modeling language in Aimms goes beyond the modeling

paradigm of spreadsheets, as Aimms also offers procedural execution which is

found in programming languages but not in spreadsheets.

7.1 Dependency structure of definitions

Dependency

graph

The definitions inside the declarations of global sets and parameters together

form a system of interrelated functional relationships. Aimms automatically

determines the dependency between the defined identifiers and the inputs

that are used inside these relationships. Such dependencies can be depicted

in the form of a directed graph, called the dependency graph. From this de-

pendency graph, Aimms determines the minimal set of identifiers that must be

recomputed—and in which order—to get the total system of functional rela-

tionships up-to-date.

ExampleConsider the system of definitions

d1 ≡ e1 + e2

d2 ≡ d1 + d3

d3 ≡ e2 + e3

d4 ≡ e1 + d2.

Chapter 7. Execution of Nonprocedural Components 95

Its dependency graph, with identifiers as nodes and dependencies as directed

arcs, looks as follows. Note that a change to the input parameter e3, for in-

e1 e2 e3

d1 d3

d2

d4

stance, requires the re-computation of the defined parameters d2, . . . , d4—but

not of d1—to update the entire system.

Dependencies

must be a-cyclic

The dependency graph associated with the set and parameter definitions must

be a-cyclic, i.e. must not contain circular references. In this case, every change

to one or more input parameters of defined sets or parameters will result in a

finite sequence of assignments to update the system. If the dependency graph

is cyclic, a simultaneous system of relations will result. Such a system may

not have a (unique) solution, and can only be solved by a specialized solver.

Simultaneous systems of relations are handled inside Aimms through the use

of constraints and mathematical programs.

ExampleAn illegal set of dependencies results if the definition of d1 in the last example

is changed as follows.

d1 ≡ d4 + e1 + e2.

This results in the following cyclic dependency graph. Now, a change to any

e1 e2 e3

d1 d3

d2

d4

of the input parameters e1, . . . , e3 will result in a simultaneous system for the

parameters d1, d2 and d4.

Chapter 7. Execution of Nonprocedural Components 96

Aimms will

check

Aimms computes the dependency structure between the parameter and set def-

initions while compiling your model. If Aimms detects a cyclic dependency, an

error will result, because Aimms can, in general, not deal with cyclic dependen-

cies without relying on specialized numerical solvers. In that case you need to

remove the cyclic dependencies before you can execute the model without fur-

ther modifications. If you are unable to remove the cyclic dependencies, you

have essentially two alternatives. You can either formulate a mathematical

program, or define your own solution method inside a procedure.

Variables for

simultaneous

systems

The cyclic system can be turned into a mathematical program by changing the

parameters with cyclic definitions into variables. This results in a simultane-

ous system of equalities which can be solved through a SOLVE statement. The

declaration of mathematical programs is discussed in Chapter 15.

Feedback loopsThe alternative is to implement a customized solution procedure by breaking

the simultaneous system into a simulation with a feedback loop linking inputs

and outputs. To accomplish this, you must first remove the cyclic definitions

from the declarations, and then add a procedure that implements the feedback

loop. If you have sufficient knowledge of the process you are describing, this

route may result in fast convergence behavior.

Dependency is

global only

Aimms only allows a definition for globally declared sets and parameters. Con-

sequently, a single global dependency graph suffices to express the functional

relationships between all defined sets and parameters.

Dependency is

symbolic

In addition, the dependency structure between set and parameter definitions is

purely based on symbol references. As a result, Aimms’ automatic evaluation

scheme will always recompute an indexed (output) parameter depending on an

indexed (input) parameter in its entirety, even when only a single input value

has changed.

Inefficiency may

occur

This evaluation behavior may lead to severe inefficiencies when you use a high-

dimensional defined parameter that is re-evaluated repeatedly during the ex-

ecution of a loop in your model. In such cases it is advisable to refrain from

using a definition for such a parameter, but replace it by one or more assign-

ments at the appropriate places in your model. This issue is discussed in full

detail in Section 13.2.3.

7.2 Expressions and statements allowed in definitions

Complicated

definitions

In most applications, the functional relationship between input and output

identifiers in the definition of a set or a parameter can be expressed as an

ordinary set-valued, set element-valued or numerical expression. In rare occa-

Chapter 7. Execution of Nonprocedural Components 97

sions where a functional relationship cannot be written as a single symbolic

statement, a function or procedure can be used instead.

Allowed

definitions

In summary, you may use one of the following items in set and parameter

definitions:

� a set-valued expression,

� an element-valued expression,

� a numerical expression,

� a call to a function, or

� a call to a procedure.

Limited self-

referencing

allowed

Under some conditions, expressions used in the definition of a particular pa-

rameter can contain references to the parameter itself. Such self-referencing

is allowed if the serial computation of the definition over all elements in the

index domain of the parameter does not result in a cyclic reference to the pa-

rameter at the individual level. This is useful, for instance, when expressing

stock balances in a functional manner with the use of lag operators.

ExampleThe following definition illustrates a valid example of a self-reference.

Parameter Stock {

IndexDomain : t;

Definition : {

if (t = FirstPeriod) then BeginStock

else Stock(t-1) + Supply(t) - Demand(t) endif

}

}

If t is an index into a set Periods = {0..3}, and FirstPeriod equals 0, then at

the individual level the assignments with self-references are:

Stock(0) := BeginStock ;

Stock(1) := Stock(0) + Supply(1) - Demand(1) ;

Stock(2) := Stock(1) + Supply(2) - Demand(2) ;

Stock(3) := Stock(2) + Supply(3) - Demand(3) ;

Since there is no cyclic reference, the above definition is allowed.

Functions and

procedures

You can use a call to either a function or a procedure to compute those defini-

tions that cannot be expressed as a single statement. If you use a procedure,

then only a single output argument is allowed. In addition, the procedure can-

not have any side-effects on other global sets or parameters. This means that

no direct assignments to other global sets or parameters are allowed.

Chapter 7. Execution of Nonprocedural Components 98

Arguments

and global

references

The identifiers referenced in the actual arguments of a procedure call, as well

as the global identifiers that are referenced in the body of the procedure, will

be considered as input parameters for the computation of the current defini-

tion. That is, data changes to any of these input identifiers will trigger the

re-execution of the procedure to make the definition up-to-date. The same

applies to functions used inside definitions.

ExamplesThe following two examples illustrate the use of functions and procedures in

definitions.

� Consider a function TotalCostFunction which has a single argument for

individual cost coefficients. Then the following declaration illustrates a

definition with a function reference.

Parameter TotalCost {

Definition : TotalCostFunction(CostCoefficient);

}

Aimms will consider the actual argument CostCoefficient, as well any

other global identifier referenced in the body of TotalCostFunction as

input parameters of the definition of TotalCost.

� Similarly, consider a procedure TotalCostProcedure which performs the

same computation as the function above, but returns the result via a

(single) output argument. Then the following declaration illustrates an

equivalent definition with a procedure reference.

Parameter TotalCost {

Definition : TotalCostProcedure(CostCoefficient, TotalCost);

}

One procedure

for several

definitions

Whenever the values of a number of identifiers are computed simultaneously

inside a single procedure without arguments, then this procedure must be

referenced inside the definition of each and all of the corresponding identi-

fiers. If you do not reference the procedure for all corresponding identifiers, a

compile-time error will result. All other global identifiers used inside the body

of the procedure count as input identifiers.

ExampleConsider a procedure ComputeCosts which computes the value of the global

parameters FixedCost(m,p) and VariableCost(m,p) simultaneously. Then the

following example illustrates a valid use of ComputeCosts inside a definition.

Parameter FixedCost {

IndexDomain : (m,p);

Definition : ComputeCosts;

}

Parameter VariableCost {

IndexDomain : (m,p);

Definition : ComputeCosts;

}

Omitting ComputeCosts in either definition will result in a compile-time error.

Chapter 7. Execution of Nonprocedural Components 99

7.3 Nonprocedural execution

Execution based

on definitions

Execution based on definitions is typically not controlled by the user. It takes

place automatically, but only when up-to-date values of defined sets or pa-

rameters are needed. Basically, execution can be triggered automatically from

within:

� the body of a function or procedure, or

� an object in the graphical user interface.

Relating

definitions and

procedures

Consider a set or a parameter with a definition which is referenced in an exe-

cution statement inside a function or a procedure. Whenever the value of such

a set or parameter is not up-to-date due to previous data changes, Aimms will

compute its current value just prior to executing the corresponding statement.

This mechanism ensures that, during execution of functions or procedures, the

functional relationships expressed in the definitions are always valid.

Lazy evaluationDuring execution Aimms minimizes its efforts and updates only those values

of defined identifiers that are needed at the current point of execution. Such

lazy evaluation can avoid unnecessary computations and reduces computa-

tional time significantly when the number of dependencies is large, and when

relatively few dependencies need to be resolved at any particular point in time.

GUI requestsFor the graphical objects in an end-user interface you may specify whether the

data in that object must be up-to-date at all times, or just when the page con-

taining the object is opened. Aimms will react accordingly, and automatically

update all corresponding identifiers as specified.

The set Current-

AutoUpdated-

Definitions

Which definitions are automatically updated in the graphical user interface

whenever they are out-of-date, is determined by the contents of the prede-

fined set CurrentAutoUpdatedDefinitions. This set is a subset of the prede-

fined set AllIdentifiers, and is initialized by Aimms to the union of the sets

AllDefinedSets and AllDefinedParameters by default.

Exclude from

auto-updating

To prevent auto-updating of particular identifiers in your model, you should

remove such identifiers from the set CurrentAutoUpdatedDefinitions. You can

change its contents either from within the language or from within the graph-

ical user interface. Typically, you should exclude those identifiers from auto-

updating whose computation takes a long time to finish. Instead of waiting

for their computation on every input change, it makes much more sense to

collect all input changes for such identifiers and request their re-computation

on demand.

Chapter 7. Execution of Nonprocedural Components 100

Requesting

updates

All identifiers that are not contained in CurrentAutoUpdatedDefinitions must be

updated manually under your control. Aimms provides several mechanisms:

� you can call the UPDATE statement from within the language, or

� you can attach update requests of particular identifiers as actions to but-

tons and pages in the end-user interface.

The UPDATE

statement

The UPDATE statement can be used to update the contents of one or more iden-

tifiers during the execution of a procedure that is called by the user. In this

way, selected identifiers which are shown in the graphical user interface and

not kept up-to-date automatically, can be made up-to-date once the procedure

is activated by the user.

Syntaxupdate-statement :

UPDATE identifier

,

;

Allowed

identifiers

The following selections of identifiers are allowed in the UPDATE statement:

� identifiers with a definition,

� identifiers associated with a structural section in the model-tree, and

� identifiers in a subset of the predefined set AllIdentifiers.

ExampleThe following execution statement inside a procedure will trigger Aimms to

update the values of the identifiers FixedCost, VariableCost and TotalCost upon

execution.

Update FixedCost, VariableCost, TotalCost;

Part III

Procedural Language

Components

Chapter 8

Execution Statements

This chapterThis chapter describes the interaction between the nonprocedural and proce-

dural execution mechanisms in Aimms. In addition, the major execution state-

ments like the assignment statement, the flow control statements, and the

OPTION statement are discussed. Other important execution statements such

as procedure calls, the SOLVE statement, as well as data control and display

statements are discussed in various other chapters.

8.1 Procedural and nonprocedural execution

Execution based

on definitions

The definitions specified inside the declarations of sets and parameters to-

gether form a system of functional relationships. As discussed in Chapter 7

Aimms automatically determines the dependency between the identifiers that

are used inside these relationships. Based on the (required) a-cyclic depen-

dency structure between identifiers (see also Section 7.1), Aimms knows the

exact order in which identifiers need to be computed. Execution based on defi-

nitions is not controlled by the user, but takes place automatically when values

are needed.

Execution based

on procedures

Procedures are self-contained programs with a body consisting of execution

statements. These statements typically determine the value of those identi-

fiers which cannot be defined using a single functional relationship. Execution

using procedures proceeds according to the order of execution statements en-

countered inside each procedure, and is therefore controlled by the user.

Relating

definitions and

procedures

Whenever a set or a parameter with a definition is used in an execution state-

ment inside a procedure, and its value is not up-to-date due to previous data

changes, Aimms will compute its current value just prior to executing the cor-

responding statement. This updating facility in Aimms forms the necessary

and powerful connection between automatic execution based on definitions

and user-initiated execution based on procedures.

Chapter 8. Execution Statements 103

Definitions and

algorithms

Procedural and nonprocedural execution both have their own natural role in an

Aimms application. Identifier definitions are the most convenient way to define

unique functional relationships between various identifiers in your model—

and keep them up-to-date at all times. Procedures provide a powerful tool to

specify the algorithms that are needed to compute the identifier values without

a direct functional relationship. Procedural statements are also required to

communicate data between Aimms and external data sources such as files and

databases.

Execution

statements

Aimms provides a rich set of execution statements that you can use to com-

pose your procedures. Available statements include a versatile assignment

statement, statements for data and option management, the most common

flow control statements, calls to other procedures, and a powerful SOLVE state-

ment to solve various types of optimization programs.

Syntaxstatement :

data-control-statement

flow-control-statement

assignment-statement

solve-statement

option-statement

procedure-call

8.2 Assignment statements

AssignmentAssignment statements are used to set or change the values of sets, param-

eters and variables during the execution of a procedure or a function. The

syntax of an assignment statement is straightforward.

Syntaxassignment-statement :

data-selection assignment-operator expression ;

data-selection :

identifier-part (binding-domain)

Chapter 8. Execution Statements 104

Assignment

operators

Aimms offers several assignment operators. The standard replacement assign-

ment operator := replaces the value of all elements specified on the left hand

side with the value of the expression on the right hand side. The arithmetic

assignment operators +=, -=, *=, /= and ˆ= combine an assignment with an

arithmetic operation. Thus, the assignments

a += b, a -= b, a *= b, a /= b, a ˆ= b

form a shorthand notation for the assignments

a := a + b, a := a - b, a := a * b, a := a / b, a := a ˆ b.

Index bindingAssignment is an index binding statement. Aimms also binds unbound indices

in (nested) references to element-valued parameters that are used for index-

ing the left-hand side. Aimms will execute the assignment repeatedly for all

elements in the binding domain, and in the order as specified by the declara-

tion(s) of the binding set(s). The precise rules for index binding are explained

in Section 9.1.

Allowed binding

domains

In contrast to the binding domain of iterative operators and the FOR statements,

the binding domain of an indexed assignment can contain the full range of

element expressions:

� references to unbound indices, which will be bound by the assignment,

� references to scalar element parameters and bound indices,

� references to indexed element parameters, for which any nested un-

bound index will be bound as well,

� calls to element-valued functions, and

� element-valued iterative operators.

If the element expression inside the binding domain of an indexed assignment

is too lengthy, it may be better to use an intermediate element parameter to

improve readability.

Conditional

assignments

Like any binding domain, the binding domain of an indexed assignment can

be subject to a logical condition. Such an assignment is referred to as a con-

ditional assignment, and is only executed for those elements in the binding

domain that satisfy the logical condition.

Domain

checking

In addition, if the identifier on the left-hand side of the assignment has its own

domain restriction, then the assignment is limited to those elements of the

binding domain that satisfy this restriction. Assignments to elements outside

the restricted domain are not considered.

Chapter 8. Execution Statements 105

ExampleThe following five examples illustrate some simple assignment statements. In

all examples we assume that i and j are unbound indices into a set Cities, and

that LargestCity is an element parameter into Cities.

1. The first example illustrates a simple scalar assignment.

TotalTransportCost := sum[(i,j), UnitTransportCost(i,j)*Transport(i,j)];

The value of the scalar identifier on the left-hand side is replaced with

the value of the expression on the right-hand side.

2. The second example illustrates an index binding assignment.

UnitTransportCost(i,j) *= CostWeightFactor(i,j) ;

For all cities i and j in the index domain of UnitTransportCost , the old

values of the identifier UnitTransportCost(i,j) are multiplied with the

values of the identifier CostWeightFactor(i,j) and then used to replace

the old values.

3. The third example illustrates a conditional assignment.

Transport((i,j) | UnitTransportCost(i,j) > 100) := 0;

The zero assignment to Transport is made to only those cities i and j for

which the UnitTransportCost is too high.

4. The fourth example illustrates a sliced assignment, i.e. an assignment that

only changes the values of a lower-dimensional subspace of the index

domain of the left-hand side identifier.

Transport(LargestCity,j) := 0;

The sliced assignment in this example binds only the index j. The values

of the parameter Transport are set to zero from the city LargestCity to

every city j, but the values from every other city i to all cities j remain

unchanged.

5. The fifth example illustrates a nested index binding statement.

PreviousCity(NextCity(i)) := i;

The index i is bound, because it is used in the nested reference of the

element parameter NextCity(i), which in turn is used for indexing the

identifier PreviousCity. Note that, in a tour, city i by definition is the

previous city of the specific (next) city it is linked with.

Sequential

execution

Indexed assignments are executed in a sequential manner, i.e. as if it was re-

placed by a sequence of individual assignments to every element in the binding

domain. Thus, if Periods is the integer set {0 .. 3} with index t, then the in-

dexed assignment

Stock(t | t > 0) := Stock(t-1) + Supply(t) - Demand(t);

is executed (conceptually) as the sequence of individual statements

Chapter 8. Execution Statements 106

Stock(1) := Stock(0) + Supply(1) - Demand(1);

Stock(2) := Stock(1) + Supply(2) - Demand(2);

Stock(3) := Stock(2) + Supply(3) - Demand(3);

Therefore, in the right hand side expression it is possible to refer to elements

of the identifier on the left which have received their value prior to the exe-

cution of the current individual assignment. This type of behavior is typically

observed and wanted in stock balance type applications which use lag refer-

ences as shown above. The same argument also applies to assignments that

use element parameters for indexing on either the left- or right-hand side of

the assignment.

Indexed

assignment

versus FOR

In addition to the indexed assignment, Aimms also possesses a more general

FOR statement which repeatedly executes a group of statements for all ele-

ments in its binding domain (see also Section 8.3.4). If you are familiar with

programming languages like C or Pascal you might be tempted to embed

every indexed assignment into one or more FOR statements with the proper do-

main. Although this will conceptually produce the same results, we strongly

recommend against it for two reasons.

� By omitting the FOR statements you improve to the readability and main-

tainability of your model code.

� By including the FOR statement unnecessarily you are effectively degrad-

ing the performance of your model, because Aimms can execute an in-

dexed assignment much more efficiently than the equivalent FOR state-

ment.

Whenever you use a FOR statement unnecessarily, Aimms will produce a com-

pile time warning to tell you that the code would be more efficient by removing

the FOR statement.

ExampleConsider the indexed assignment

Transport((i,j) | UnitTransportCost(i,j) > 100) := 0;

and the equivalent FOR statement

for ((i,j) | UnitTransportCost(i,j) > 100) do

Transport(i,j) := 0;

endfor;

Notice that the indexed assignment is more compact than the FOR statement

and is easier to read. In this example Aimms will warn against this use of the

FOR statement, because it can be removed without any change in semantics,

and will lead to more efficient execution.

Chapter 8. Execution Statements 107

Undefined

left-hand

references

When there are undefined references with lag and lead operators on the left-

hand side of an assignment (i.e. references that evaluate to the empty element),

the corresponding assignments will be skipped. The same is true if the iden-

tifier on the left contains undefined references to element parameters. No-

tice that this behavior is different from the behavior of a reference containing

undefined lag and lead expressions on the right-hand side of an assignment.

These evaluate to zero.

ExampleConsider the assignment to the parameter Stock above. It could also have been

written as

Stock(t+1) := Stock(t) + Supply(t+1) - Demand(t+1);

In this case, there is no need to add a condition to the assignment for t = 3.

The reference to t+1 is undefined, and hence the assignment will be skipped.

Similarly, the assignment

PreviousCity(NextCity(i)) := i;

will only be executed for those cities i for which NextCity(i) is defined.

8.3 Flow control statements

Six forms of

flow control

Execution statements such as assignment statements, SOLVE statements or data

management statements are normally executed in their order of appearance in

the body of a procedure. However, the presence of control flow statements can

redirect the flow of execution as the need arises. Aimms provides six forms of

flow control:

� the IF-THEN-ELSE statement for conditional execution,

� the WHILE statement for repetitive conditional execution,

� the REPEAT statement for repetitive unconditional execution,

� the FOR statement for repetitive domain-driven execution,

� the SWITCH statement for branching on set and integer values,

� the HALT and RETURN statement for terminating the current execution,

� the SKIP and BREAK statements for terminating the current repetitive exe-

cution, and

� the BLOCK statement for visually grouping together multiple statements.

Chapter 8. Execution Statements 108

Syntaxflow-control-statement :

skip-break-statement

if-then-else-statement

while-statement

repeat-statement

for-statement

switch-statement

halt-statement

return-statement

block-statement

Flow control

statements and

special numbers

In the condition of flow control statements such as IF-THEN-ELSE, WHILE and

REPEAT it is needed to know whether the result is equal to 0.0 or not in order

to take the appropriate branch of execution. The special number NA has the

interpretation “not yet available” thus it is also not yet known whether it is

equal to 0.0 or not. The special number UNDF is the result of an illegal operation,

so its value cannot be known. Therefor, Aimms will issue an error message if

the result of a condition in these statements evaluates to NA or UNDF. Special

numbers and their interpretation as logical values are discussed in full detail

in Sections 6.1.1 and 6.2.

8.3.1 The IF-THEN-ELSE statement

The conditional IF-THEN-ELSE statement is used to choose between the exe-

cution of several groups of statements depending on the outcome of one or

more logical conditions. The syntax of the IF-THEN-ELSE statement is given in

the following diagram.

Syntaxif-then-else-statement :

IF logical-expression THEN statement

ELSEIF

ELSE statement ENDIF ;

Chapter 8. Execution Statements 109

Aimms will evaluate all logical conditions in succession and stops at the first

condition that is satisfied. The statements associated with that particular

branch are executed. If none of the conditions is satisfied, the statements

of the ELSE branch, if present, will be executed.

ExampleThe following code illustrates the use of the IF-THEN-ELSE statement.

if (not SupplyDepot) then

DialogMessage("Select a supply depot before solving the model");

elseif (Exists[p, Supply(SupplyDepot,p) < Sum(i, Demand(i,p))]) then

DialogMessage("The selected supply depot has insufficient capacity");

else

solve TransportModel ;

endif ;

Note that in this particular example the evaluation of the ELSEIF condition

only makes sense when a SupplyDepot exists. This is automatically enforced

because the IF condition is not satisfied. Similarly, successful execution of

the ELSE branch apparently depends on the failure of both the IF and ELSEIF

conditions.

8.3.2 The WHILE and REPEAT statements

The WHILE and REPEAT statements group a series of execution statements and

execute them repeatedly. The execution of the repetitive loop can be termi-

nated by a logical condition that is part of the WHILE statement, or by means of

a BREAK statement from within both the WHILE and REPEAT statements.

Syntaxwhile-statement :

WHILE logical-expression DO loop-string

statement ENDWHILE ;

repeat-statement :

REPEAT loop-string statement ENDREPEAT ;

Loop strings are discussed in Section 8.3.3.

Chapter 8. Execution Statements 110

Termination by

WHILE condition

The execution of a WHILE statement is subject to a logical condition that is veri-

fied each time the statements in the loop are executed. If the condition is false

initially, the statements in the loop will never be executed. In case the WHILE

loop does not contain a BREAK, HALT or RETURN statement, the statements inside

the loop must in some way influence the outcome of the logical condition for

the loop to terminate.

Termination by

a BREAK

statement

An alternative way to terminate a WHILE or REPEAT statement is the use of a

BREAK statement inside the loop. BREAK statements make it possible to abort

the execution at any position inside the loop. This freedom allows you to for-

mulate more natural termination conditions than would otherwise be possible

with just the logical condition in the WHILE statement. After aborting the loop,

Aimms will continue with the first statement following it.

Skipping the

remainder of a

loop

In addition to the BREAK statement, Aimms also offers a SKIP statement. With

it you instruct Aimms to skip the remaining statements inside the current it-

eration of the loop, and immediately return to the top of the WHILE or REPEAT

statement to execute the next iteration. The SKIP statement is an elegant alter-

native to placing the statements inside the loop following the SKIP statement

in a conditional IF statement.

Syntaxskip-break-statement :

BREAK

SKIP loop-string WHEN logical-expression ;

The WHEN clauseBy adding a WHEN clause to either a BREAK or SKIP statement, you make its exe-

cution conditional to a logical expression. In practice, the execution of a BREAK

or SKIP statement is almost always subject to some condition.

Example WHILE

statement

This example computes the machine epsilon, which is the smallest number

that, when added to 1.0, gives a value different from 1.0. It is a measure of

the accuracy of the floating point arithmetic, and it is machine dependent.

We assume that meps is a scalar parameter, and that the numeric comparison

tolerances are set to zero (see also Section 6.2.2).

meps := 1.0;

while (1.0 + meps/2 > 1.0) do

meps /= 2;

endwhile;

Since the parameter meps is determined iteratively, and the loop condition will

eventually be satisfied, this example illustrates an appropriate use of the WHILE

loop.

Chapter 8. Execution Statements 111

Example REPEAT

statement

By applying a BREAK statement, the machine epsilon can be computed equiva-

lently using the following REPEAT statement.

meps := 1.0;

repeat

break when (1.0 + meps/2 = 1.0) ;

meps /= 2;

endrepeat;

The BREAK statement could also have been formulated in an equivalent but less

elegant manner without a WHEN clause:

if (1.0 + meps/2 = 1.0) then

break;

endif;

8.3.3 Advanced use of WHILE and REPEAT

Advanced usesNext to the common use of the WHILE and REPEAT statements described in the

previous section, Aimms offers some special constructs that help you

� keep track of the number executed iterations automatically, and

� control nested arrangements of WHILE and REPEAT statements.

Nonconvergent

loops

There are practical examples in which the terminating condition of a repetitive

statement may not be met at all or at least not within a reasonable amount

of work or time. A good example of this behavior are solution algorithms for

which convergence is likely but not guaranteed. In these cases, it is common

practice to terminate the execution of the loop when the total number of iter-

ations exceeds a certain limit.

The LoopCount

operator

In Aimms, such conditions can be formulated easily without the need to

� introduce an additional parameter,

� add a statement to initialize it, and

� increase the parameter every iteration of the loop.

Each repetitive statement keeps track of its iteration count automatically and

makes the number of times the loop is entered available by means of the pre-

defined operator LoopCount. Upon entering a repetitive statement Aimms will

set its value to 1, and will increase it by 1 at the end of every iteration.

ExampleWhether the following sequence will converge depends on the initial value of x.

In the case where there is no convergence or if convergence is too slow, the

loop in the following example will terminate after 100 iterations.

while (Abs(x-OldValue) >= Tolerance and LoopCount <= 100) do

OldValue := x ;

x := xˆ2 - x ;

endwhile ;

Chapter 8. Execution Statements 112

Naming nested

loops

So far, we have considered single loops. However, in practice it is quite com-

mon that repetitive statements appear in nested arrangements. To provide

finer control over the flow of execution in such situations, Aimms allows you

to label a particular repetitive statement with a loop string.

Use of loop

strings

Using a loop string in conjunction with the BREAK and SKIP statements, it is pos-

sible to break out from several nested repetitive statements with a single BREAK

statement. The loop string argument can also be supplied to the LoopCount op-

erator so the break can be conditional on the number of iterations of any loop.

Without specifying a loop string, BREAK, SKIP and LoopCount refer to the current

loop by default.

ExampleThe following example illustrates the use of loop strings and the LoopCount

operator in nested repetitive statements. It outlines an algorithm in which the

domain of definition of a particular problem is extended in every loop based

on the current solution, after which the new problem is solved by means of a

sequential solution process.

repeat "OuterLoop"

... ! Determine initial settings for sequential solution process

while(Abs(Solution - OldSolution) <= Tolerance) do

OldSolution := Solution ;

... ! Set up and solve next sequential step ...

! ... but terminate algorithm when convergence is too slow

break "OuterLoop" when LoopCount >= LoopCount("OuterLoop")ˆ2 ;

endwhile;

... ! Extend the domain of definition based on current solution,

! or break from the loop when no extension is possible anymore.

endrepeat;

8.3.4 The FOR statement

The FOR statement is related to the use of iterative operators in expressions.

An iterative operator such as SUM or MIN applies a particular operation to all

expressions defined over a particular domain. Similarly, the FOR statement

executes a group of execution statements for all elements in its domain. The

syntax of the FOR statement is given in the following diagram.

Syntax

Chapter 8. Execution Statements 113

for-statement :

UNORDERED

SPARSE

ORDERED

FOR (binding-domain) DO loop-string

statement ENDFOR ;

Execution is

sequential

The binding domain of a FOR statement can only contain free indices, which

are then bound by the statement. All statements inside a FOR statement are

executed in sequence for the specific elements in the binding domain. Un-

less specified otherwise, the ordering of elements in the binding domain, and

hence the execution order of the FOR statement, is the same as the order of the

corresponding binding set(s).

Integer domainsFOR statements with an integer domain in the form of an enumerated set be-

have in a similar manner as the FOR statement in programming languages like

C or Pascal. Like the example below, FOR statements of this type are mostly

of an algorithmic nature, and the indices bound by the FOR statement typically

serve as an iteration count.

Examplefor (n in { 1 .. MaxPriority }) do

x.NonVar(i | x.Priority(i) < n) := 1;

x.Relax (i | x.Priority(i) = n) := 0;

x.Relax (i | x.Priority(i) > n) := 1;

Solve IntegerModel;

endfor;

This example tries to solve a mixed-integer mathematical program heuristically

in stages. The algorithm first only solves for those integer variables that have

a particular integer priority, and then changes them to non-variables before

going on to the next priority. The suffices used in this example are discussed

in Section 14.1.

Non-integer

domains

FOR statements with non-integer binding domains are typically used to process

the data of a model for all elements in a data-related domain. The use of a FOR

statement in such a situation is only necessary if the statements inside it form

a unit, for which sequential execution for each element in the domain of the

entire group of statements is essential. An example follows.

Chapter 8. Execution Statements 114

Examplefor (i in Cities) do

SmallestTransportCity := ArgMin(j, Transport(i,j)) ;

DiscardedTransports += Transport(i, SmallestTransportCity) ;

Transport(i, SmallestTransportCity) := 0 ;

endfor;

In this example the three assignments form an inseparable unit. For each

particular value of i, the second and third assignment depend on the correct

value of SmallestTransport in the first assignment.

Use FOR only

when needed

If you are familiar with programming language like Pascal and C, then the

use of FOR statements will seem quite natural. In Aimms, however, FOR state-

ments are often not needed, especially in the context of indexed assignments.

Indexed assignments bind the free indices in their domain implicitly, resulting

in sequential execution of that particular assignment for all elements in its

domain. In general, such an index binding assignment is executed much more

efficiently than the same assignment placed inside an equivalent FOR statement.

In general, you should use FOR statements only when really necessary.

Aimms issues a

warning

Aimms will provide a warning when it detects unnecessary FOR statements in

your model. Typically FOR statement are not required when the loop only con-

tains assignments that do not refer to scalar identifiers (either numeric or

element-valued) to which assignments have been made inside the loop as well.

For instance, in the last example the FOR statement is essential, because the

assignment and use of the element parameter LargestTransportCity is inside

the loop.

ExampleThe following example shows an unnecessary use of the FOR statement.

solve OptimizationModel;

! Mark variables with large marginal values

for (i) do

if (Abs[x.Marginal(i)] > HighPrice) then

Mark(i) := x.Marginal(i);

else

Mark(i) := 0.0;

endif;

endfor;

While this statement may seem very natural to C or Pascal programmers, in a

sparse execution language like Aimms it should preferably be written by the

following simpler, and faster, assignment statement.

Mark(i) := x.Marginal(i) OnlyIf (Abs[x.Marginal(i)] > HighPrice);

Chapter 8. Execution Statements 115

The SPARSE,

ORDERED and

UNORDERED

keywords

With the optional keywords SPARSE, ORDERED and UNORDERED you can indicate

that Aimms should follow one of three possible strategies to execute the FOR

statement. If you do not explicitly specify a strategy, Aimms will follow the

SPARSE strategy by default, and issue a warning when this strategy leads to

severe inefficiencies. You can find an explanation of each of the strategies, as

well as a description of the cases in which you may want to choose a specific

strategy in Section 13.2.2.

FOR as a

repetitive

statement

Like the WHILE and the REPEAT statements, FOR is a repetitive statement. Thus,

you can use the SKIP and BREAK statements and the LoopCount operator. In ad-

dition, you can identify a FOR statement with a loop string thereby controlling

execution in nested arrangements as discussed in the previous section.

Use of SKIP

and BREAK

The SKIP statement skips the remaining statements in the FOR loop and contin-

ues to execute the loop for the next element in the binding domain. The BREAK

statement will abort the execution of the FOR statement all together.

8.3.5 The SWITCH statement

The SWITCH

statement

The SWITCH statement is used to choose between the execution of different

groups of statements depending on the value of a scalar parameter reference.

The syntax of the SWITCH statement is given in the following two diagrams.

Syntaxswitch-statement :

SWITCH reference DO selector : statement

ENDSWITCH ;

selector :

quoted-element

integer

element-range

DEFAULT

,

Chapter 8. Execution Statements 116

Integers and set

element

The SWITCH statement can switch on two types of scalar parameter references:

set element-valued or integer-valued. When you try to switch on references to

string-valued or non-integer numerical parameters, Aimms will issue a compile

time error

Switch selectorsEach selector in a SWITCH statement must be a comma-separated list of values or

value ranges, matching the type of the selecting scalar parameter. Expressions

and ranges used in a SWITCH statement must only contain constant integers and

set elements. Set elements used in a switch selector must be known at compile

time, i.e. the data initialization of the corresponding set must be a part of the

model description.

The DEFAULT

selector last

The optional DEFAULT selector matches every reference. Since Aimms executes

only those statements associated with the first selector matching the value of

the scalar reference, it is clear that the DEFAULT selector should be placed last.

ExampleThe following SWITCH statement takes different actions based on the model

status returned by a SOLVE statement.

solve OptimizationModel;

switch OptimizationModel.ProgramStatus do

’Optimal’, ’LocallyOptimal’ :

ObservedModelStatus := ’Solved’ ;

’Unbounded’, ’Infeasible’, ’IntegerInfeasible’, ’LocallyInfeasible’ :

ObservedModelStatus := ’Infeasible’ ;

’IntermediateInfeasible’, ’IntermediateNonInteger’, ’IntermediateNonOptimal’ :

ObservedModelStatus := ’Interrupted’ ;

default :

ObservedModelStatus := ’Not solved’ ;

endswitch ;

8.3.6 The HALT statement

Terminating

execution

With a HALT statement you can stop the current execution. You can use it, for

example, if your model has run into an unrecoverable error condition during

its execution, or if you simply want to skip the remaining statements because

they are no longer relevant in a particular situation.

Compare to

RETURN

Instead of the HALT statement you can also use the RETURN statement (see also

Section 10.1) to terminate the current execution. The HALT statement directly

jumps back to the user interface, but a RETURN statement in a procedure only

passes back control to the calling procedure and continues execution from

there.

Chapter 8. Execution Statements 117

SyntaxThe syntax of the HALT statement follows.

halt-statement :

HALT WITH string-expression WHEN logical-expression ;

Printing a

message

You can optionally specify a string in the HALT statement that will be printed

in a message dialog box when execution has stopped. This is useful, for in-

stance, to pass on an appropriate message to the user when a particular error

condition has occurred.

The WHEN clauseYou can make the execution of the HALT statement conditional on a WHEN clause.

If present, the current run will only be aborted if the condition after the WHEN

clause is satisfied.

ExampleThe following example terminates the current run if the SOLVE statement does

not solve to optimality. When aborting, the user will be notified with an ex-

planatory message.

solve LinearOptimizationModel;

halt with "Execution aborted: model not solved to optimality"

when OptimizationModel.ProgramStatus <> ’Optimal’ ;

AlternativeNote that the type of model termination initiated by calling the HALT state-

ment cannot be guarded against using Aimms’ error handling facilities (see Sec-

tion 8.4). An alternative to the HALT statement, which enables error handling, is

the RAISE statement discussed in Section 8.4.2. When you want to let the HALT

act as a RAISE statement, you can switch the option halt acts as raise error

on.

8.3.7 The BLOCK statement

The BLOCK

statement

A sequence of statements can be grouped together into a single statement

using the BLOCK statement, possibly serving one or more of the following pur-

poses:

� to emphasize the logical structure of the model,

� to execute a group of statements with different option settings, or

� to permit error handling on a group of statements (see Section 8.4).

The syntax of the BLOCK statement is as follows.

Chapter 8. Execution Statements 118

Syntaxblock-statement :

BLOCK WHERE option := expression

,

;

statement ONERROR identifier DO statement

ENDBLOCK ;

Emphasizing

logical structure

in the model

Consider the following BLOCK statement containing a group of statements.

block ! Initialize measured compositions as observable.

CompositionObservable(nmf,c in MeasuredComponents(nmf)) := 1;

CompositionObservable(mf,mc) := 0;

if (not CheckComputableFlows) then

UnobservableComposition(nmf,c) := 1$(not CompositionObservable(nmf,c));

return 0;

endif;

CompositionCount(pu,c) :=

Count((f,g) | Admissable(pu,c,f,g) and CompositionObservable(g,c));

NewCount := Card (CompositionObservable);

endblock ;

In the Aimms syntax editor, a block can be displayed in either a collapsed or an

expanded state. When collapsed, the block will be displayed as follows, using

a single line comment following the BLOCK keyword as its description.

When in a collapsed state, Aimms will show the contents of the block in a

tooltip if the mouse pointer is placed over the collapsed block, as illustrated

in the figure below.

Chapter 8. Execution Statements 119

Executing with

different option

settings

During the execution of a block statement, the options in the WHERE clause

will have the specified values set at the beginning of the block statement, and

the old values restored at the end of the block statement. More on the for-

mat of option names and value settings can be found in Section 8.5. The

example below prints various parameters using various settings of the option

Listing number precision.

! The default value of the option Listing_number_precision is 3.

block ! Start printing numbers using 6 decimals.

where Listing_number_precision := 6 ;

display A, B ;

block ! Start printing numbers without decimals.

where Listing_number_precision := 0 ;

display C, D ; ! The output looks as if C and D are integers.

endblock ;

display E, F ; ! Back to printing numbers using 6 decimals.

endblock ;

display G, H ; ! Back to printing numbers using 3 decimals.

In the above example, a nested block statement is used to set the scope of

option settings; the inner block statement temporarily overrides the option

setting of the outer block statement, which overrides the global option set-

tings.

The OnError

clause

The OnError clause is one of the means of handling runtime errors in Aimms.

It is discussed in detail in Section 8.4.1.

8.4 Raising and handling warnings and errors

Errors and

warnings

During the development and deployment of an Aimms application, unexpected,

possibly harmful, situations can arise. These situations are divided into errors

and warnings. An error is a situation that cannot be handled by the procedure

encountering it. A warning is a situation that can be handled by the procedure

encountering it, but might warrant further inspection by the model developer

or by the model user. Note that, even when a procedure cannot handle an error

itself, it should be able to recover from that error. In this section, you will find

Aimms facilities to

� handle errors; to handle an error, Aimms will give you access to the infor-

mation therein. A handler is a piece of Aimms code that handles selected

errors and warnings. Errors and warnings can be communicated to han-

dlers higher in the execution stack.

� raise an error; not only Aimms may detect situations warranting an error

or warning message, but also the application itself. For such situations

Aimms provides a facility to raise custom errors from within your model.

Chapter 8. Execution Statements 120

� handle a legacy situation; external and intrinsic Aimms procedures may

return a status code indicating success or failure. Whenever a failure

status of an external and intrinsic procedure remains unnoticed, Aimms

can automatically raise an error in such situations.

� extensively check the code; Aimms can check your application for many

different kinds of situations that occassionally warrant a warning. It is

usually worthwhile to apply all these checks to your application.

8.4.1 Handling errors

Subsection

overview

In this subsection you will find an introduction to both the global and local er-

ror handling mechanisms available in Aimms. Global error handling, by means

of specifying a single handler procedure, is used to treat runtime errors oc-

curing anywhere inside the entire model that are not handled elsewhere. Local

error handling, by means of the OnError clause in a BLOCK statement, allows er-

ror handling of runtime errors occuring in a specific block of code. Global and

local error handling are the blocks on which the error handling framework in

Aimms is built. At the end of this subsection, you will find a description of all

the intrinsic functions available for accessing and manipulating information

regarding errors.

Global error

handling

To activate global error handling, the name of a handling procedure in your

model must be assigned to the option Global error handler. Such a procedure

must have a single element parameter argument err in the predeclared set

errh::PendingErrors. The global error handling procedure will be executed for

each pending error whenever an execution run has been terminated because

of errors that have not been handled elsewhere in the model. The global error

handler will also be called at the end of a finished execution run if there are

unhandled warnings. In this context, an execution run is any call to an Aimms

procedure initiated either through the Aimms GUI or through the Aimms API.

ExampleBelow a global error handling procedure MyErrorHandler is illustrated. The lines

in the body of the procedure are numbered to facilitate the explanation of the

example.

Procedure MyErrorHandler {

Arguments : err;

ElementParameter err {

Range : errh::PendingErrors;

Property : Input;

}

Body: {

1 if errh::Node(err) = ’DefP’ then

2 DialogMessage(errh::Message(err) + "; resetting P to its default.");

3 Empty P ;

4 errh::MarkAsHandled(err);

5 elseif errh::InsideCategory(err,’IO’) then

6 errh::Adapt(err,message:"IO error: please consult ...; "

Chapter 8. Execution Statements 121

7 + errh::Message(err)); ! Pass adapted message on to next handler.

8 else

9 ! Errors not handled will be passed on to the error/warning window.

10 endif

}

}

Example

explanation

The procedure starts with declaring the argument err as an element parameter

with the predeclared set errh::PendingErrors, with a subset of the predeclared

set Integers as its range. During an execution run, this set is filled with the

numbers of the errors and warnings raised. Each number refers to an error

or warning with various pieces of information therein, such as its error de-

scription, the node in which the error or warning occurred and its severity. In

addition, each error belongs to a category. All this information can be accessed

using intrinsic functions. The body of the procedure is now explained line by

line:

� line 1: The intrinsic function errh::Node is used to determine whether or

not the error occurred inside the procedure DefP. This intrinsic function

returns the identifier or node in which the error occured as an element

of the predeclared set AllSymbols.

� lines 2, 3: If the error did happen inside the procedure DefP, the ap-

plication user is notified and P is reset to its default. The notification

uses the original error description obtained using the intrinsic function

errh::Message(err).

� line 4: Each handled error will be marked as such. When an error handler

finishes, it will delete the errors that have been marked as handled from

the predeclared set errh::PendingErrors.

� line 5: To discern the type of an error, errors are divided into categories.

For each error, the category to which it belongs can be obtained using the

function errh::Category(err). The error categories form a nested struc-

ture. For instance, both IO and Generation errors are Execution errors.

The intrinsic function errh::InsideCategory(err) can be used to deter-

mine whether or not an error is within a particular category.

� lines 6, 7: Translate the error by adapting information. In this example,

only the message is actually adapted, but most parts of an error can be

adapted. Note that in this else branch, the function errh::MarkAsHandled

is not called, the result being that the adapted error message will appear

in the messages/errors window.

� line 8: In this branch, the error is not handled. An error that has not been

handled when the error handler finishes will not be deleted. Instead, it is

being displayed in the messages/errors window.

Chapter 8. Execution Statements 122

Local error

handling by

means of the

OnError clause

The following template of a BLOCK statement illustrates local error handling by

means of the OnError clause.

1 BLOCK

2 statement_1 ;

3 ...

4 statement_n ;

5 ONERROR err DO

6 ...

7 ...

8 ENDBLOCK ;

All errors occuring inside statement 1 ... statement n on lines 2 ... 4 are handled

by the error handler on lines 6 and 7, where err is an element parameter of the

set errh::PendingErrors. Block statements can be nested, either directly in a

single body, or in other procedures called from within block statements. This

gives rise to a stack of error handlers as illustrated below. A detailed example

of a local error handler is given in Section 35.6.

Error flow

architecture

The global error handlers and the OnError error handlers are essential build-

ing blocks of the error handling framework of Aimms. This error handling

framework is illustrated in Figure 8.1.

Construction of

the error

handler stack

At the start of each execution run, a new stack of error handlers is created. At

the bottom of this stack is the standard handler To Global Collector. When

the option Global error handler is set, the specified procedure is placed on top

of this new stack. Additional handlers are placed on the stack by each OnError

clause in a nested BLOCK statement.

Errors flowing

through a

handler stack

When raised, each error is set aside for handling by the topmost error handler.

When the number of errors set aside reaches the limit specified by the option

Errors until execution interrupt, the execution is interrupted and resumes by

executing the code in the topmost error handler. When the execution is not

interrupted, but there are pending errors or warnings, the error handling code

is executed after the completion of the last statement prior to the BLOCK state-

ment.

Multiple errors

may require

handling

A single statement may result in multiple error messages, for instance a solve

statement or a data assignment statement with several duplicate entries. Thus,

even if the option Errors until execution interrupt is 1 (its default), multiple

errors may need to be handled. If multiple errors caused by a single statement

are handled inside the OnError clause of a BLOCK statement, the code within the

OnError clause will be executed unconditionally for every single error, unless

you explicitly break away from theOnError clause.

Chapter 8. Execution Statements 123

Figure 8.1: Error flow through handlers

Break away

from handling

If you use a RETURN, HALT, BREAK or RAISE ERROR statement inside the OnError

clause, the handling of any subsequent errors or warnings will be stopped.

You are actually indicating that these further errors and warnings are no longer

of interest and thus they will be automatically set as handled. A plain BREAK

statement just breaks the error handling loop. If the Block statement is inside

an outer loop statement like FOR or WHILE and you want to break from that loop,

you need to use a loop string (see Section 8.3.3).

SKIP in OnErrorA plain Skip statement in the OnError clause simply skips the remaining state-

ments and continues with the next error that needs to be handled. You can

use a SKIP with a loop string to skip the statements of an outer loop statement.

This will break away from the OnError clause as described above.

Chapter 8. Execution Statements 124

What to do with

an error

For each error, the error handling code will decide whether to handle that error

itself, let another handler handle the error, or ignore the error (as was already

illustrated in the example above).

Handling an

error inside a

handler

Errors may also occur during the execution of the OnError clause or of a BLOCK

statement or the global error handling procedure. These errors are handled by

the next error handler in the stack of error handlers.

Error collectorWhen an error reaches the handler To Global Collector, it is sent to the Error

and Warning Collector object which collects all errors that have fallen through

the various handlers (if any). Errors in the Error and Warning Collector can be

queried from within the Aimms API or viewed from within the messages/errors

window of the Aimms GUI.

The predeclared

module

ErrorHandling

Errors to be handled can be queried using the following predeclared identifiers

and intrinsic functions from the module ErrorHandling with prefix errh:

� errh::PendingErrors: A predeclared set filled with the numbers of the

errors that can be handled at this point.

� errh::IndexPendingErrors: An index of the above predeclared set.

� error parts: An error is made up of several parts; each of which can be

obtained separately using the intrinsic functions below. Each of the func-

tions below will raise an error of their own if err is not a valid error that

can be handled at that point.

� errh::Severity(err): An element in errh::AllErrorSeverities is

returned indicating the severity of the error.

� errh::Message(err): A string containing the error description is

returned. This string is not empty.

� errh::Category(err): An element in errh::AllErrorCategories is

returned indicating the category of the error.

� errh::Code(err): The element in errh::ErrorCodes that is return-

ed by this function identifies the message code of the error. This

element name may be cryptic; as it is primarily used for identifica-

tion of the error within the Aimms system.

� errh::NumberOfLocations(err): The number of locations relevant

to this error. For compilation errors, there is typically only one rel-

evant location. For an Aimms initialization error there are no rele-

vant locations. For an execution error the positions in all the active

procedures are recorded. For an error during file read, at least the

positions in the data file and the read statement are recorded. Sim-

ilarly, for an error during the generation of a constraint, at least

the constraint and the SOLVE statement are recorded as relevant po-

sitions.

� errh::Node(err,loc): An element in AllSymbols is returned for an

error location inside the model. The optional argument loc defaults

to 1 and should be in the range { 1 .. NumberOfLocations } . The

Chapter 8. Execution Statements 125

element returned by this function is non-empty except for the first

location when reading data from a file.

� errh::Attribute(err,loc): An element in AllAttributeNames.

� errh::Line(err,loc): An integer indicating the line number of the

error in the attribute or file, or 0 if not known.

� errh::Column(err): An integer indicating the column position in

an erroneous line being read from a data file. All errors when read-

ing a data file are reported separately, such that the loc argument

is not applicable.

� errh::Filename(err): A non-empty string is returned when read-

ing from a data file. All errors when reading a data file are reported

separately, and so the loc argument is not applicable.

� errh::Multiplicity(err): An integer indicating the number of oc-

currences of this error. Two errors are considered equal if they

are equal in all of the following parts: Severity, Message, Category,

Code and the first location (if available). The first location is the

location in the file being read when the error occurs during a read

statement, otherwise it is the statement being executed.

� errh::CreationTime(err,fmt): A string representing the creation

time of the first occurrence of the error, formatted according to

time format fmt.

� errh::InsideCategory(err,cat): Returns 1 if the error code of err falls

inside the category cat.

� errh::IsMarkedAsHandled(err): Returns 1 if the error is marked as han-

dled.

� errh::Adapt(err, severity, message, category, code) : The error err is

adapted with the components specified. Besides the mandatory argu-

ment err, there should be at least one other argument.

� errh::MarkAsHandled(err,actually): The error err is marked as handled

if the argument actually is non-zero. Marked errors will not be passed

to the next error handler. The default of the optional argument actually

is 1. Using 0 will remove the mark from the error.

The log file

aimms.err

Aimms logs all errors and warnings to the file aimms.err as they are raised. The

folder in which this file resides is controlled by the option Listing and tem-

porary files. The number of backups retained of this file is controlled by the

option Number of log file backups.

8.4.2 Raising errors and warnings

Raising errorsThe RAISE statement is used to

� raise an error regarding a situation that cannot be handled, or to

� raise a warning regarding a situation that can be handled but might war-

rant further investigation.

Chapter 8. Execution Statements 126

The syntax of the RAISE statement is straightforward.

Syntaxraise-statement :

RAISE

WARNING

ERROR string-expression CODE element-expression

WHEN expression ;

ExampleIn the following example an error is raised when the inflow of a node exceeds

its capacity.

if inflow > stockCap then

RAISE ERROR "Inflow exceeds stock capacity" CODE ’TooMuchInflow’ ;

endif ;

Error code and

category

In order to enable an error handler to recognize the type of error being raised

by a RAISE statement, that statement allows an optional error code to be spec-

ified. This is an element in the set errh::ErrorCodes. If the specified element

does not yet exist, it is created and added to that set. The category of an error

raised by the RAISE statement is fixed to ’User’.

Position

information

Aimms uses the line/procedure in which the RAISE statement is specified as

the position information associated with the error. This permits the mes-

sages/errors window to open the attribute window of the procedure and place

the cursor on the statement where the problematic situation is detected.

Raising

warnings

Not only Aimms itself but also procedures written in Aimms may recognize

situations that can be handled but might warrant closer inspection by the ap-

plication user. For this purpose, the RAISE statement can raise a warning, for

example:

if card(RawMaterialTraders) = 0 then

RAISE WARNING "There are no raw material traders, this may lead to " +

"infeasibilities in the case of too many accepted deliveries." ;

endif ;

The handling of warnings generated by a RAISE statement is controlled by the

option Warning user, with default common warning default. The control of warn-

ing handling is further explained in Subsection 8.4.4.

Chapter 8. Execution Statements 127

8.4.3 Legacy: intrinsics with a return status

Legacy situationAimms external procedures and intrinsic procedures can both return a status

code indicating whether or not they were successful. A return value ≤ 0.0

is interpreted as not successful, wheareas a return value > 0.0 is successful.

In addition, when they are not successful, the error message is often left in

CurrentErrorMessage, although this is only a guideline. The return value of a

call to an intrinsic procedure is either

� checked: As illustrated in the example:

retval := PageOpen(...) ;

if retval <= 0 then

... use CurrentErrorMessage ...

endif ;

� not checked: As illustrated in the example:

PageOpen(...) ;

Available error

handling

methods

In the context of the error handling facility available in Aimms, how should one

handle the “checked” and “not checked” procedure calls when the return value

is 0 and these procedures have not raised an error themselves? There are five

error handling methods available to choose from:

� ignore: An error is never raised for an error occurring inside such a

procedure, whether or not the return status is checked.

� raise warning when not checked: A warning is only raised if the return

status of an intrinsic procedure is not checked.

� raise when not checked: An error is only raised if the return status of an

intrinsic procedure is not checked.

� raise always warning: A warning is raised whether or not the return sta-

tus is checked.

� raise always: An error is raised whether or not the return status is

checked.

Which choice of error handling method is best depends on the application and

can be controlled using the options:

� Intrinsic procedure error handling: for procedures with a return sta-

tus supplied by Aimms and

� External procedure error handling: for externally supplied procedures.

The values of these options are the names of the error handling methods de-

scribed above. The default of both these options is raise when not checked. For

projects created prior to the introduction of the error handling facilities in

Aimms (i.e. created in Aimms 3.9 or lower), these options generate the non-

default value raise warning when not checked in order to notify the model de-

veloper but do not change the existing behavior of such projects significantly.

Chapter 8. Execution Statements 128

8.4.4 Warnings

WarningsAimms recognizes and warns about several types of possibly problematic sit-

uations. These situations might warrant further investigation. As with most

other languages, Aimms warns against the use of identifiers before initializing

them. But unlike other languages, Aimms also warns against the inconsistent

use of units of measurement (such as a comparison of a volume against a

weight), or of model formulations for which Aimms can detect either com-

piletime or runtime issues that lead to sub-optimal performance or ambigu-

ous results. A selection of performance-related warnings is discussed in Sec-

tion 13.2.8.

Complete

flexibility

The desired handling of each of these situations depends on the developer

and the application; varying from treating it as an error to fully ignoring it. To

permit complete flexibility, there is separate option to control the reporting of

each type of problematic situation recognized.

Grouping

Warning

options

Although all warnings can be controlled individually, this is not the most con-

venient way to employ the diagnostics provided by these warnings. When en-

tertaining a new idea (quick prototyping), most modelers understandably do

not want to be bothered by various warnings and want to be able to turn them

all off. To facilitate this, all the warnings have been grouped into either com-

mon or strict warnings, and the associated options assume default value for

common and strict warnings. Thus, all diagnostic warnings can be switched

off by just changing the options that control these defaults. For normal de-

velopment work it is advisable to at least turn the common warnings on. In

addition, we would encourage to turn on the strict warnings during application

tests.

Choosing the

option setting

In order to implement the above scheme and still permit full flexibility, each

option controlling the detection of a type of problematic situation can take on

one of the following values:

� error: The situation is marked as an error and treated as an error.

� warning handle: The warning is raised in the current error handler, but

does not count toward the interruption of normal execution.

� common warning default: The value of the option Common warning default

is used.

� warning collect: The warning is raised in the Global error collector,

bypassing the stack of error handlers.

� strict warning default: The value of the option Strict warning default

is used.

� off: The warning is ignored.

Chapter 8. Execution Statements 129

The default of these options is either common warning default or strict warning-

default, thereby effectively dividing these options into common and strict

groups. The range of options for common warning default and strict warning -

default is {off, warning collect, warning handle, error}. The default of the

option common warning default is warning handle and the default of the option

strict warning default is off.

8.5 The OPTION and PROPERTY statements

OptionsOptions are directives to Aimms or to the solvers to execute a task in a par-

ticular manner. Options have a name and can assume a value that is either

numeric or string-valued. You can modify the value of an option from within

the graphical interface. The assigned value is stored along with the project. All

global options are set to their stored values at the beginning of each session.

During execution you can change option settings using the OPTION statement.

Syntaxoption-statement :

OPTION option := expression

,

;

You can find a complete list of global options for Aimms and its solvers in the

help system.

Option valuesThe right-hand side of an OPTION statement must be a scalar expression of the

proper type. If the option expects a string value, Aimms will accept both string-

or element-valued expressions. An example follows.

option Bound_Tolerance := 1.0e-6,

Iteration_Limit := UserSettings(’IterationLimit’);

Solver optionsSome solver options are available for more than one solver. If you modify such

a solver option per se, Aimms will modify the option for all solver that support

it. If you want to restrict the change to only a single solver, you can prefix the

option name by the name of the solver followed by a dot “.”, as illustrated in

the example below.

option ’Cplex 12.9’.lp_method := ’dual simplex’;

This statement will set the option lp method of the solver that is known to

the system as ’Cplex 12.9’ equal to ’dual simplex’. The solver name can be

either a quoted solver name, or an element parameter into the predefined set

AllSolvers.

Chapter 8. Execution Statements 130

Identifier

properties

Identifier properties can be turned on or off. All properties default to off,

unless they are turned on—either in the declaration of the identifier or in a

PROPERTY statement. During the execution of your model you can dynamically

change the default values of properties through the PROPERTY execution state-

ments.

Syntaxproperty-statement :

PROPERTY identifier . property :=

on

off

,

;

Resetting

properties

The properties of all identifier types can be found in the identifier declaration

sections. Not all property settings can be changed, e.g. you cannot dynamically

change the Input or Output property of arguments of functions and procedures.

In such cases, Aimms will produce a runtime error. An example of the PROPERTY

statement follows.

if (Card(Cities) > 100) then

property IntermediateTransport.NoSave := on;

endif;

Once the set of Cities contains more than 100 elements, the identifier Interme-

diateTransport is no longer saved as part of a case file.

Multiple

identifiers

When the PROPERTY statement is applied to an index into a subset of the prede-

fined set AllIdentifiers, Aimms will change the corresponding property for all

identifiers in that subset.

ExampleThe following example illustrates how the PROPERTY statement can be used to

obtain additional sensitivity data for a set SensitivityVariables of (symbolic)

variables that has been previously determined.

for (var in SensitivityVariables) do

property var.CoefficientRanges := on;

endfor;

Here, you request Aimms to determine the smallest and largest values for the

objective coefficient of each variable in SensitivityVariables during the exe-

cution of a SOLVE statement such that the optimal basis remains constant (see

also Section 14.1.2).

Chapter 9

Index Binding

This chapterThis chapter presents the index binding rules implemented in Aimms. These

rules play an essential role during most repetitive set operations. For standard

situations Aimms behaves as expected. You should read this chapter if you are

interested in a formal discussion of the rules of the underlying semantics.

9.1 Binding rules

Repetitive

operations

During execution, indices are used to traverse a set to repeatedly apply a spe-

cific operation on all elements of a set. These operations concern

� indexed assignment statements,

� FOR statements,

� iterative operations like summation over a domain,

� constraint generation,

� arc generation, and

� constructed set expression.

Index bindingIndex binding is the process by which Aimms repeatedly couples the value of

an index to elements of a specific set to execute repetitive operations.

Different types

of binding

There are three ways in which index binding takes place:

� local binding,

� default binding, and

� context binding.

Local bindingLocal binding takes place through the use of an IN modifier at the index binding

position as illustrated in the following example.

NettoTransport(i in SupplyCities, j in DestinationCitiesFromSupply(i)) :=

Transport(i,j) - Transport(j,i);

Instead of executing the assignment for all cities i and j, it is only executed

for those combinations for which city i is in SupplyCities and city j is in

DestinationCitiesFromSupply(i).

Chapter 9. Index Binding 132

Default bindingIndices can have a default binding. This is the binding specified in a declara-

tion. You can specify a default binding either via the Index attribute of a set,

or via the Range attribute of an Index declaration. Whenever you use an index

with a default binding and do not specify a local binding, Aimms will couple

this index to its default set automatically. The following example illustrates

default binding.

IntermediateTransportCitiesInBetween(i,j) :=

DestinationCitiesFromSupply(i) * SupplyCitiesToDestination(j);

Assuming that i and j have a default binding to the set Cities, the assignment

takes place for all tuples of cities (i,j).

Context bindingWhenever you use an index that has no default binding and for which you

do not provide a local binding, Aimms will try to determine a context binding

from the context. Assume that k is an index without a default binding. Further

assume that LargestTransport is an element parameter into Cities and indexed

over Cities. Then the following example is an illustration of context binding.

LargestTransport(k) := ArgMax(j, Transport(k,j));

In this assignment Aimms will automatically bind the index k to Cities, be-

cause the identifier LargestTransport has been declared with the index domain

Cities. Note that context binding will only work in indexed assignments.

Nested index

binding

Index binding can be nested through the use of indexed element-valued param-

eters on the left-hand side of an assignment. The binding takes place in the

way that you would expect, applying the same rules as for non-nested index

binding. For example, given the declarations

ElementParameter NextCity {

IndexDomain : i;

Range : Cities;

}

ElementParameter PreviousCity {

IndexDomain : i;

Range : Cities;

}

the following assignment, which computes the value of PreviousCity given the

contents of NextCity, will bind the nested reference to the index i.

PreviousCity(NextCity(i)) := i;

This binding is sparse, in the sense that the statement is only executed for

those i for which NextCity(i) assumes a nonempty value.

Chapter 9. Index Binding 133

Compatible

index binding

only

In general, Aimms will never accept the use of an index in references to indexed

identifiers when the binding set does not have the same root set as the index

domain of the identifier. This is even the case when the elements, referenced

in the particular statement, have identical names in both the binding set and

the index domain. Internally, Aimms stores a set elements as a unique (integer)

number with respect to its root set, and uses this number for storing data for

that element in indexed identifiers. Thus, when the root sets of the binding

set and the index domain are not identical, the set element numbers will be

incompatible, preventing Aimms from referencing the correct data.

Use indirect

referencing

When you want to use a binding set which is incompatible with the index do-

main of identifier on the left-hand side of an assignment, you should manually

create an element parameter which maps elements in one root to the corre-

sponding elements the other root set. Such a mapping can be easily created

using the function ElementCast (discussed in Section 5.2.1), as exemplified be-

low.

ElementMap(i) := ElementCast(IncompatibleRootSet, i);

Subsequently, you can use a nested binding through the element parameter

ElementMap to reference elements in the index domain of the identifier on the

left-hand side of an assignment, while still using the index i as a binding index,

as illustrated in the following statement.

IncompatibleParameter(ElementMap(i)) := CompatibleParameter(i);

Use the

ElementCast

function

Conversely, when you want to use an incompatible set element in a parame-

ter reference on the right-hand side of an assignment, there is no direct need

to create a mapping parameter. In an expression on the right of an assign-

ment, you can use the function ElementCast directly at any index position, as

illustrated below.

CompatibleParameter(i) := IncompatibleParameter(ElementCast(IncompatibleRootSet, i));

Universal setNote that you could have accomplished the same effect by creating a universal

set of which all other sets are subsets. As a result, all set elements are repre-

sented as unique integer numbers with respect to the same root set, allowing

the index domains of all identifiers to be referenced in a compatible manner.

However, often it is not very natural to do so, and the usage of a universal set

is likely to slow down the performance of Aimms.

Index binding

rules

For most situations the result of index binding is self-evident and the behavior

of the system is as you would expect. Following are the precise rules for index

binding.

� Dominance rule: Whenever index binding takes place, local binding pre-

cedes default binding, which in turn precedes context binding. If no

method is applicable, a compile time error will result.

Chapter 9. Index Binding 134

� Intersection rule: In indexed assignments the binding set(s) should be

compatible with the index domain. The assignment will be performed for

all tuples on the left-hand side that lie in the intersection of the binding

set(s) and the index domain of the corresponding identifier.

� Ordering rule: Lag and lead operators, as well as the Ord and Element

functions operate according to the order of elements in the correspond-

ing binding set.

Chapter 10

Procedures and Functions

Functions and

procedures

Functions and procedures are pieces of execution code dedicated to a specific

task that can be called either from within the graphical end-user interface or

from within the model text. Both functions and procedures in Aimms can

have arguments. A function returns either a scalar value or an indexed set of

values, and can be used inside expressions. Procedures are more general than

functions in that they can have both multiple inputs and outputs. A procedure

invocation is a single statement in Aimms, and can be used to modify the values

of global identifiers.

Procedures for

initiating

execution

Any computation that is part of your application must be started from within

a procedure. For simple applications, execution from within the predefined

procedure MainExecution is usually sufficient to perform all tasks. However, in

more complicated applications there are often many entry points, and these

can best be implemented as separate procedures.

This chapterThis chapter describes how to construct and use procedures and functions in

the Aimms language. Such procedures and functions are called internal. In

Chapter 11 you will find additional material on how to link external functions

and procedures written in Fortran and C to your application.

10.1 Internal procedures

Aimms and

internal

procedures

Internal procedures are pieces of execution code to perform a dedicated task.

For most tasks, and particularly large ones, it is strongly recommended that

you use procedures to break your task into smaller, purpose-specific tasks.

This provides code structure which is easier to maintain and run. Often it

is appropriate to write procedures to obtain input data from users, databases

and files, to execute data consistency checks, to perform side computations, to

solve a mathematical program, and to create selected reports. Procedures can

be called both inside the model text and inside the graphical user interface.

Chapter 10. Procedures and Functions 136

Declaration and

attributes

Procedures are added by inserting a special type of node in the model tree.

The attributes of a Procedure specify its arguments and execution code. All

possible attributes of a Procedure node are given in Table 10.1.

Attribute Value-type See also

page

Arguments argument-list

Property UndoSafe

Body statements 102

Comment comment string

Table 10.1: Procedure attributes

Formal

arguments

The arguments of a procedure are given as a parenthesized, comma-separated

list of formal argument names. These argument names are only the formal

identifier names without reference to their index domains. Aimms allows for-

mal arguments of the following types:

� simple sets and relations, and

� scalar and indexed parameters (either element-valued, string-valued or

numerical).

The type and dimension of every formal argument is not part of the argument

list, and must be specified as part of the argument’s (mandatory) local decla-

ration in a declaration subnode of the procedure.

Interactive

support

When you add new formal arguments to a procedure in the Aimms Model Ex-

plorer, Aimms provides support to automatically add these arguments as local

identifiers to the procedure. For all formal arguments which have not yet been

declared as local identifiers, Aimms will pop up a dialog box to let you choose

from all supported identifier types. After finishing the dialog box, all new ar-

guments will be added as (scalar) local identifiers of the indicated type. When

an argument is indexed, you still need to add the proper IndexDomain manually

in the attribute form of the argument declaration.

Range checkingIf the declaration of a formal argument of a procedure contains a numerical

range, Aimms will automatically perform a range check on the actual argu-

ments based on the specified range of the formal argument.

Input or outputIn the declaration of each argument you can specify its type by setting one of

the properties

� Input,

� Output,

Chapter 10. Procedures and Functions 137

� InOut (default), or

� Optional.

Aimms passes the values of any Input and InOut arguments when entering the

procedure, and passes back the values of Output and InOut arguments. For this

reason an actual Input argument can be any expression, but actual Output and

InOut arguments must be parameter references or set references.

Optional

arguments

An argument can be made optional by setting the property Optional in its

declaration. Optional arguments are always input, and must be scalar. When

an optional argument is not provided in a procedure call, Aimms will pass its

default value as specified in its declaration.

The Body

attribute

In the Body attribute you can specify the sequence of Aimms execution state-

ments that you want to be executed when the procedure is run. All statements

in the body of a procedure are executed in their order of appearance.

ExampleThe following example illustrates the declaration of a simple procedure in

Aimms. The body of the procedure has only been outlined.

Procedure ComputeShortestDistance {

Arguments : (City, DistanceMatrix, Distance);

Comment : {

"This procedure computes the distance along the shortest path

from City to any other city j, given DistanceMatrix."

}

Body: {

Distance(j) := DistanceMatrix(City,j);

for (j | not Distance(j)) do

/*

* Compute the shortest path and the corresponding distance

* for cities j without a direct connection to City.

*/

endfor

}

}

The procedure ComputeShortestDistance has three formal arguments, which

must be declared in a declaration subnode of the procedure. Their declara-

tions within this subnode could be as follows.

ElementParameter City {

Range : Cities;

Property : Input;

}

Parameter DistanceMatrix {

IndexDomain : (i,j);

Property : Input;

}

Parameter Distance {

IndexDomain : j;

Property : Output;

}

Chapter 10. Procedures and Functions 138

From these declarations (and not from the argument list itself) Aimms can

deduce that

� the first actual (input) argument in a call to ComputeShortestDistance must

be an element of the (global) set Cities,

� the second (input) argument must be a two-dimensional parameter over

Cities× Cities, and

� the third (output) arguments must be a one-dimensional parameter over

Cities.

Arguments

declared over

global sets

As in the example above, arguments of procedures can be indexed identifiers

declared over global sets. An advantage is that no local sets need to be defined.

A disadvantage is that the corresponding procedure is not generic. Procedures

with arguments declared over global sets are preferred when the procedure is

uniquely designed for the application at hand, and direct references to global

sets add to the overall understandability and maintainability.

Arguments

declared over

local sets

The index domain or range of a procedure argument need not always be de-

fined in terms of global sets. Also sets that are declared locally within the

procedure can be used as index domain or range of that procedure. When a

procedure with such arguments is called, Aimms will examine the actual argu-

ments, and pass the global domain set to the local set identifier by reference.

This allows you to implement procedures performing generic functionality for

which a priori knowledge of the index domain or range of the arguments is not

relevant.

Local sets are

read-only

When you pass arguments defined over local sets, Aimms does not allow you to

modify the contents of these local sets during the execution of the procedure.

Because such local sets are passed by reference, this will prevent you from

inadvertently modifying the contents of the global domain sets. When you do

want to modify the contents of the global domain sets, you should pass these

sets as explicit arguments as well.

Unit analysis of

arguments

Whenever your model contains one or more Quantity declarations (see Sec-

tion 32.2), Aimms allows you to associate units of measurements with every

argument. Similarly as the index domains of multidimensional arguments can

be expressed either in terms of global sets, or in terms of local sets that are

determined at runtime, the units of measurements of function and procedure

arguments can also be expressed either in terms of globally defined units, or in

terms of local unit parameters that are determined runtime by Aimms. The unit

analysis of procedure arguments is discussed in full detail in Section 32.4.1.

Chapter 10. Procedures and Functions 139

Local identifiersBesides the arguments, you can also declare other local scalar or indexed iden-

tifiers in a declaration subnode of a procedure or function in Aimms. Local

identifiers cannot have a definition, and their scope is limited to the procedure

or function itself.

The property

RetainsValue

For each local identifier of a procedure or function that is not a formal argu-

ment, you can specify the option RetainsValue. With it you can indicate that

such a local identifier must retain its last assigned value between successive

calls to that procedure or function. You can use this feature, for instance, to

retain local data that must be initialized once and can be used during every

subsequent call to the procedure, or to keep track of the number of calls to a

procedure.

Execution

subnodes

In addition to Aimms execution statements, you can include references to

(named) execution subnodes to the body of a procedure. Aimms supports

several types of execution subnodes. They can either contain just execution

statements or provide a graphical input form for complicated statements like

the READ, WRITE and SOLVE statement. The contents of the execution subnodes

will be expanded by Aimms into the body of the procedure at the position of

their references.

Top-down

implementation

By partitioning the body of a long procedure into several execution subnodes,

you can effectively implement the procedure in a self-documenting top-down

approach. While the body can just contain the outermost structure of the pro-

cedure’s execution, the implementation details can be hidden behind subnode

references with meaningful names.

The RETURN

statement

In some situations, you may want to return from a procedure or function be-

fore the end of its execution has been reached. You use the RETURN statement

for this purpose. It can be subject to a conditional WHEN clause similar to the

SKIP and BREAK statements in loops. The syntax follows.

Syntaxreturn-statement :

RETURN return-value WHEN logical-expression ;

Return valueProcedures in Aimms can have an (integer) return value, which you can pass by

means of the RETURN statement. You can use the return value only in a limited

sense: you can assign it to a scalar parameter, or use it in a logical condition in,

for instance, an IF statement. You cannot use the return value in a compound

numerical expression. For more details, refer to Section 10.3.

Chapter 10. Procedures and Functions 140

The Property

attribute

In the Property attribute of internal procedures you can specify a single prop-

erty, UndoSafe. With the UndoSafe property you can indicate that the procedure,

when called from a page within the graphical end-user interface of a model,

should leave the stack of end-user undo actions intact. Normally, procedure

calls made from within the end-user interface will clear the undo stack, be-

cause such calls usually make additional modifications to (global) data based

on end-user edits.

Procedures

summarized

The following list summarizes the main characteristics of Aimms procedures.

� The arguments of a procedure can be sets, set elements and parameters.

� The arguments, together with their attributes, must be declared in a local

declaration subnode.

� The domain and range of indexed arguments can be in terms of either

global or local sets.

� Each argument is of type Input, Output, Optional or InOut (default).

� Optional arguments must be scalar, and you must specify a default value.

Optional arguments are always of type Input.

� Aimms performs range checking on the actual arguments at runtime,

based on the specified range of the formal arguments.

10.2 Internal functions

Similar to

procedures

The specification of a function is very similar to that of a procedure. The

following items provide a summary of their similarities.

� Arguments, together with their attributes, must be declared in a local

declaration subnode.

� The domain and range of indexed arguments can be in terms of either

global or local sets.

� The units of arguments can be expressed in terms of globally defined

units of measurement, or in locally defined unit parameters.

� Optional arguments must be scalar, and you must specify a default value.

� Aimms performs range checking on the actual arguments at runtime.

� Both functions and procedures can have a RETURN statement.

There are

differences

There are also differences between a function and a procedure, as summarized

below:

� Functions return a result that can be used in numerical expressions. The

result can be either scalar-valued or indexed, and can have an associated

unit of measurement.

� Functions cannot have side effects either on global identifiers or on their

arguments, i.e. every function argument is of type Input by definition.

Chapter 10. Procedures and Functions 141

Not allowed in

constraints

Aimms only allows the (possibly multi-dimensional) result of a function to be

used in constraints if none of the function arguments are variables. Allow-

ing function arguments to be variables, would require Aimms to compute the

Jacobian of the function with respect to its variable arguments, which is not

a straightforward task. External functions in Aimms do support variables as

arguments (see also Section 11.4).

Example: the

Cobb-Douglas

function

The Cobb-Douglas (CD) function is a scalar-valued function that is often used

in economical models. It has the following form:

q = CD(a1,...,ak)(c1, . . . , ck) =
∏

f

c
af
f ,

where

q is the quantity produced,

cf is the factor input f ,

af is the share parameter satisfying af ≥ 0 and
∑
f af = 1.

In its simplest form, the declaration of the Cobb-Douglas function could look

as follows.

Function CobbDouglas {

Arguments : (a,c);

Range : nonnegative;

Body : {

CobbDouglas := prod[f, c(f)ˆa(f)]

}

}

The arguments of the CobbDouglas function must be declared in a local decla-

ration subnode. The following declarations describe the arguments.

Set InputFactors {

Index : f;

}

Parameter a {

IndexDomain : f;

}

Parameter c {

IndexDomain : f;

}

Function

attributes

The attributes of functions are listed in Table 10.2. Most of them are the same

as those of procedures.

Returning the

result

By providing an index domain to the function, you indicate that the result of

the function is multidimensional. Inside the function you can use the function

name with its indices as if it were a locally defined parameter. The result of

the function must be assigned to this ‘parameter’. As a consequence, the body

of any function should contain at least one assignment to itself to be useful.

Chapter 10. Procedures and Functions 142

Attribute Value-type See also

page

Arguments argument-list

IndexDomain index-domain 42

Range range 43

Unit unit-expression 45

Property RetainsValue

Body statements 102

Comment comment string

Table 10.2: Function attributes

Note that the RETURN statement cannot have a return value in the context of a

function body.

The Range

attribute

Through the Range attribute you can specify in which numerical, set, element or

string range the function should assume its result. If the result of the function

is numeric and multidimensional, you can specify a range using multidimen-

sional parameters which depend on all or only a subset of the indices specified

in the IndexDomain of the function. This is similar as for parameters (see also

page 43). Upon return from the function, Aimms will verify that the function

result lies within the specified range.

The Unit

attribute

Through the Unit attribute of a function you can associate a unit with the func-

tion result. Aimms will use the unit specified here during the unit consistency

check of each assignment to the result parameter within the function body,

based on the units of the global identifiers and function arguments that are

referenced in the assigned expression. In addition, Aimms will use the value of

the Unit attribute during unit consistency checks of all expressions that con-

tain calls to the function at hand. You can find general information on the use

of units in Chapter 32. Section 32.4.1 focusses on unit consistency checking

for functions and procedures.

Chapter 10. Procedures and Functions 143

Example:

computing the

shortest

distance

The procedure ComputeShortestDistance discussed in the previous section can

also be implemented as a function ShortestDistance, returning an indexed re-

sult. In this case, the declaration looks as follows.

Function ShortestDistance {

Arguments : (City, DistanceMatrix);

IndexDomain : j;

Range : nonnegative;

Comment : {

"This procedure computes the distance along the shortest path

from City to any other city j, given DistanceMatrix."

}

Body : {

ShortestDistance(j) := DistanceMatrix(City,j);

for (j | not ShortestDistance(j)) do

/*

* Compute the shortest path and the corresponding distance

* for cities j without a direct connection to City.

*/

endfor

}

10.3 Calls to procedures and functions

Consistency

with prototype

Functions and procedures must be called from within Aimms in accordance

with the prototype as specified in their declaration. For every call to a function

or procedure, Aimms will verify not only the number of arguments, but also

whether the arguments and result are consistent with the specified domains

and ranges.

Example

procedure call

Consider the procedure ComputeShortestDistance defined in Section 10.1. Fur-

ther assume that DistanceMatrix and ShortestDistanceMatrix are two-dimen-

sional identifiers defined over Cities× Cities. Then the following assignment

illustrates a valid procedure call.

for (i) do

ComputeShortestDistance(i, DistanceMatrix, ShortestDistanceMatrix(i,.)) ;

endfor;

As you will see later on, the “.” notation used in the third argument is a short-

hand for the corresponding domain set. In this instance, the corresponding

domain set of ShortestDistanceMatrix(i,.) is the set Cities.

Domain

checking of

arguments

In analyzing the resulting domains of the arguments, Aimms takes into account

the following considerations.

� Due to the surrounding FOR statement the index i is bound, so that the

first argument is indeed an element in the set Cities.

Chapter 10. Procedures and Functions 144

� The second argument DistanceMatrix is provided without an explicit do-

main. Aimms will interpret this as offering the complete two-dimensional

identifier DistanceMatrix. As expected, the argument is defined over

Cities× Cities.

� Because of the binding of index i, the third argument ShortestDistance-

Matrix(i,.) results into the (expected) one-dimensional slice over the set

Cities in which the result of the computation will be stored.

Thus, the domains of the actual arguments coincide with the domains of the

formal arguments, and Aimms can correctly compute the result.

Example

function call

Now consider the function ShortestDistance defined in Section 10.1. The fol-

lowing statement is equivalent to the FOR statement of the previous example.

ShortestDistanceMatrix(i,j) := ShortestDistance(i, DistanceMatrix)(j) ;

In this example index binding takes place through the indexed assignment.

Per city i Aimms will call the function ShortestDistance once, and assign the

one-dimensional result (indexed by j) to the one-dimensional slice Shortest-

DistanceMatrix(i,j).

Call syntaxThe general forms of procedure and function calls are identical, except that a

function reference can have additional indexing.

procedure-call :

procedure (tagged-argument

,

)

function-call :

function (tagged-argument

,

) (element-expression

,

)

Actual

arguments

Each actual argument can be

� any type of scalar expression for scalar arguments, and

� a reference to an identifier slice of the proper dimensions for non-scalar

arguments.

Actual arguments can be tagged with their formal argument name used inside

the declaration of the function or procedure. The syntax follows.

Chapter 10. Procedures and Functions 145

tagged-argument :

arg-tag : actual-argument

actual-argument :

identifier-slice

set-expression

expression

identifier-slice :

identifier-part (set-expression

.

,

)

Scalar and set

arguments

For scalar and set arguments that are of type Input you can enter any scalar or

set expression, respectively. Scalar and set arguments that are of type InOut or

Output must contain a reference to a scalar parameter or set, or to a scalar slice

of an indexed parameter or set. The latter is necessary so that Aimms knows

where to store the output value.

No slices of

indexed sets

Note that Aimms does not allow you to pass slices of an indexed set as a set

arguments to functions and procedures. If you want to pass the contents

of a slice of an indexed set as an argument to a procedure or function, you

should assign the contents to a simple (sub)set instead, and pass that set as

an argument.

Multi-

dimensional

arguments

For multidimensional actual arguments Aimms only allows references to iden-

tifiers or slices thereof. Such arguments can be indicated in two manners.

� If you just enter the name of a multidimensional identifier, Aimms as-

sumes that you want to pass the fully dimensioned data block associated

with the identifier.

� If you enter an identifier name plus

– a “.”,

– a set element, or

– a set expression

at each position in the index domain of the identifier, Aimms will pass

the corresponding identifier slice or subdomain.

The “.” notationWhen passing slices or subdomains of a multidimensional identifier argument,

you can use the “.” shorthand notation at a particular position in the in-

dex domain. With it you indicate that Aimms should use the correspond-

ing domain set of the identifier at hand at that index position. Recall the

argument ShortestDistanceMatrix(i,.) in the call to the procedure Compute-

ShortestDistance discussed at the beginning of this section. As the index do-

Chapter 10. Procedures and Functions 146

main of ShortestDistanceMatrix is the set Cities × Cities, the “.” reference

stands for a reference to the set Cities.

SlicingBy specifying an explicit set element or an element expression at a certain in-

dex position of an actual argument, you will decrease the dimension of the

resulting slice by one. The call to the procedure ComputeShortestDistance dis-

cussed earlier in this section illustrates an example of an actual argument con-

taining a one-dimensional slice of a two-dimensional parameter.

Dimensions

must match

Note that Aimms requires that the dimensions of the formal and actual argu-

ments match exactly.

SubdomainsBy specifying a subset expression at a particular index position of an indexed

argument, you indicate to Aimms that the procedure or function should only

consider the argument as defined over this subdomain.

ExampleConsider the Cobb-Douglas function discussed in the previous section, and

assume the existence of a parameter a(f) and a parameter c(f), both defined

over a set Factors. Then the statement

Result := CobbDouglas(a,c) ;

will compute the result by taking the product of exponents over all factors

f. If SubFactors is a subset of Factors, satisfying the condition on the share

parameter a(f), then the following call will compute the result by only taking

the product over factors f in the subset SubFactors.

Result := CobbDouglas(a(SubFactors), c(SubFactors));

Global

subdomains

Whenever a formal argument refers to an indexed identifier defined over global

sets, it could be that an actual argument in a function or procedure call refers

to an identifier defined over a superset of one or more of these global sets. In

this case, Aimms will automatically restrict the domain of the actual argument

to the domain of the formal argument. Likewise, if an index set of an actual

argument is a real subset of the corresponding global index set of a formal

argument, the values of the formal argument, when referred to from within the

body of the procedure, will assume the default value of the formal argument

in the complement of the index (sub)set of actual argument.

Local

subdomains

Whenever a formal argument refers to an indexed identifier defined over local

sets, the domain of the actual argument can be further restricted to a sub-

domain as in the example above. In any case, the (sub)domain of the actual

argument determines the contents of the local set(s) used in the formal argu-

ments. Note that consistency in the specified domains of the actual arguments

is required when a local set is used in the index domain of several formal

arguments.

Chapter 10. Procedures and Functions 147

Tagging

arguments

In order to improve the understandability of calls to procedures and functions

the actual arguments in a reference may be tagged with the formal argument

names used in the declaration. In a procedure reference, it is mandatory to tag

all optional arguments which do not occur in their natural order.

Permuting

tagged

arguments

Tagged arguments may be inserted at any position in the argument list, be-

cause Aimms can determine their actual position based on the tag. The non-

tagged arguments must keep their relative position, and will be intertwined

with the (permuted) tagged arguments to form the complete argument list.

ExampleThe following permuted call to the procedure ComputeShortestDistance illus-

trates the use of tags.

for (i) do

ComputeShortestDistance(Distance : ShortestDistanceMatrix(i,.),

DistanceMatrix : DistanceMatrix,

City : i);

endfor;

Using the return

value

As indicated in Section 10.1 procedures in Aimms can return with an integer

return value. Its use is limited to two situations.

� You can assign the return value of a procedure to a scalar parameter in

the calling procedure. However, a procedure call can never be part of a

numerical expression.

� You can use the return value in a logical condition in, for instance, an IF

statement to terminate the execution when a procedure returns with an

error condition.

You can use a procedure just as a single statement and ignore the return value,

or use the return value as described above. In the latter case, Aimms will first

execute the procedure, and subsequently use the return value as indicated.

ExampleAssume the existence of a procedure AskForUserInputs(Inputs,Outputs) which

presents a dialog box to the user, passes the results to the Outputs argument,

and returns with a nonzero value when the user has pressed the OK button in

the dialog box. Then the following IF statement illustrates a valid use of the

return value.

if (AskForUserInputs(Inputs, Outputs))

then

... /* Take appropriate action to process user inputs */

else

... /* Take actions to process invalid user input */

endif ;

Chapter 10. Procedures and Functions 148

10.3.1 The APPLY operator

Data-driven

procedures

In many real-life applications the exact nature of a specific type of compu-

tation may heavily depend on particular characteristics of its input data. To

accommodate such data-driven computations, Aimms offers the APPLY opera-

tor which can be used to dynamically select a procedure or function of a given

prototype to perform a particular computation. The following two examples

give you some feeling of the possible uses.

Example:

processing

events

In event-based applications many different types of events may exist, each

of which may require an event-type specific sequence of actions to process

it. For instance, a ship arrival event should be treated differently from an

event representing a pipeline batch, or an event representing a batch feeding a

crude distiller unit. Ideally, such event-specific actions should be modeled as

a separate procedure for each event type.

Example:

product

blending

A common action in the oil-processing industry is the blending of crudes

and intermediate products. During this process certain material properties

are monitored, and their computation for a blend require a property-specific

blending rule. For instance, the sulphur content of a mixture may blend lin-

early in weight, while for density the reciprocal density values blend linear

in weight. Ideally, each blending rule should be implemented as a separate

procedure or function.

The APPLY

operator

With the APPLY operator you can dynamically select a procedure or function

to be called. The first argument of the APPLY operator must be the name of

the procedure or function that you want to call. If the called procedure or

function has arguments itself, these must be added as the second and further

arguments to the APPLY operator. In case of an indexed-valued function, you

can add indexing to the APPLY operator as if it were a function call.

RequirementsIn order to allow Aimms to perform the necessary dynamic type checking for

the APPLY operator, certain requirements must be met:

� the first argument of the APPLY operator must be a reference to a string

parameter or to an element parameter into the set AllIdentifiers,

� this element parameter must have a Default value, which is the name of

an existing procedure or function in your model, and

� all other values that this string or element parameter assumes must be

existing procedures or functions with the same prototype as its Default

value.

Chapter 10. Procedures and Functions 149

Example:

processing

events

elaborated

Consider a set of Events with an index e and an element parameter named

CurrentEvent. Assume that each event e has been assigned an event type from

a set EventTypes, and that an event handler is defined for each event type. It

is further assumed that the event handler of a particular event type takes the

appropriate actions for that type. The following declarations illustrates this

set up.

ElementParameter EventType {

IndexDomain : e;

Range : EventTypes;

}

ElementParameter EventHandler {

IndexDomain : et in EventTypes;

Range : AllIdentifiers;

Default : NoEventHandlerSelected;

InitialData : {

DATA { ShipArrivalEvent : DischargeShip,

PipelineEvent : PumpoverPipelineBatch,

CrudeDistillerEvent : CrudeDistillerBatch }

}

}

The Default value of the parameter EventHandler(et), as well as all of the val-

ues assigned in the InitialData attribute, must be valid procedure names in

the model, each having the same prototype. In this example, it is assumed that

the procedures NoEventHandlerSelected, DischargeShip, PumpoverPipelineBatch,

and CrudeDistillerBatch all have two arguments, the first being an element of

a set Events, and the second being the time at which the event has to com-

mence. Then the following call to the APPLY statement implements the call to

an event type specific event handler for a particular event CurrentEvent at time

NewEventTime.

Apply(EventHandler(EventType(CurrentEvent)), CurrentEvent, NewEventTime);

When no event handler for a particular event type has been provided, the de-

fault procedure NoEventHandlerSelected is run which can abort with an appro-

priate error message.

Use in

constraints

When applied to functions, you can also use the APPLY operator inside con-

straints. This allows you, for instance, to provide a generic constraint where

the individual terms depend on the value of set elements in the domain of the

constraint. Note, that such use of the APPLY operator will only work in con-

junction with external functions, which allow the use of variable arguments

(see Section 11.4).

Example:

product

blending

Consider a set of Products with index p, and a set of monitored Properties with

index q. With each property q a blend rule function can be associated such

that the resulting values blend linear in weight. These property-dependent

functions can be expressed by the element parameter BlendRule(q) given by

Chapter 10. Procedures and Functions 150

ElementParameter BlendRule {

IndexDomain : q;

Range : AllIdentifiers;

Default : BlendLinear;

InitialData : {

DATA { Sulphur : BlendLinear,

Density : BlendReciprocal,

Viscosity : BlendViscosity }

}

}

Thus, the computation of the property values of a product blend can be ex-

pressed by the following single constraint, which takes into account the differ-

ing blend rules for all properties.

Constraint ComputeBlendProperty {

IndexDomain : q;

Definition : {

Sum[p, ProductAmount(p) * Apply(BlendRule(q), ProductProperty(p,q))] =

Sum[p, ProductAmount(p)] * Apply(BlendRule(q), BlendProperty(q))

}

}

Depending on the precise computation in the blend rules functions for every

property q, the APPLY operator may result in linear or nonlinear terms being

added to the constraint.

Chapter 11

External Procedures and Functions

Why call

external

procedures

Even though Aimms offers easy-to-use multidimensional data structures com-

bined with a powerful programming language, there are often good reasons to

relay parts of the execution of your model to external procedures and func-

tions written in e.g. C/C++ or Fortran. The capability to call external proce-

dures and functions in your Aimms application allows you

� to re-use existing software (e.g. a library of financial functions, or a col-

lection of accurate, nonlinear process models),

� to speed up selected computations by making use of dedicated data

structures which are difficult to implement in Aimms itself, and

� to provide links to external data sources (e.g. on-line data feeds or pro-

prietary databases).

This chapterThis chapter describes the steps you have to follow for linking libraries of

external procedures and functions to Aimms. Such procedures and functions

can be used to manipulate Aimms data during the execution of a model. In

addition, external libraries may contain functions that can be used inside the

constraints of a nonlinear mathematical program.

11.1 Introduction

Getting startedThe aim of this section is to give you a quick feel for the effort required to

make a link to an external function or procedure through a short illustrative

example linking a C implementation of the Cobb-Douglas function (discussed

in Section 10.2) into an Aimms application. Section 34.1 contains a more elab-

orate example of an external procedure which uses Aimms API functions to

obtain additional information about the passed arguments.

External

procedures and

functions

The interface to external procedures and functions is arranged through special

ExternalProcedure and ExternalFunction declarations which behave just like in-

ternal procedures and functions. Instead of specifying a body to initiate inter-

nal Aimms computations, the execution of external procedures and functions

is relayed to the indicated procedures and functions inside one or more DLL’s.

Chapter 11. External Procedures and Functions 152

The

Cobb-Douglas

function

Consider the Cobb-Douglas function discussed in Section 10.2. Given the cardi-

nality n of the set InputFactors and two arrays a and c of doubles representing

the one-dimensional input arguments of the Cobb-Douglas function (both de-

fined over InputFactors), the following simple C function computes its value.

double Cobb_Douglas(int n, double *a, double *c) {

int i;

double CD = 1.0 ;

for (i = 0; i < n; i++)

CD = CD * pow(c[i],a[i]) ;

return CD;

}

In the sequel it is assumed that this function is contained in a DLL named

"Userfunc.dll".

Linking to

Aimms

In order to make the function available in Aimms you have to declare an

ExternalFunction CobbDouglasExternal, which just relays its execution to the

C implementation of the Cobb-Douglas function discussed above. The decla-

ration of CobbDouglasExternal looks as follows.

ExternalFunction CobbDouglasExternal {

Arguments : (a,c);

Range : nonnegative;

DLLName : "Userfunc.dll";

ReturnType : double;

BodyCall : Cobb_Douglas(card : InputFactors, array: a, array: c);

}

The arguments a and c must be declared in the same way as for the internal

CobbDouglas function discussed on page 141, with the exception that for the

external implementation we will also compute the Jacobian with respect to the

argument c(f). For this reason, the argument c(f) is declared as a Variable.

Set InputFactors {

Index : f;

}

Parameter a {

IndexDomain : f;

}

Variable c {

IndexDomain : f;

}

ExplanationThe translation type “card” of the set argument InputFactors causes Aimms

to pass the cardinality of the set as an integer value to the external function

Cobb_Douglas. The translation type “array” of the arguments a and c are in-

structions to Aimms to pass these arguments as full arrays of double precision

values. As function arguments are always of type Input, Aimms will disregard

any changes made to the arguments by the external function. The double re-

turn value of the C function Cobb_Douglas will become the result of the function

CobbDouglasExternal.

Chapter 11. External Procedures and Functions 153

Calling external

functions

After the declaration of an external function or procedure you can use it as

if it were an internal function or procedure. Thus, to call the external func-

tion CobbDouglasExternal in the body of a procedure the following statement

suffices.

CobbDouglasValue := CobbDouglasExternal(a,c) ;

Of course, any two (possibly sliced) identifiers with single common index do-

main could have been used as arguments. Aimms will determine this common

index domain, and pass its cardinality to the external function.

Use in

constraints

Unlike internal functions, external functions can be called inside constraints.

To accomplish this, the declaration has to be extended with a DerivativeCall

attribute. For this attribute you specify the external call that has to be made

when Aimms also needs the partial derivatives of all variable arguments inside

constraints of mathematical programs. In the absence of a DerivativeCall at-

tribute, Aimms will use a differencing scheme to estimate these derivatives.

The details of using external functions in constraints, as well as the obvious

extension to compute the derivative of the Cobb-Douglas function directly, are

given in Section 11.4.

Setting up

external

libraries

Once you have developed a collection of external functions and procedures,

it may be a good idea to make this available in the form of a library for use

in Aimms applications. In this way, the users of your library do not have to

spend any time translating their Aimms arguments into external arguments of

the appropriate type in the external procedure and function declarations.

Save library as

include file

To provide a library as an entity on its own, you can store all the external

procedures and functions in a separate model section, and save this section as

a source file. The functions and procedures in the library can then be made

available by simply including this source file into a model.

Hiding the

interface

When you want to protect the interface to your external library, you can ac-

complish this by encrypting the include file containing the function library

(see also the Aimms User’s Guide). Thus, the interface to the external library

becomes invisible, effectively preventing misuse of the library outside Aimms.

11.2 Declaration of external procedures and functions

External

procedures and

functions

External procedures and functions are special types of nodes in the model

tree. They have the same attributes as internal procedures and functions with

the exception of the Body and Derivative attributes, which are replaced by the

attributes in Table 11.1.

Chapter 11. External Procedures and Functions 154

Attribute Value-type See also

page

DllName string, file-identifier

ReturnType integer, double

Property FortranConventions, UndoSafe 140

BodyCall external-call

DerivativeCall external-call

Table 11.1: Additional attributes of external procedures and functions

The DllName

attribute

With the mandatory DllName attribute you can specify the name of the DLL

which contains the external procedure or function to which you want to make

a link in your Aimms application. The value of the attribute must be a string,

a string parameter, or a File identifier, representing the path to the external

DLL.

Search pathIf you only specify a DLL name, Aimms will search for the DLL in all directories

in the AIMMSUSERDLL environment variable, and the PATH environment variable on

Windows, or the LD_LIBRARY_PATH environment variables on Linux, respectively.

In addition, on Windows, Aimms will also search for the DLL in the project

folder. If you specify a relative path including a folder (possibly ./), Aimms will

take this path relative to the project folder. If you specify an absolute path,

Aimms will try to open the DLL at the specified location.

File identifier

and unit

conventions

When you use a File identifier to specify an external DLL name, Aimms will use

the Convention attribute of that File identifier (if specified) to pass numeric

values to any procedure or function in that DLL according to the specified unit

convention (see also Section 32.8). When the DLL name has not been specified

through a File identifier, or when its Convention attribute is left empty, Aimms

will use the unit convention specified for the main model.

Default

argument

scaling

Without any such convention, Aimms will use the default convention, i.e. ar-

guments will be scaled according to the unit specified for each argument, and

Aimms will assume that the result of an external function is scaled accord-

ing to the unit specified in its Unit attribute. Unit analysis for functions and

procedures is discussed in full detail in Section 32.4.1.

The ReturnType

attribute

The ReturnType indicates the type of any scalar numerical value returned by

the DLL function. The possible values are integer and double. Aimms will

use the value returned by the DLL function either as the return value of the

ExternalProcedure, or as the (numerical) function value of the ExternalFunction,

whichever is applicable. If you do not specify the ReturnType attribute, Aimms

will discard any value returned by the function.

Chapter 11. External Procedures and Functions 155

Restricted useYou cannot directly use the returned value of a DLL function as the function

value of an ExternalFunction when its return value is either an indexed param-

eter, a set, a set element or a string. In such cases you must pass the function

name as an additional external argument to the DLL function, and specify how

the function value must be dealt with.

ExampleConsider a C function Cobb_Douglas_Arg with prototype

void Cobb_Douglas_Arg(int n, double *a, double *c, double *CDValue);

which passes the Cobb-Douglas function value through the argument CDValue

instead of as the return value. In this example CDValue is a scalar, which could

have been passed as the result of the DLL function as well. The following

ExternalFunction declaration provides a link with Cobb_Douglas_Arg and obtains

its function value via the argument list.

ExternalFunction CobbDouglasArgument {

Arguments : (a,c);

Range : nonnegative;

DllName : "Userfunc.dll";

BodyCall : {

Cobb_Douglas_Arg(card : InputFactors, array: a, array: c,

scalar: CobbDouglasArgument);

}

}

The Property

attribute

With the Property attribute you can specify through the FortranConventions

property whether the external function is based on Fortran calling conven-

tions. By default, Aimms will assume that the DLL function is written in a C-

like languages such as C, C++ or Pascal. The precise differences between both

calling conventions are explained in full detail in Section 11.5. In addition, for

external procedures, you can specify the UndoSafe property. The semantics of

the UndoSafe property is discussed in Section 10.1.

Formal

argument types

As with internal procedures and functions, all formal arguments of an external

procedure or function must be declared as local identifiers. Aimms supports

the following identifier types for formal arguments of external procedures and

functions:

� simple sets and relations,

� scalar and indexed Parameters,

� scalar and indexed Variables (external functions only), and

� Handles (external procedures only).

Chapter 11. External Procedures and Functions 156

Argument

handling

Many details regarding the handling of arguments of internal procedures and

functions also apply to external procedures and functions. Thus, arguments

of external procedures and functions can be defined over global and local sets,

and their associated units of measurement can be specified in terms of either

global units or locally defined unit parameters, completely similar to internal

procedures and functions (see Section 10.1).

Handle

arguments

The Handle identifier type is only supported for formal arguments of external

procedures, i.e. it is not possible to declare global identifiers of type Handle.

The following rules apply:

� Handle arguments are always declared as scalar local identifiers,

� Handle arguments can only be passed to the DLL function as an integer

Handle (see below), and

� the actual argument in a call to the external procedure corresponding to

a formal Handle argument can be a (sliced) reference to an identifier in

your model of any type and of any dimension.

Handle arguments allow you to completely circumvent any type checking on

actual arguments with respect to the dimension and the respective index do-

mains of the corresponding formal arguments in the call to an external proce-

dure. As a result of this, however, the actual data transfer of Handle arguments

to the DLL function must completely take place via the Aimms API (see also

Chapter 34).

The BodyCall

attribute

In the mandatory BodyCall attribute you must specify the call to the DLL proce-

dure or function, to which the execution of the ExternalProcedure or Function

must be relayed. Such an external call specifies:

� the name of the DLL function or procedure that must be called, and

� how the actual Aimms arguments must be translated into arguments suit-

able for the DLL function or procedure.

Any external call must be specified according to the syntax below. In the Model

Explorer, you can specify all components of the BodyCall attribute using a wiz-

ard which will guide you through most of the necessary detail.

Syntaxexternal-call :

DLL-function (external-argument

,

)

Chapter 11. External Procedures and Functions 157

external-argument :

translation-modifier

external-data-type

translation-type : actual-external-argument

Mandatory

translation type

The mandatory translation type indicates the type of the external argument

into which the actual argument must be translated before being passed to the

external procedure. The following translation types are supported.

� scalar: the actual scalar Aimms argument is passed on as a scalar of the

indicated external data type.

� literal: the literal specified in the external call is passed on as a scalar

of the indicated external data type, i.e. a literal argument does never

correspond to an actual Aimms argument, but is specified directly in the

BodyCall attribute.

� array: the Aimms argument is passed on as an array of values according

to the indicated translation type and external data type. The precise

manner in which the translation takes place is discussed below.

� card: the cardinality of a set argument is passed on as an integer value.

The set argument can be either a set passed as an actual Aimms argument

or the domain set of a multi-dimensional parameter passed as an actual

argument.

� handle: an integer handle to a (sliced) set or parameter argument is

passed on. Within the external procedure you must use functions from

the Aimms API (see also Chapter 34) to obtain the dimension, domain

and range associated with the handle, or to retrieve or change its data

values.

� work: an array of the indicated type is passed as a temporary workspace

to the external procedure. The actual argument must be an integer ex-

pression and is interpreted as the size of the array to be passed on. This

translation type is useful for programmers of languages such as standard

F77 Fortran which lack facilities for dynamic memory allocation.

Actual external

argument

The actual external argument specified in an external argument of the BodyCall

attribute can be

� a reference to a formal argument of the ExternalProcedure at hand (for

the scalar, array, card, handle and work translation types),

� a reference to a domain set of a formal multi-dimensional argument of

the ExternalProcedure at hand (for the card translation type), or

� an integer, double or string literal (such as 12345, 123.45 or "This is a

string") directly specified within the BodyCall attribute (for the literal

translation type).

Chapter 11. External Procedures and Functions 158

Input-output

type

For every formal argument of an ExternalProcedure, you can specify its associ-

ated input-output type through the Input, InOut (default) or Output properties

in the Propert attribute of the local argument declaration. With it, you indicate

whether or not Aimms should consider any changes made to the argument by

the DLL function. For each input-output type, Aimms performs the following

actions:

� Input: Aimms initializes the external argument, but discards all changes

made to it by the DLL function,

� InOut: Aimms initializes the external argument, and passes back to the

model the values returned by the DLL function, or

� Output: Aimms allocates memory for the external argument, but does not

initialize it; the values returned by the DLL function are passed back to

the model.

As with internal functions, all ExternalFunction arguments are Input by defi-

nition. The return value of an ExternalProcedure and the function value of an

ExternalFunction are considered as an (implicit) Output argument when passed

to the DLL function as an external argument.

External data

type

In translating Aimms arguments into values (or arrays of values) suitable as

arguments for an external procedure or function, Aimms supports the external

data types listed in Table 11.2.

External data type Passed as

integer 4-byte (signed) integer

double 8-byte double precision floating number

string C-style string

integer8 1-byte (signed) integer

integer16 2-byte (signed) integer

integer32 4-byte (signed) integer

Table 11.2: External data types

Allowed

combinations

Not all combinations of input-output types, translation types and external data

types are supported (or even useful). Table 11.3 describes all allowed combina-

tions, as well as the resulting argument type that is passed on to the external

procedure. The external data types printed in bold are the default, and can

be omitted if appropriate. Throughout the table, the data type integer can be

replaced by any of the other integer types integer8, integer16 or integer32.

Chapter 11. External Procedures and Functions 159

Allowed types

translation input- data Aimms argument Passed as

output

scalar input integer scalar expression integer

double double

string string

inout integer scalar reference integer pointer

output double double pointer

string string

literal — integer — integer

double double

string string

card — — set, parameter integer

array input integer parameter integer array

inout double double array

output

integer element parameter integer array

string set string array

string string/unit parameter string array

handle input — set, parameter, handle integer

inout

output

work — integer integer expression integer array

double double array

Table 11.3: Allowed combinations of translation, input-output and data types

Passing array

arguments

When you are passing a multidimensional Aimms identifier to an external pro-

cedure or function as a array argument, Aimms passes a one-dimensional

buffer in which all values are stored in a manner that is compatible with the

storage of multidimensional arrays in the language which you have specified

through the Property attribute. The precise array numbering conventions for

both C-like and Fortran arrays are explained in Section 11.5.

Encoding of

string

arguments

The strings communicated with your DLL have an encoding. This encoding is

set by the option external string character encoding, which has a default of

UTF8. This option can be overridden by using the Encoding attribute of string

parameters, similar to the Encoding attribute of a File, see Page 497. On Win-

dows, using the encoding UTF-16LE and on Linux, using the encoding UTF-32LE,

the strings are passed as a wchar t* array, otherwise the strings are passed as

a char * array.

Output string

arguments

When you pass a scalar or multidimensional output string argument, Aimms

will pass a single char buffer of fixed length, or an array of such buffers. The

Chapter 11. External Procedures and Functions 160

length is determined by the option external function string buf size. The

default of this option is 2048. You must use the C function strcpy or a similar

function to copy the string data in your DLL to the appropriate char buffer

associated with the output string argument.

Full versus

sparse data

transfer

When considering your options on how to pass a high-dimensional parameter

to an external procedure, you will find that passing it as an array is often not

the best solution. Not only will the memory requirements grow rapidly for

increasing dimension, but also running over all elements in the array inside

your DLL function may turn out to be a very time-consuming process. In such

a case, it is much better practice to pass the argument as an integer handle,

and use the Aimms API functions discussed in Section 34.4 to retrieve only the

nondefault values associated with the handle. You can then set up your own

sparse data structures to deal with high-dimensional parameters efficiently.

Translation

modifiers . . .

In addition to the translation types, input-output types and external data types

you can specify one or more translation modifiers for each external argument.

Translation modifiers allow you to slightly modify the manner in which Aimms

will pass the arguments to the DLL function. Aimms supports translation mod-

ifiers for specifying the precise manner in which

� special values,

� the data associated with handles, and

� set elements,

are passed.

. . . for special

values

When a parameter or variable that you want to pass to an external DLL contains

special values like ZERO or INF, Aimms will, by default, pass ZERO as 0.0, INF

and -INF as ±1.0e150, and will not pass any of the values NA and UNDF. When

you specify the translation modifier retainspecials, Aimms will pass all special

numbers by their internal representation as a double precision floating point

number. You can use the Aimms API functions discussed in Section 34.4 to

obtain the MapVal value (see also Table 6.1) associated with each number. The

translation modifier retainspecials can be specified for numeric arguments

that are passed either as a full array or as an integer handle.

. . . for handlesWhen passing a multidimensional identifier handle to an external DLL, Aimms

can provide several methods of access to the data associated with the handle

by specifying one of the following translation modifiers:

� ordered: the data retrieval functions will pass the data values according

to the particular ordering imposed any of the domain sets of the iden-

tifier associated with the handle. By default, Aimms will use the natural

ordering determined by the data entry order of all domain sets.

Chapter 11. External Procedures and Functions 161

� raw: the data retrieval functions will also pass inactive data (see also

Section 25.3). By default, Aimms will not pass inactive data.

The details of ordered versus unordered and raw data transfer are discussed

in full detail in Section 34.4.

. . . for set

elements

Aimms can pass set elements (in the context of element parameters and sets)

to external procedures in various manners. More specifically, set elements can

be translated into:

� an integer external data type, or

� a string external data type.

When the external data type is string, Aimms will pass the element name for

each set element. Transfer of element names is always input only. In general,

when the external data type is integer, Aimms can pass either

� the ordinal number with respect to its associated subset domain (ordi-

nalnumber modifier), or

� the element number with respect to its associated root set (elementnumber

modifier).

Alternatively, when set elements are passed in the context of a set you can

specify the indicator modifier in combination with the integer external data

type. This will result in the transfer of a multidimensional binary parameter

which indicates whether a particular tuple is or is not contained in the set.

Passing element

parameters

When you pass an element parameter as an integer scalar or array argument,

Aimms will assume the ordinalnumber modifier by default. When passed as

integer, element parameters can be input, output or inout arguments. When

element parameters are passed as string arguments, they can be input only.

When to useElement numbers and ordinal numbers each can have their use within an DLL

function. Element numbers remain identical throughout a modeling session

using a single data set, regardless of addition and deletion of set elements, or

any change in set ordering. For this reason, it is best to use element numbers

when the set elements need to be used in multiple calls of the DLL function.

Ordinal numbers, on the other hand, are the most convenient means for pass-

ing permutations that are used within the current external call only. With it,

you can directly access a permuted reference in other array arguments.

Passing set

arguments

Sets can be passed as array arguments to an external DLL function. When pass-

ing set arguments, you have to make a distinction between one-dimensional

root sets, one-dimensional subsets (both either simple or relation), and multi-

dimensional subsets and indexed sets. The following rules apply.

Chapter 11. External Procedures and Functions 162

Pass as one-

dimensional

array

One-dimensional root sets and subsets can be passed as a one-dimensional

array of length equal to the cardinality of the set. To accomplish this, you can

must pass such a set as

� an array of integer numbers, representing either the ordinal or element

numbers of each element in the set (using the ordinalnumber or element-

number modifier), or

� a string array, representing the names of all elements in the set.

One-dimensional set arguments passed in this manner can only be input argu-

ments. As a specific consequence, you cannot modify the contents of root sets

passed as array arguments.

Pass as

indicator

parameter

You can pass any subset (whether it is simple, relation or indexed) as a mul-

tidimensional integer indicator array defined over its respective domain sets,

indicating whether a particular tuple of domain set elements is contained in

the subset (value equals 1) or not (value equals 0). The dimension of such

indicator parameters is given by the following set of rules:

� the dimension for a simple subset is 1,

� the dimension for a multidimensional relation is the dimension of the

Cartesian product of which the set is a subset,

� the dimension of an indexed set is the dimension of the index domain of

the set plus 1.

Set arguments passed as an indicator argument can be of input, output, or in-

out type. In the latter two cases modifications to the 0-1 values of the indicator

parameter are translated back into the corresponding element memberships of

the subset.

Set argument

defaults

When you pass set arguments to an external DLL, Aimms will assume no default

translation methods when the set is passed as an integer array, as each type

of set does not allow every translation method. For integer set arguments you

should therefore always specify one of the translation modifiers ordinalnumber,

elementnumber or indicator.

Passing set

handles

Sets can also be passed by an integer handle. Aimms offers various API func-

tions (see also Section 34.2) to obtain information about the domain of the set,

its cardinality and elements, and to add or remove elements to the set.

11.3 Win32 calling conventions

Win32 calling

conventions

The 32-bit Windows environment (Win32) supports several calling conventions

that influence the precise manner in which arguments are passed to a function,

and how the return value must be retrieved. When calling an external function

Chapter 11. External Procedures and Functions 163

or procedure in this environment, Aimms will always assume the WINAPI call-

ing convention. The following macro in C makes sure that the WINAPI calling

convention is used. That same macro also makes sure that the function or

procedure is automatically exported from the DLL.

#include <windows.h>

#define DLL_EXPORT(type) __declspec(dllexport) type WINAPI

You can add this macro to the implementation of any function that you want

to call from within Aimms, as illustrated below.

DLL_EXPORT(double) Cobb_Douglas(int n, double *a, double *c)

{

/* Implementation of Cobb_Douglas goes here */

}

Prevent C++

name mangling

By default, C++ compilers will perform a process referred to as name man-

gling, modifying each function name in your source code according to its pro-

totype. By doing this, C++ is able to deal with the same function name defined

for different argument types. If you want to export a DLL function to Aimms,

however, you must prevent name mangling to take place, ensuring that Aimms

can find the exported function name within the DLL. You can do this by declar-

ing the prototype of the function using the following macro, which accounts

for both C and C++.

#ifdef __cplusplus

#define DLL_EXPORT_PROTO(type) extern "C" __declspec(dllexport) type WINAPI

#else

#define DLL_EXPORT_PROTO(type) extern __declspec(dllexport) type WINAPI

#endif

Thus, to make sure that a C++ implementation of Cobb Douglas is exported

without name mangling, declare its prototype as follows before providing the

function implementation.

DLL_EXPORT_PROTO(double) Cobb_Douglas(int n, double *a, double *c);

Function declarations like this are usually stored in a separate header file. Note

that along with this prototype declaration, you must still use the DLL EXPORT

macro in the implementation of Cobb Douglas.

DLL

initialization

When your external DLL requires initialization statements to be executed when

the DLL is loaded, or requires the execution of some cleanup statements when

the DLL is closed, you can accomplish this by adding a function DllMain to your

DLL. When the linker finds a function named DllMain in your DLL, it will exe-

cute this function when opening and closing the DLL. The following example

provides a skeleton DllMain implementation which you can directly copy into

your DLL source code.

Chapter 11. External Procedures and Functions 164

#include <windows.h>

BOOL WINAPI DllMain(HINSTANCE hdll, DWORD reason, LPVOID reserved)

{

switch(reason) {

case DLL_THREAD_ATTACH:

break;

case DLL_PROCESS_ATTACH:

/* Your DLL initialization code goes here */

break;

case DLL_THREAD_DETACH:

break;

case DLL_PROCESS_DETACH:

/* Your DLL exit code goes here */

break;

}

return 1; /* Return 0 in case of an error */

}

To prevent name mangling to take place, you can best declare the function

DllMain as follows.

#ifdef __cplusplus

extern "C" BOOL WINAPI DllMain(HINSTANCE hdll, DWORD reason, LPVOID reserved);

#else

BOOL WINAPI DllMain(HINSTANCE hdll, DWORD reason, LPVOID reserved);

#endif

11.4 External functions in constraints

Variable

arguments

Aimms allows you to use external functions in the constraints of a mathe-

matical program. To accommodate this, Aimms makes a distinction between

function arguments of type Parameter and arguments of type Variable. When

a function is executed as part of an expression in an ordinary assignment,

Aimms makes no distinction between both types of arguments. In the context

of a mathematical program, however, Aimms will provide the solver with the

derivative information for all variable arguments of the function, while it will

not do so for parameter arguments. The actual computation of the derivatives

is explained in the next section.

11.4.1 Derivative computation

Functions in

constraints

Whenever you use external functions with variable arguments in constraints

of a mathematical program, the following rules apply.

� Aimms requires that the mathematical program dependent on these con-

straints be declared as nonlinear.

� All the actual variable arguments must correspond to formal arguments

which have been locally declared as Variables.

If you fail to comply with these rules, a compiler error will result.

Chapter 11. External Procedures and Functions 165

Providing

derivatives

During the solution process of a mathematical program containing such func-

tions, partial derivative information of the function with respect to all the vari-

able arguments must be passed to the solver. Aimms supports three methods

to compute the derivatives of a function:

� you provide the actual statements for computing the derivatives as a part

of the function declaration,

� Aimms estimates the derivatives using a simple differencing scheme.

The

DerivativeCall

attribute

In the DerivativeCall attribute of an external function you can specify the call

to the DLL procedure or function, to which the derivative computation must be

relayed. The syntax of the DerivativeCall attribute is the same as that of the

BodyCall, and is most conveniently completed using the wizard in the Model

Explorer.

Function value

and derivative

If the nonlinear solver only needs a function value, Aimms will simply call the

function specified in the BodyCall attribute. If the nonlinear solver requests

derivative information as well, Aimms will only call the function specified in the

DerivativeCall attribute, and require that this function compute the function

value as well. By combining these two computations in a single call, Aimms

allows you to take advantage of any possible optimization that can be obtained

in your code from computing the function value and derivative at the same

time.

The .Derivative

suffix

For every function argument which is a variable, you must assign the partial

derivative value(s) to the .Derivative suffix of that variable. Note that this

will have an impact on the number of indices. If the result of a block-valued

function is m-dimensional, the derivative information with respect to an n-

dimensional variable argument will result in an (m+n)-dimensional identifier

holding the derivative.

Abstract

example

Consider a function f with an index domain (i1, . . . , im) and a variable argu-

ment x with index domain (j1, . . . , jn). Then the matrix with partial derivatives

of f with respect to the argument x must be provided as assignments to the

suffix x.Derivative(i1, . . . , im, j1, . . . , jn). Each element of this identifier rep-

resents the partial derivative

∂f(i1, . . . , im)

∂x(j1, . . . , jn)

Cobb-Douglas

function

revisited

Consider the Cobb-Douglas function discussed above. Although Aimms is ca-

pable of computing its partial derivatives automatically, you may verify that

the derivative with respect to argument ci can also be written more compactly

as follows:
∂q

∂ci
= ai

ci
CD(c1, . . . , ck)

Chapter 11. External Procedures and Functions 166

Implementation

in C

Consider the following C function Cobb_Douglas_Der which computes the Cobb-

Douglas function and, if required, also the partial derivatives with respect to

the input argument c. The function Cobb_Douglas_No_Der is added to support

computation of the Cobb-Douglas function without derivatives.

double Cobb_Douglas_Der(int n, double *a, double *c, double *c_der) {

int i;

double CD = 1.0 ;

for (i = 0; i < n; i++)

CD = CD * pow(c[i],a[i]) ;

/* Check if derivatives are needed */

if (c_der)

for (i = 0; i < n; i++)

c_der[i] = CD * a[i] / c[i] ;

return CD;

}

double Cobb_Douglas_No_Der(int n, double *a, double *c) {

return Cobb_Douglas_Der(n, a, c, NULL);

}

Always skip

unwanted

derivatives

Note that in the above example the derivative computation is skipped when-

ever the pointer c_der is null. You should always check for this condition

when implementing a derivative computation, because Aimms will pass a null

pointer (and hence reserve no memory for storing the derivative) whenever the

corresponding actual argument is not a variable but a parameter.

. . . in Fortran

code

When an internal function makes a call to a Fortran procedure to compute

derivative values, then it is not so easy to discover the presence of null pointer

argument. To overcome this, you can call your Fortran procedure from

within a wrapper function written in C, and provide your Fortran code with

the information whether or not derivatives need to be computed for a particu-

lar variable argument via an additional argument to your Fortran routine.

Passing

derivative

arguments

To pass the partial derivatives computed in the external procedure back to

Aimms, the argument list of the external procedure called in the Derivative at-

tribute of the internal function should contain arguments for the .Derivative

suffices of all variable arguments. Aimms will implicitly consider such deriva-

tive arguments as Output arguments. They can be passed either as a full array

or as an integer handle. In the latter case Aimms API functions have to be used

to pass back the relevant partial derivatives (see also Chapter 34).

Chapter 11. External Procedures and Functions 167

Example

continued

The following external function declaration provides an interface to the above

Cobb-Douglas function with derivative computations, which is ready to be

used both inside and outside the context of constraints.

ExternalFunction CobbDouglasPlusDerivative {

Arguments : (a,c);

Range : nonnegative;

DLLName : "Userfunc.dll";

ReturnValue : double;

BodyCall : Cobb_Douglas_No_Der(card : InputFactors, array: a, array: c);

DerivativeCall : {

Cobb_Douglas_Der(card : InputFactors, array: a,

array: c, array: c.Derivative);

}

}

Numerical

differencing

When the DerivativeCall attribute to compute the derivatives of an external

function has not been specified, Aimms employs a simple differencing scheme

to estimate the derivatives. For example, if Aimms requires the derivative of

a function f(x1, x2, . . . , xk) at the point (x̄1, x̄2, . . . , x̄k), then Aimms will ap-

proximate each partial derivative as follows:

∂

∂xi
f(x̄1, x̄2, . . . , x̄k) ≈

f(x̄1, . . . , x̄i + ε, . . . , x̄k)− f(x̄1, . . . , x̄k)

ε

where ε is the current value of the global option Differencing Delta.

Disadvantages

of numerical

differencing

While the numerical differencing scheme does not require any action from the

user, there are two distinct disadvantages.

� First of all, numerical differencing is not always a stable process, and the

results may not be accurate enough. As a result, a nonlinear solver may

have trouble converging to a solution.

� Secondly, the process can be computationally very expensive.

In general, it is recommended that you do not rely on numerical differencing.

This is especially the case when the function body is quite extensive, or when

the function, at the individual level, has a lot of variable arguments or contains

conditional loops.

11.5 C versus Fortran conventions

Language

conventions

For any external procedure or function you can specify whether the DLL pro-

cedure or function to which the execution is relayed, is written in C-like lan-

guages (such as C and C++) or Fortran (see also Section 11.2). For Fortran

code Aimms will make sure that

� scalar values are always passed by reference (i.e. as a pointer), and

� multidimensional arrays are ordered in a Fortran-compatible manner.

Chapter 11. External Procedures and Functions 168

By default, Aimms will use C conventions when passing arguments to the DLL

procedure or function.

Strings excludedAimms will not directly translate strings into Fortran format, because most

Fortran compilers use their own particular string representation. Thus, if

you want to pass strings to a fortran subroutine, you should write your own

C interface which converts C strings into the format appropriate for your For-

tran compiler.

Array

dimensions and

ordering

When a multidimensional parameter (or parameter slice) is specified as a array

argument to an external procedure, Aimms passes an array of the specified

type which is constructed as follows. If the actual argument has n remaining

(i.e. non-sliced) dimensions of cardinality N1, . . . ,Nn, respectively, then the as-

sociated values are passed as a (one-dimensional) array of length N1 · · ·Nn.

The value associated with the tuple (i1, . . . , in) is mapped onto the element

in +Nn
(
in−1 +Nn−1

(
· · ·

(
i2 +N2i1

)
· · ·

))

for running indices ij = 0, . . . ,Nj − 1 (C-style programming). For Pascal-like

languages (with indices running from 1, . . . ,N) all running indices in this for-

mula must be decreased by 1, and the final result increased by 1. This ordering

is compatible with the C declaration of e.g. the multidimensional array

double arr[N1][N2]...[Nn];

Multidimen-

sional example

in C

The C function ComputeAverage defined below computes the average of a 2-

dimensional parameter a(i,j) passed as an argument in Aimms.

DLL_EXPORT(void) ComputeAverage(double *a, int card_i, int card_j, double *average)

{ int i, j;

double sum_a = 0.0;

#define __A(i,j) a[j + i*card_j]

for (i = 0; i < card_i; i++)

for (j = 0; j < card_j; j++)

sum_a += __A(i,j);

*average = sum_a / (card_i*card_j);

}

Within your Aimms model, you can call this procedure via an external proce-

dure declaration ExternalAverage defined as follows.

ExternalProcedure ExternalAverage {

Arguments : (x,res);

DLLName : "Userfunc.dll";

BodyCall : ComputeAverage(double array: x, card: i, card: j, double scalar: res);

}

where the argument x and res are declared as

Chapter 11. External Procedures and Functions 169

Parameter x {

IndexDomain : (i,j);

Property : Input;

}

Parameter res {

Property : Output;

}

Fortran array

ordering

When you specify the Fortran language convention for an external procedure,

Aimms will order the array passed to the external procedure such that the tuple

(i1, . . . , in) is mapped onto the element

i1 +N1

(
i2 − 1+N2

(
· · ·

(
in−1 − 1+Nn−1

(
in − 1

))
· · ·

))

for running indices ij = 1, . . . ,Nj . This is compatible with the default storage

of multidimensional arrays in Fortran, and allows you to access such array

arguments using the ordinary multidimensional notation.

ExampleConsider a parameter a(i,j), where the index i is associated with the set {1, 2}
and j with the set {1, 2, 3}. When this parameter is passed as a array argument

to an external procedure, the resulting array (as a one-dimensional array with

6 elements) is ordered as follows in the C convention (default).

Element # 0 1 2 3 4 5

Value a(1,1) a(1,2) a(1,3) a(2,1) a(2,2) a(2,3)

With the Fortran language convention, the ordering is changed as follows.

Element # 1 2 3 4 5 6

Value a(1,1) a(2,1) a(1,2) a(2,2) a(1,3) a(2,3)

Part IV

Sparse Execution

Chapter 12

The Aimms Sparse Execution Engine

Learning about

sparse execution

In this chapter, we look under the hood of the Aimms sparse execution engine.

It is not only interesting to know what Aimms can do, but also, to some ex-

tent, how it is done. An understanding of the inner workings of the Aimms

execution engine may also give you a framework for understanding why some

formulations of Aimms statements are more efficient than others, leading to

more efficient applications. Increasing the efficiency of your application will

help make it a success.

Sparse matrix

technology

The Aimms execution system borrows and extends two simple but powerful

concepts from sparse matrix technology. These concepts are:

� only store the non-zero values, and

� do not compute 0+0 and 0*x (x any number), because these computations

always result in 0.0 and these results are consequently not stored.

Aimms

extensions

The Aimms extensions to these borrowed concepts are that:

� only non-default values are stored, where the default is a selectable

value, and

� many operations such as OR and AND have similar behaviors as + and *

respectively.

Note, however, that other operators, such as the / and = operators, will have

to consider zeros:

� the computation 0.0 / 0.0 results in UNDF, and

� the computation 0.0 = 0.0 results in 1.0

The results of these computations are not equal to 0.0 and need to be stored;

and therefore ’sparse execution’ is not applicable to these operators.

12.1 Storage and basic operations of the execution engine

In this section we present, in a step-by-step manner, the operations that, when

combined, build up the Aimms sparse execution engine. The data storage

method with which these operations work is called an ordered view.

Chapter 12. The Aimms Sparse Execution Engine 172

Ordered viewThe Aimms execution engine stores the data according to the concept of an

ordered view. An ordered view is an ordered, sparse collection of the non-

default elements of an identifier. The order is the lexicographical order of the

indices of that identifier. Because of this order:

� the non-default elements of the identifier can be visited in a lexicographic

order one at a time, and

� a particular tuple can be found efficiently using values for the indices.

Running

example

The running example, used in this section and presented below, contains the

two parameters A(i,j) and B(i,j), where i and j are indices in a set S contain-

ing the elements {a1..a5}. The default values of these parameters are 0.0, and

they contain the following data:

A(i,j) := data table B(i,j) := data table

a1 a2 a3 a4 a5 a1 a2 a3 a4 a5

! -- -- -- -- -- ! -- -- -- -- --

a1 2 5 a1 3 2

a2 2 3 2 a2

a3 a3 5 1 2

a4 4 a4 4

a5 ; a5 ;

The ordered views of A and B are presented in the composite tables below:

Composite table: Composite table:

i j A i j B

! -- -- - ! -- -- -

a1 a2 2 a1 a2 3

a1 a5 5 a1 a5 2

a2 a1 2 a3 a1 5

a2 a3 3 a3 a3 1

a2 a4 2 a3 a4 2

a4 a1 4 ; a4 a1 4 ;

Like an index in

relational

databases

There is nothing really new here; an ordered view corresponds to an rela-

tional table in database terminology, with a (database) index on the primary

keys i and j. A characteristic of both representations is that they can be easily

searched given explicit values for i and j.

Basic operationsIn the following sections, we will classify the algebraic operations in Aimms

according to their behavior in the Aimms sparse execution engine, and discuss

the effects of combining multiple operations or changing the natural index

order.

Chapter 12. The Aimms Sparse Execution Engine 173

12.1.1 The + operator: union behavior

First statementThe first statement in the running example is the simple addition of the match-

ing elements resulting in parameter C(i,j):

C(i,j) := A(i,j) + B(i,j);

Merging rowsAs illustrated in Figure 12.1, this statement can be executed in a sparse man-

ner by merging the ordered views of A and B and adding the values as one

progresses.

i j A i j B
-- -- - -- -- -

a1 a2 2 a1 a2 3

a1 a5 5 a1 a5 2

a2 a1 2

a2 a3 3

a2 a4 2

a3 a1 5

a3 a3 1

a3 a4 2

a4 a1 4 a4 a1 4

Figure 12.1: Sparse execution of the + operator

Union behaviorIn this figure, each arrow represents a computed result. The behavior of the

+ operator is referred to as sparse union behavior: the union of rows from A

and B is taken to form the rows of C and it is sparse because we do not need to

consider those tuples (i,j) for which A(i,j) and B(i,j) are both 0.0.

Similar

operators

Other operators, such as OR, XOR, <, > and <> have a similar behavior. They can

also be implemented using the union of rows and performing the appropriate

operation.

12.1.2 The * operator: intersection behavior

Second

statement

The second statement in the running example is the simple multiplication of

the matching elements resulting in parameter D(i,j):

D(i,j) := A(i,j) * B(i,j);

Chapter 12. The Aimms Sparse Execution Engine 174

Matching rowsThis statement can be executed in a sparse manner by intersecting the ordered

views of A and B and multiplying the corresponding values. Intersection is

sufficient because only for those tuples (i,j) for which both A(i,j) and B(i,j)

are non-zero, will a non-zero be computed. This is illustrated in the Figure 12.2

i j A i j B
-- -- - -- -- -

a1 a2 2 a1 a2 3 Match; store result

a1 a5 5 a1 a5 2 Match; store result

a2 a1 2

a2 a3 3

a2 a4 2

a3 a1 5 First a mismatch: search the left or-

dered view as represented by the

dashed arrow; thereafter search the

right ordered view; followed by the

final match

a3 a3 1

a3 a4 2

a4 a1 4 a4 a1 4

Figure 12.2: Sparse execution of the * operator

Intersection

behavior

Note that the ordered views of both A and B are searchable and, thus, finding

the matching elements can be efficiently implemented. We call this behavior

sparse intersection behavior. Because only matching rows need to be consid-

ered, sparse intersection operators are much more efficient than sparse union

operators.

Similar

operators

Other operators, such as the AND and $ operators, exhibit similar behavior.

They can also be implemented using the intersection of the rows and perform-

ing the appropriate operation.

12.1.3 The = operator: dense behavior

Third statementThe third statement in the running example checks whether corresponding

values are equal.

E(i,j) := (A(i,j) = B(i,j));

Comparing

values

This statement is admittedly somewhat artificial. However, such conditions

are frequently part of larger expressions and must be considered. The key

observation is that the comparison 0.0 = 0.0 evaluates to true. In Aimms the

value ’true’ is represented by the numerical value 1.0. Therefore, the result of

E(i,j) is:

Chapter 12. The Aimms Sparse Execution Engine 175

E(i,j) := data table

a1 a2 a3 a4 a5

! -- -- -- -- --

a1 1 1 1

a2 1 1

a3 1 1

a4 1 1 1 1 1

a5 1 1 1 1 1 ;

Dense behaviorGiven that the comparison of two zeros also results in a non-zero, all possi-

ble combinations of (i,j) have to be considered. Therefore, this operation

exhibits dense behavior, i.e. the operation cannot be performed in a sparse

manner. Dense operators have the worst possible efficiency.

Similar

operators

Other operators, such as /, **, <= and => demonstrate similar behavior. They

also need to be implemented by considering all the possibilities and evaluating

as one progresses.

Beware!Increasing the number of indices, or increasing the size of the sets will make

the number of rows to be considered in such operations grow rapidly. Large-

dimensional dense operations are a potential cause of performance glitches in

an application.

12.1.4 Behavior of combined operations

Fourth

statement

The fourth statement is a variation of the third statement:

EP(i,j) := (A(i,j) = B(i,j)) $ A(i,j);

Speeding upAlthough the operation = remains dense, the entire right hand side of the as-

signment statement is limited to only those tuples (i,j) for which A(i,j) is

non-zero. This is known as a domain condition on the expression. The net

effect on the expression is that this condition speeds up efficient behavior by

moving from dense to sparse behavior. The result of this fourth assignment

is:

EP(i,j) := data table

a1 a2 a3 a4 a5

! -- -- -- -- --

a1

a2

a3

a4 1

a5 ;

Chapter 12. The Aimms Sparse Execution Engine 176

Preventing

dense behavior

If your model contains a statement that performs badly due to a dense oper-

ation, using a domain condition can remedy the problem. Often, it is possible

to formulate a domain condition that does not alter the result of the computa-

tion, but which does allow Aimms to execute the statement in a sparse manner.

12.1.5 Summation

Fifth statementThe fifth statement, as detailed below, is a step towards the sixth statement

and illustrates a language construct where sparse evaluation is straightfor-

ward. This fifth statement is a simple aggregation of the parameter A(i,j) in

a parameter AI(i):

AI(i) := Sum(j, A(i,j));

This operation is illustrated in Figure 12.3.

i j A
-- -- -

a1 a2 2

a1 a5 5 } 7

a2 a1 2

a2 a3 3

a2 a4 2
} 7

a4 a1 4 } 4

Figure 12.3: Sparse execution of the Sum operator

Running indices

and identifier

indices match

Each pairing represents a group of values corresponding to a particular value

of i. As the elements in a group are adjacent in this ordered view, the result

of AI can be computed in a single pass over the ordered view of A. The order

of the running indices in the statement is [i,j]. The first running index i is

already part of the left hand side of the assignment, and j is added to this list

as part of the sum.

Single pass is

sufficient

Because the order of the running indices matches the order of the indices in

the identifier A(i,j), the results of the sum can be computed in a single pass

over the ordered view of A(i,j).

12.1.6 Reordered views

Sixth statementThe sixth statement is a small variation to the fifth statement above. This sixth

statement is an aggregation of the parameter A in a parameter AJ(j):

AJ(j) := Sum(i, A(i,j));

Chapter 12. The Aimms Sparse Execution Engine 177

Non-matching

index order

This time, the elements that belong to the same group j are not adjacent in the

ordered view of A as the order of the indices in this statement is [j,i] which

does not match the order of the indices in A(i,j).

Reordered viewsIn order to regain adjacency of the elements in the same group, Aimms main-

tains other views of the parameter A known as reordered views. A reordered

view of an ordered view is a lexicographic order of the elements such that the

order of the indices in the identifier matches the order of the running indices.

A reordered view, and the grouping according to this view, are illustrated in

Figure 12.4.

j i A
-- -- -

a1 a2 2

a1 a4 4

a2 a1 2

a3 a2 3

a4 a2 2

a5 a1 5

} 6

} 2
} 3
} 2
} 4

Figure 12.4: Sparse execution of the reordered Sum operator

Single pass is

sufficient

Again, each pairing represents a group of values corresponding to a particular

value of j. As the elements in a group are adjacent in this reordered view, the

results of AJ can be computed by a single pass over this reordered view of A.

Aimms generates and maintains reordered views on an as needs basis. They

do, however, take up memory.

12.2 Modifying the sparsity

QuestionsNow that we’ve glanced at the execution engine’s inner workings, you may be

wondering about the following questions.

� Does sparse execution influence the results of a model?

� Does Aimms have sparse versions of operators that are dense by nature?

Sparse

execution is

correct

Sparse execution never changes the results of your model. Aimms only applies

sparse intersection or sparse union when it is applicable. It does not in any

way influence the results of your model compared to simply considering all

the possible combinations of the running indices, but only the efficiency with

which these results are obtained.

Chapter 12. The Aimms Sparse Execution Engine 178

Sparsity

modifiers

Aimms does support sparse versions of some dense operators, but this time

the sparse versions will in general lead to different results. Adding $ characters

to dense operators modify these operators to sparse ones. That is why we call

the $ characters added to these operators sparsity modifiers.

Left and right

operands

Sparsity modifiers may be added to the left-hand side of a dense operator, to

the right-hand side, or to both. It causes the operator only to return a non-zero

result if the associated operand(s) are non-zero. Such a change to an operator

may, however, change its results in a way you may, or may not, want.

A first example:

the /$ operator

Let us now consider a few examples where such a modification is applica-

ble. The first example of using a sparsity modifier is in the efficient guarding

against division by zero errors. Without the use of sparsity modifiers, we can

accomplish this as follows.

! Leave A(i,j) zero when C(i,j)+D(i,j) is zero in order to

! avoid division by zero errors.

! This is accomplished by repeating the denominator in the condition.

A(i,j) := (B(i,j) / (C(i,j)+D(i,j))) $ (C(i,j)+D(i,j)) ;

In the example, we only divide by C(i)+D(i) if this sum is non-zero. Note that

this subexpression is actually computed twice. Aimms provides a notational

convenience in the form of $ sparsity modifiers as follows.

! Leave A(i,j) zero when C(i,j)+D(i,j) is zero in order to

! avoid division by zero errors.

! This is accomplished by using the /$ division operator

! which sparsely skips 0.0’s.

A(i,j) := B(i,j) /$ (C(i,j)+D(i,j)) ;

The /$ operator is defined as the / operator except when the right hand side is

0.0. In that case, the $ sparsity modifier defines it as 0.0. An added advantage

is that the sub-expression C(i)+D(i) is only computed once.

The merge

operator :=$

A second example is in the merging of new results in a set of existing results.

Without the use of a sparsity modifier you can accomplish this as follows.

! Only overwrite elements of E(i,j) when the result

! F(i,j) + G(i,j) is non-zero.

! This is accomplished by repeating the RHS of the

! assignment as a domain condition.

E((i,j) | F(i,j)+G(i,j)) := F(i,j)+G(i,j) ;

Using the $ sparsity modifier this can be equivalently obtained as follows.

! Only overwrite elements of E(i,j) when the result

! F(i,j) + G(i,j) is non-zero.

! This is accomplished by using the $ sparsity

! modifier on the assignment operator:

E(i,j) :=$ F(i,j)+G(i,j) ;

Chapter 12. The Aimms Sparse Execution Engine 179

Where allowed?Table 12.1 summarizes the operators to which the $ sparsity modifier can be

applied, and whether it can be applied to the left-hand side operand, to the

right-hand side operand, or to both.

Operator Sparsity modifier allowed

$ left $ right

ˆ yes yes

* no no

/ no yes

+, - no no

=, <>, <, yes yes

<=, >, >=

:= yes yes

+=, -= yes no

*=, /=, ˆ= yes yes

$, ONLYIF no no

AND, OR, XOR

Table 12.1: Sparsity modifiers of binary operators

Modifying

iterative

operators

In addition to modifying the behavior of binary operators, the $ sparsity modi-

fier can also be applied to iterative operators. The effect in this case is that the

iterative operator in the presence of a $ modifier will only be applied to tuples

for which the expression yields a non-zero value.

Example: the

Min$ operator

The third and final example of the $ sparsity modifier provided here is on the

Min operator. Suppose you want to find the smallest non-zero distance between

a particular node and other nodes. This can be modeled as follows:

! Find the smallest non-zero distance:

MinimalDistance(i) := Min(j | Distance(i,j), Distance(i,j));

The ’non-zero’ restriction is taken care of by repeating the argument of the

Min operator in its domain condition. By using the $ sparsity modifier we can

shorten the above as follows:

! Find the smallest non-zero distance:

MinimalDistance(i) := Min$(j, Distance(i,j));

Where allowed?Table 12.2 summarizes the iterative operators to which the $ sparsity modifier

can be applied.

Chapter 12. The Aimms Sparse Execution Engine 180

Iterative operator Sparsity modifier allowed

$ added

Sort, NBest yes

Intersection, yes

First, Last, Nth no

ArgMin, ArgMax yes

Sum, Union no

Prod yes

Min, Max yes

Statistical operators yes

(see also page 82)

ForAll no

Other logical operators no

(see also page 90)

Table 12.2: Sparsity modifiers of iterative operators

Usage of

sparsity

modifiers

To conclude, we can say that the $ sparsity modifier is notationally a conve-

nience which you may or may not like. In the end it is up to you whether you

use it or not. You decide this by weighing its advantage and disadvantages.

Our view on this is discussed briefly below.

AdvantagesUsing sparsity modifiers has the following advantages.

� It enables a more compact notation. In the examples above, the domain

condition is replaced by a strategically placed $ sparsity modifier thereby

reducing the overall expression. Many models have with multiple line

subexpressions and with these the reduction is not insignificant.

� It is more efficient. There are usually abundant zeros in a model. You

want them ignored so that the corresponding entries do not appear in the

results. In addition, you want them to be ignored as quickly as possible:

so as not to waste any computation time on them.

DisadvantagesAs with any new notation it takes time to get used to it. This holds both

for you as a modeler and also for the people you want to communicate your

model to. In order to alleviate this disadvantage you may want to add a few

brief comments on the modified operators you use such as “:=$ operator used

here to merge the result into the existing data”.

12.3 Overview of operator efficiency

Operator

efficiency

In this section you will find an overview of the efficiency of all unary, binary

and iterative operators in Aimms.

Chapter 12. The Aimms Sparse Execution Engine 181

Unary operators

and functions

The unary operators and functions presented in Table 12.3 are divided in two

groups: sparse and dense.

� sparse: Here, when the argument is 0.0, the result is 0.0. The result

needs to be computed only for those tuples for which the argument has

a non-zero value.

� dense: Here, when the argument is 0.0, the result is not equal to 0.0. The

results of all possible tuples need to be computed.

sparse dense

- Sinh NOT Cos

Sin Tanh Cos Cosh

Tan ArcSin Exp ArcCos

Round ArcTan Log ArcCosh

Floor ArcSinh Log10 Factorial

Ceil ArcTanh

Trunc Sqr

Sqrt

Table 12.3: Sparsen and dense unary operators and functions

Binary

operators

The binary operators presented in Table 12.4 can be divided in three groups:

� intersection sparse: Here, when either of the arguments is 0.0, the result

is 0.0. The result of only those tuples need to be computed where both

arguments are not equal to 0.0. This corresponds to taking the intersec-

tion of the set of tuples for which the arguments are defined.

� union sparse: Here, when both arguments are 0.0, the result is 0.0. The

result of only those tuples need to be computed where at least one of the

arguments is not equal to 0.0. This corresponds to taking the union of

the set of tuples for which the arguments are defined.

� dense: Here, when both arguments are 0.0, the result is not equal to 0.0.

In this case, the expression needs to be evaluated for all possible combi-

nations of values of the indices, unless these combinations are limited by

a sparse operator elsewhere in the same expression. This corresponds

to taking the Cartesian product of the ranges of the indices.

Iterative

operators

The iterative operators presented in Table 12.5 are divided in three groups as

follows:

� sparse A value 0.0 of an argument does not influence the result and can

safely be ignored. The iterative operator only considers existing entries

of its argument.

Chapter 12. The Aimms Sparse Execution Engine 182

intersection union dense

* + ˆ

$ - /

ONLYIF <> =

AND < <=

> >=

OR Permutation

XOR Combination

Table 12.4: Sparseness of binary operators

� almost sparse A second 0.0 in the argument does not influence the re-

sult. The execution starts in a dense meaning that the iterative operator

considers all possible tuples. However, after a first 0.0 has been encoun-

tered, execution continues in a sparse manner.

� dense A value 0.0 in the argument influences the result. The iterative

operator considers all possible combinations.

sparse almost sparse dense

Sum Max Mean SampleDeviation

Prod Min GeometricMean PopulationDeviation

Exists ArgMax HarmonicMean Skewness

Forall ArgMin RootMeanSquare Kurtosis

Count Median RankCorrelation

Table 12.5: Sparseness of iterative operators

Chapter 13

Execution Efficiency Cookbook

This chapterTypically, when you start running your model with realistic, large-scale data

sets, execution performance becomes an important issue. In this chapter, we

discuss various techniques that you can use to improve the execution efficiency

of your model.

Dividing the

time spent

The running time of Aimms applications can be divided in the time spent by

Aimms itself and the time spent by the solution algorithms (i.e. solvers) used

by Aimms.

Time spent by

solvers

The time used by the solvers mostly depends, apart from the quality of the

solver, on the specific formulation of the mathematical program to be solved.

Finding a formulation that can be efficiently solved is often a challenging task

and is beyond the scope of this chapter. For a detailed discussion, you are

referred to the extensive literature that exists on this subject.

Time spent by

Aimms

Aimms itself typically spends most of its time on the execution of assignment

statements and the generation of constraints. This time depends on several

factors. A few of these factors are:

� the size of the sets and the data set size used in your model,

� the efficiency of the Aimms execution engine, and

� the language constructs used to formulate the execution statements and

constraints.

Understanding

Aimms

execution

At AIMMS we are committed to continuously improving the efficiency of the

Aimms execution engine and the Aimms matrix generator. The efficiency of

your application, however, does not only depend on the efficiency of Aimms,

but also on the specific formulation of your model and the language constructs

that you have used. A global understanding of the Aimms execution engine, as

presented in Chapter 12, may provide a good background on which to start re-

considering particular formulations that lead to bottlenecks in execution per-

formance in your application.

Chapter 13. Execution Efficiency Cookbook 184

Analysis toolsIn addition, Aimms provides you with two tools for analyzing execution bottle-

necks, namely the Identifier Cardinalities and Profiler tools. The use of both

tools is described in Chapter 8 of the Aimms User’s Guide.

Analyzing

cardinalities

The Identifier Cardinalities tool can help you to discover identifiers with a

large number of elements. Such identifiers, when used in statements and con-

straints, may lead to efficiency bottlenecks throughout your model. Whenever

you are able to reduce the number of elements associated with such identifiers,

by leaving out irrelevant elements, the execution efficiency of your model will

improve at several places. Naturally, such reductions are not possible when all

the elements are relevant to the computation of the solution. In Section 13.1,

we discuss two frequently observed and effective approaches to reducing the

number of elements in both one-dimensional sets and multidimensional iden-

tifiers.

Analyzing

statements

With the Aimms Profiler tool you can identify the individual statements and

constraints on which the Aimms execution engine spends most of its time.

Even if the inefficiencies are not the result of superfluous identifier cardinal-

ities, it may still be possible to review and rewrite such statements and con-

straints in order to improve the execution efficiency of your application. In

Section 13.2 we discuss potential bottlenecks and alternative formulations for

particular statements and constraints.

Simple

precautions

Before you begin tuning your application, you may want to set aside a copy

of the application and inputs with known results. You can then set up a

script that executes each of these tests using the Aimms command line op-

tion --run-only (see also Chapter 18 of Aimms The User’s guide). In addition,

you may wish to regularly commit your sources to a version control system in

order to track the changes you make over time.

13.1 Reducing the number of elements

Application

phases

In general, one can divide an application in three phases:

1. reading input data, often referred to as reading and preprocessing,

2. processing data, often referred to as the core model, and

3. writing output results, often referred to as reporting.

Interactive applications add the on/off switching of various application fea-

tures, the setting of tuning parameters, the consideration of various scenarios,

the output to screen, and so on. This does not change the basic concept, how-

ever. It only means that the inputs come from various sources and the outputs

go to various destinations. An important observation is that, usually, most of

the computation time is spent in the core model as this involves:

� the execution of assignments,

Chapter 13. Execution Efficiency Cookbook 185

� the evaluation of definitions,

� the generation of constraints, and

� the execution of one or more SOLVE statements.

Reducing the

core model

Obviously, the fewer data we have in the core model, the sooner we’re finished.

Often, a considerable percentage of the data read in during the data input

phase is irrelevant to the final result. We could, therefore, consider spending

more time in the data input phase and try to remove such irrelevant data with

the primary objective of reducing the amount of data used in the core model.

Experience shows that this effort is usually, but not always, worthwhile.

Reducing the

number of

elements

In this section, two complementary methods of reducing the model size are

considered, namely reducing the number of elements in

� one-dimensional sets, and

� multidimensional identifiers.

13.1.1 Size reduction of one-dimensional sets

Two approachesIf, after the data input phase, a one-dimensional set contains a large number

of elements that are irrelevant to the core model, there are two possible ap-

proaches to removing them from computations in the core model. These are:

� adding a condition to all identifiers indexed over that set, or

� introducing a subset of active elements, and using an index to that active

subset.

These two approaches are illustrated below.

Tanks exampleAs a running example, consider a collection of tanks. Let us introduce a few

identifiers related to tanks:

Set Periods {

Index : t;

}

Set Tanks {

Index : Tnks;

}

Set BrokenTanks {

SubsetOf : Tanks;

}

Parameter StrategicReserve {

IndexDomain : Tnks;

}

Parameter SizeOfTank {

IndexDomain : Tnks;

}

Parameter TankIsRelevant {

Chapter 13. Execution Efficiency Cookbook 186

IndexDomain : Tnks;

Range : binary;

Definition : {

1 $ [(not Tnks in BrokenTanks) AND

(SizeOfTank(Tnks) > StrategicReserve(Tnks))]

}

}

Variable TankLevel {

IndexDomain : (t,Tnks) | TanksIsRelevant(Tnks);

}

Constraint TankLimit {

IndexDomain : (t,Tnks) | TanksIsRelevant(Tnks);

Definition : TankLevel(t,Tnks) <= SizeOfTank(Tnks);

}

The example above illustrates the first approach, in which the restriction on

the tanks is embodied by the parameter TankIsRelevant.

Introducing

active subsets

To illustrate the second approach, we change the above model section by in-

troducing the active subset ActiveTanks and modifying the declaration of the

variable TankLevel and the constraint TankLimit as presented below.

Set ActiveTanks {

SubsetOf : Tanks;

Index : tnk, tnk2;

Definition : { Tnks | TankIsRelevant(Tnks) };

}

Variable TankLevel {

IndexDomain : (t,tnk);

}

Constraint TankLimit {

IndexDomain : (t,tnk);

Definition : TankLevel(t,tnk) <= SizeOfTank(tnk);

}

The core model still consists of the variable TankLevel and the constraint Tank-

Limit but their index domain has been changed. These identifiers are now

declared over active tanks only. Because of this change in the index domain,

the parameter TankIsRelevant is no longer needed in their index domain con-

dition.

Chapter 13. Execution Efficiency Cookbook 187

Speedup by

active subsets

One may argue that nothing is gained because the selection through TankIs-

Relevant is now replaced by the index tnk of the active subset ActiveTanks.

However, the Aimms execution engine has been tuned to select relevant ele-

ments of parameters and variables through indices in subsets. The selection

via a condition such as TankIsRelevant(Tnks) will force Aimms to retrieve the

values for:

� the parameter or variable at hand,

� the parameter TanksIsRelevant, and then

� combine these values using the ’such that’ operator |.

Both approaches produce identical results and limit the core model execution

to relevant elements only. The first approach using the TankIsRelevant condi-

tion takes more execution time than the second approach using an index in

the active subset ActiveTanks because this latter approach selects the relevant

elements more directly.

Multiple active

subsets

Intuitively you might expect the improvement to be minor because probably

only a few tanks, if any, are removed from the collection of all tanks. However,

for other indices of the model the gain may be significant. More significant

gains may be observed, for example, when

� you study a few periods from a large model calendar,

� you study a few scenarios from a large database of scenarios,

� you study a rather limited region,

� there are only a few crudes available from a large collection of available

crudes, or

� there are only a few products ordered from a large catalog.

A large dimensional identifier, indexed over multiple active subsets, will have

the effect.

Starting with a

core model

What if your model does not limit the number of elements in one-dimensional

sets at all? Following the active subset approach, as illustrated above, you will

have to modify the core model wherever you use the root set or an index in

the root set. In such a situation, you can also implement “active subsets” by

introducing a superset of the root set, and letting the original root set take on

the role of an active subset.

ExampleWe continue the running example by presenting a core model version of it.

Set Periods {

Index : t;

}

Set Tanks {

Index : tnk;

}

Chapter 13. Execution Efficiency Cookbook 188

Parameter SizeOfTank {

IndexDomain : tnk;

}

Variable TankLevel {

IndexDomain : (t,tnk);

}

Constraint TankLimit {

IndexDomain : (t,tnk);

Definition : TankLevel(t,tnk) <= SizeOfTank(tnk);

}

In implementing the active subset approach, we introduce a new superset All-

Tanks and redefine the original set Tanks as an active subset of the superset

AllTanks as follows.

Set AllTanks {

Index : Tnks;

}

Set BrokenTanks {

SubsetOf : AllTanks;

}

Parameter StrategicReserve {

IndexDomain : Tnks;

}

Parameter TankIsRelevant {

IndexDomain : Tnks;

Range : binary;

Definition : {

1 $ [(not Tnks in BrokenTanks) AND

(SizeOfTank(Tnks) > StrategicReserve(Tnks))]

}

}

Set Tanks {

SubsetOf : AllTanks;

Index : tnk;

Definition : { Tnks | TankIsRelevant(Tnks) };

}

Parameter SizeOfTank {

IndexDomain : Tnks;

Comment : Now Wrt AllTanks instead of Tanks;

}

Note that the variable and constraint declarations in the core model above have

not been altered, but their size has been reduced by the size reduction in the

set Tanks.

13.1.2 Size reduction of multidimensional identifiers

Limiting multi-

dimensional

identifiers

Having illustrated limiting the number of elements in one-dimensional sets, we

want to consider limiting the number of elements in multidimensional param-

eters, variables, and constraints. The Aimms language facilitates this through

the IndexDomain attribute.

Chapter 13. Execution Efficiency Cookbook 189

Index domain

conditions

Domain conditions can be specified in the IndexDomain attribute of multidimen-

sional parameters, variables, and constraints. Whenever such an identifier is

assigned, generated, or referenced in an expression, Aimms will automatically

add the domain condition so keeping your assignments and constraints more

concise and efficient.

Continued

example

We illustrate this by extending the above example as follows.

Variable Flow {

IndexDomain : (t,tnk,tnk2);

}

Constraint TankLevelBalance {

IndexDomain : (t,tnk) | t <> first(Periods);

Definition : {

TankLevel(t-1,tnk) ! Level of previous period

- Sum(tnk2, Flow(t,tnk,tnk2)) ! Flow out of the tank

+ Sum(tnk2, Flow(t,tnk2,tnk)) ! Flow in to the tank

= TankLevel(t,tnk) ! Current level

}

Comment : {

"Level at end of previous period

minus outflow

plus inflow is

level at end of current period"

}

}

Note that, using this formulation, Aimms generates matrix columns for every

possible pair of tanks, whereas in practice only a small selection can have an

actual flow. If this selection of possible connections between tanks is repre-

sented by a relation TankConnections, the constraint TankLevelBalance could be

written more efficiently as:

Set TankConnections {

SubsetOf : (AllTanks, AllTanks);

}

Variable Flow {

IndexDomain : (t,tnk,tnk2);

}

Constraint TankLevelBalance {

IndexDomain : (t,tnk) | t <> first(Periods);

Definition : {

TankLevel(t-1,tnk)

- Sum(tnk2 | (tnk,tnk2) in TankConnections, Flow(t,tnk,tnk2))

+ Sum(tnk2 | (tnk2,tnk) in TankConnections, Flow(t,tnk2,tnk))

= TankLevel(t,tnk)

}

}

Note the repetition of the condition in the above formulation. This is because

the condition is actually a restriction on the Flow variable, and should therefor

be a part of its declaration. This leads to a much more concise formulation, as

presented below.

Chapter 13. Execution Efficiency Cookbook 190

Variable Flow {

IndexDomain : (t,tnk,tnk2) | (tnk,tnk2) in TankConnections;

}

Constraint TankLevelBalance {

IndexDomain : (t,tnk) | t <> first(Periods);

Definition : {

TankLevel(t-1,tnk)

- Sum(tnk2, Flow(t,tnk,tnk2))

+ Sum(tnk2, Flow(t,tnk2,tnk))

= TankLevel(t,tnk)

}

}

Using binary

parameters

A frequently observed alternative to using relations is the use of binary param-

eters. The above example could then be written as follows:

Parameter TankIsConnected {

IndexDomain : (tnk,tnk2);

Range : {0, 1};

}

Variable Flow {

IndexDomain : (t,tnk,tnk2) | TankIsConnected(tnk,tnk2);

}

The outflow term of TankLevelBalance will then be generated as if it were writ-

ten:

Sum(tnk2, Flow(t,tnk,tnk2) $ TankIsConnected(tnk,tnk2))

The notation using binary parameters is equivalent to that with relations.

Which option you use is only a matter of taste and style.

Why use index

domain

conditions?

We would encourage you to employ index domain conditions, as using them

has the following advantages:

1. Index domain conditions speed up the execution because:

� They exclude irrelevant elements in assignments to parameters

with an index domain condition,

� Having index domain conditions on variables effectively makes the

referencing of such variables sparse, as only relevant columns are

generated, and

� Index domain conditions on a constraint avoid the generation of

irrelevant rows of that constraint.

2. Index domain conditions permits concise formulations. As illustrated

above, you do not need to include the domain condition of the Flow vari-

ables while constructing the TankLevelBalance constraint. Moreover, you

do not need to worry that you mightforget such a condition at a particu-

lar place in the model.

3. Whenever you determine a more restrictive condition on an identifier A,

you only need to change your model at one place, namely in the index

domain condition of that identifier A. You don’t need to go through the

entire model changing every reference to the identifier A.

Chapter 13. Execution Efficiency Cookbook 191

Tight conditionsTo make index domain conditions as effective as possible, they should remove

all, or almost all, irrelevant combinations. Constructing such “tight” index

domain conditions, can be far from straightforward. However, the time spent

on constructing tight index domain conditions often pays off with a significant

reduction in the total execution time of your model.

13.2 Analyzing and tuning statements

Analyzing and

tuning

statements

As illustrated in the previous section, carefully reviewing the number of ele-

ments in active subsets and the index domain conditions may lead to signif-

icant reductions in execution time. Additional reductions can be obtained by

analyzing and rewriting specific time-consuming statements and constraints.

In this section we will discuss a procedure which you can follow to identify

and resolve potential inefficiencies in your model.

Suggested

approach

You can use the Aimms profiler to identify computational bottlenecks in your

model. If you have found a particular bottleneck, you may want to use the

checklist below to quickly find relevant information for the problem at hand.

For each question that you answer with a yes you may want to follow the

suggested option.

� Is the bottleneck a repeated expression where the combined execution of

all instances takes up a lot of time? If so, you can either

– manually replace the expression by a new parameter containing

the repeated expression as a definition. Do not forget to check the

NoSave property if you do not want that newly defined parameter

to be stored in cases.

– or let Aimms do it for you, by setting the option subst low dim expr

class to an appropriate value for your application. See also the

help associated with that option.

For a worked example, see also Subsection 13.2.4

� Is the bottleneck due to debugging/obsolete code? If so, delete it, move it

to the Comment attribute, or enclose the time-consuming debugging code

in something like an IF (DebugMode) THEN and ENDIF pair.

� Are you using dense operators such /, =, ˆ, or dense functions such as

Log, Exp, Cos in which a zero argument has a non-zero result? An overview

of the efficiency of such functions and operators can be found in Sec-

tion 12.3. Could you add index domain conditions to make the execu-

tion of the time-consuming expressions more sparse, without changing

the final result?

� Is the bottleneck part of a FOR statement? If so, is that FOR statement

really necessary? For a detailed discussion about the need for and alter-

natives to FOR statements, see Section 13.2.1.

� Is the bottleneck the condition of the FOR statement that takes up most

of the time? This is shown in the profiler by a large net time for the FOR

Chapter 13. Execution Efficiency Cookbook 192

statement. Section 13.2.2 discusses why the conditions of FOR statements

may absorb a lot of computational time and discusses alternatives.

� Does the body of a FOR, WHILE, or REPEAT statement contain a SOLVE state-

ment, and is Aimms spending a lot of time regenerating constraints (as

shown in the profiling times of the constraints)? If so, consider modify-

ing the generated mathematical programs directly using the gmp library

as discussed in Chapter 16.

� Does your model contain a defined parameter over an index, say t, and

do you use this parameter inside a FOR loop that runs over that same in-

dex t? Inefficient use of this construct is indicated by the Aimms profiler

through a high hitcount for that defined parameter. See Section 13.2.3

for an example and an alternative formulation.

� Is the bottleneck an expression with several running indices? Contains

this expression non-trivial sub-expressions with fewer running indices?

If the answer is yes, consult Section 13.2.4 for a detailed analysis of two

examples.

� Does the expression involve a parameter or a variable that is bound with

a non-zero default? Section 13.2.5 discusses the possible adverse timing

effects of using non-zero defaults in expressions, and how to overcome

these.

� Would you expect a time-consuming assignment to take less time given

the sparsity of the identifiers involved? This may be one of those rare

occasions in which the specific order of running indices has an effect on

the execution speed. Although tackling this type of bottleneck may be

very challenging, Section 13.2.6 hopefully offers sufficient clues through

an illustrative example.

� Are you using ordered sets? Reordering the elements in a set can slow

execution significantly as detailed in Section 13.2.7.

13.2.1 Consider the use of FOR statements

Why avoid the

FOR statement?

The Aimms execution system is designed for efficient bulk execution of as-

signment statements, plus set and parameter definitions and constraints. A

consequence of this design choice is that computation time is spent, just be-

fore the execution of such an executable object, analyzing and initializing that

object. This is usually worthwhile except when only one element is computed

at a time. Consider the following two fragments of Aimms code that have the

same final result. The first fragment uses a FOR statement:

for ((i,j) | B(i,j)) do ! Only when B(i,j) exists we want to

A(i,j) := B(i,j); ! overwrite A(i,j) with it.

endfor ;

The second fragment avoids the FOR statement:

A((i,j) | B(i,j)) := B(i,j); ! Overwrite A(i,j) only when B(i,j) exists

Chapter 13. Execution Efficiency Cookbook 193

In the first fragment, the initialization and analysis is performed for every it-

eration of the FOR loop. In the second fragment the initialization and analysis

is performed only once. Using the $ sparsity modifier on the assignment op-

erator := (see also Section 12.2), the statement can be formulated even more

compactly and efficiently as:

A(i,j) :=$ B(i,j); ! Merge B(i,j) in A(i,j)

In the above example, the FOR statement is used only to restrict the domain

of execution of a single assignment. While using the FOR statement in this

manner may seem normal to programmers, the execution engine of Aimms

can deal with conditions on assignment statements much more efficiently. As

such, the use of the FOR statement is superfluous and time consuming.

When not to

remove the FOR

statement

Now that the FOR statement has been made to look inefficient, you are probably

wondering why has it been introduced in the Aimms language in the first place?

Well, simply because sometimes it is needed. And it is only inefficient if used

unnecessarilly. So when is the FOR statement applicable? Two typical examples

are:

� generating a text report file, and

� in algorithmic code inside the core model.

We will discuss these examples in the next two paragraphs.

Generating text

reports

The Aimms DISPLAY statement is a high level command that outputs an identi-

fier in tabular, list, or composite list format with a limited amount of control.

In addition, the output of the DISPLAY statement can always be read back by

Aimms, and, to enable that requirement, the name of the identifier is always

included in the output. Thus, the Aimms DISPLAY statement usually fails to

meet the specific formatting requirements of your application domain, and

you end up needing control over the position of the output on an element-by-

element basis. This requires the use of FOR statements. However, depending

on the purpose of your text report file, there might be very good alternatives

available:

� When this reporting is for printing purposes only, you may want to con-

sider the Aimms print pages as explained in Aimms The User’s Guide

Chapter 14. These print pages look far better than text reports.

� When the report file is for communication with other programs, you may

want to consider whether communication using relational databases (see

Chapter 27), or through XML (see Chapter 30) form better alternatives.

For communication with Excel or OpenOffice Calc, a library of dedicated

functions is built in Aimms (see Chapter 29).

Chapter 13. Execution Efficiency Cookbook 194

Algorithmic

code inside the

core model

A FOR statement is needed whenever your model contains two statements

where:

� the computation of the last statement depends on the computation of

the first statement, and

� the computation of the first statement depends on the results of the last

statement obtained during a previous iteration.

Iterating

unneccesarily

FOR statements may be especially inefficient, if the condition of a FOR statement

allows elements for which none of the statements inside the FOR loop modify

the data in your model or generate output. This is illustrated in the following

example.

Transposing a

distance matrix

Consider a distance matrix, D(i,j), with only a few entries per row in its lower

left half containing the distances to near neighbors. You also want it to contain

the reverse distances. One, inefficient, but valid, way to formulate that in

Aimms is as follows:

for ((i,j) | i > j) do ! The condition ’i > j’ ensures we only

D(i,j) := D(j,i) ; ! write to the upper right of D.

endfor ;

Why inefficient?There are two reasons why the above is inefficient:

� Although there is a condition on the FOR loop, this condition permits

many combinations of (i,j) that do not invoke execution as D(i,j) was

sparse to begin with. A tempting improvement would be to add D(j,i) to

the condition on the FOR loop. However, this will lead to other problems,

however, as will be explained in the next section.

� As explained in Section 12.1.6, Aimms maintains reordered views. For

each non-zero value computed and assigned to the identifier D(i,j),

Aimms will need to adapt the reordered view for D(j,i), and re-initialize

searching in that reordered view.

Suggested

modification

In the example at hand we can move the condition on the FOR loop to the

assignment itself and simply remove the FOR statement altogether (but not its

contents). The example then reads:

D((i,j) | i > j) := D(j,i) ; ! The condition ’i > j’ ensures we only

! write to the upper right of D.

Using

application

domain

knowledge

We can improve the assignment further by noting that we are actually merging

the transposed lower half in the identifier itself, and that there is no conflict in

the elements. This can be achieved by a $ sparsity modifier on the assignment

operator. The $ sparsity modifier and the opportunity it offers are introduced

in Section 12.2. The example can then be written as:

D(i,j) :=$ D(j,i); ! Merge the transpose of the lower half in the identifier itself.

Chapter 13. Execution Efficiency Cookbook 195

13.2.2 Ordered sets and the condition of a FOR statement

Modifying the

FOR condition

The condition placed on a FOR statement is like any other expression evalu-

ated one element at a time. However, during that evaluation, the identifiers

referenced in the condition may have been modified by the statements inside

the FOR loop. In general, this is not a problem, except when the range of the

running index of the FOR statement is an ordered set. In that situation, the eval-

uation of the condition itself becomes time consuming as the tuples satisfying

the condition have to be repeatedly computed and sorted, as illustrated below.

Continued

example

Let us again consider the example of the previous section with the parameter

D now added to the FOR loop condition, and the set S ordered lexicographically.

As an efficient formulation has already been presented in the previous sec-

tion, it looks somewhat artificial, but similar structures may appear in real-life

models.

Set S {

Index : i,j;

OrderBy : i ! lexicographic ordering.;

Body : {

for ((i,j) | (i > j) AND D(j,i)) do ! Only execute the statements in the

D(i,j) := D(j,i) ; ! loop when this is essential.

endfor

}

}

What does

Aimms do in

this example?

First note that the FOR statement respects the ordering of the set S. Because of

this ordering, Aimms will first evaluate the entire collection of tuples satisfy-

ing the condition (i > j) AND D(j,i), and subsequently order this collection

according to the ordering of the set S. Next, the body of the FOR statement is

executed for every tuple in the ordered tuple collection. However, when an

identifier, such as D in this example, is modified inside the body of the FOR

loop Aimms will need to recompute the ordered tuple collection, and continue

where it left off. This not only sounds time consuming, it is.

FOR as a

bottleneck

If the following three conditions are met, the condition of a FOR statement

becomes time consuming:

� the indices of a FOR statement have a specified element order,

� the condition of the FOR statement is changed by the statements inside

the loop, and

� the product of the cardinality of the sets associated with the running

indices of the FOR statement is very large.

if these three conditions are met, Aimms will issue a warning when the number

of re-evaluations reaches a certain threshold.

Chapter 13. Execution Efficiency Cookbook 196

Improving

efficiency

There are several ways to improve the efficiency of inefficient FOR statements.

To understand this, it is necessary to explain a little more about the execution

strategies available to Aimms when evaluating FOR statements, as each strategy

has its own merits and drawbacks. Therefore, consider the FOR statement:

for ((i,j,k) | Expression(i,j,k)) do

! statements ...

endfor;

where i, j and k are indices of some sets, each with a specified ordering, and

Expression(i,j,k) is some expression over the indices i, j and k.

The sparse

strategy

The first strategy, called the sparse strategy, fully evaluates Expression(i,j,k),

and stores the result in temporary storage before executing the FOR statement.

Subsequently, for each tuple (i,j,k) for which a non-zero value is stored, the

statements within the FOR loop are executed. If an identifier is modified during

the execution of these statements, then the condition Expression(i,j,k) has to

be fully re-evaluated.

The dense

strategy

The second strategy, called the dense strategy, evaluates Expression(i,j,k) for

all possible combinations of indices (i,j,k). As soon as a non-zero result is

found the statements are executed. Re-evaluation is avoided, but at the price

of considering every (i,j,k) combination.

The unordered

strategy

The third strategy, called the unordered strategy, uses the normal sparse ex-

ecution engine of Aimms but ignores the specified order of the indices. This

may, however, give different results, especially when the FOR loop contains one

or more DISPLAY/PUT statements or uses lag and lead operators in conjunction

with one or more of the ordered indices.

Selecting a

strategy

By prefixing the FOR statement with one of the keywords SPARSE, ORDERED, or

UNORDERED (as explained in Section 8.3.4), you can force Aimms to adopt a par-

ticular strategy. If you do not explicitly specify a strategy, Aimms uses the

sparse strategy by default, and only issues a warning if an identifier referenced

inside the FOR loop is modified and the second evaluation of Expression(i,j,k)

gives a non-empty result.

Improving

efficiency

Given the above, you have the following options for improving the efficiency

of the FOR statement.

� Rewrite the FOR statement such that the condition does not change during

each iteration.

� Prefix the FOR statement with the keyword UNORDERED such that the un-

ordered strategy will be set. You can safely choose this strategy if the

element order is not relevant for the FOR statement. In all other cases,

the semantics of the FOR statement will be changed.

Chapter 13. Execution Efficiency Cookbook 197

� Prefix the FOR statement with the keyword ORDERED such that the dense

strategy is selected. You can safely choose this strategy if the condition

on the running indices evaluates to true for a significant number of all

possible combinations of the tuples (i,j,k).

� Prefix the FOR statement with the keyword SPARSE to adopt the sparse

strategy. However, all warnings will be suppressed relating to the condi-

tion on the running indices needing to be evaluated multiple times. You

can choose this strategy if the condition needs to be re-evaluated in only

a few iterations.

13.2.3 Combining definitions and FOR loops

Dependency is

symbolic

As explained in Section 7.1, the dependency structure between set and param-

eter definitions is based only on symbol references. Aimms’ evaluation scheme

recomputes a defined parameter in its entirety even if only a single element in

its inputs has changed. This negatively affects performance when such a de-

fined parameter is used inside a FOR loop and its input is changed inside that

same FOR loop.

A simulation

example

A typical example occurs when using definitions in simulations over time. In

simulations, computations are often performed period by period, referring

back to data from previous period(s). The relation used to computate the stock

of a particular product p in period t can easily be expressed by the following

definition and then used inside the body of a procedure.

Parameter ProductStock {

IndexDomain : (p,t);

Definition : ProductStock(p,t-1) + Production(p,t) - Sales(p,t);

}

Procedure ComputeProduction {

Body : {

for (t) do

! Compute Production(p,t) partly based on the stock for period (t-1)

Production(p,t) := Max(ProductionCapacity(p),

MaxStock(p) - ProductStock(p,t-1) + Sales(p,t));

endfor ;

}

}

During every iteration, the production in period t is computed on the basis of

the stock in the previous period and the maximum production capacity. How-

ever, because of the dependency of ProductStock with respect to Production,

Aimms will re-evaluate the definition of ProductStock in its entirety for each

period before executing the assignment for the next period. Although the FOR

loop is not really necessary here, it is used for illustrative purposes.

Chapter 13. Execution Efficiency Cookbook 198

Improved

formulation

In this example, execution times can be reduced by moving the definition of

ProductStock to an explicit assignment in the FOR loop.

Parameter ProductStock {

IndexDomain : (p,t);

! Definition attribute is empty.

}

Procedure ComputeProduction {

Body : {

for (t) do

! Compute Production(p,t) partly based on the stock for period (t-1)

Production(p,t) := Max(ProductionCapacity(p),

MaxStock(p) - ProductStock(p,t-1) + Sales(p,t));

! Then compute stocks for current period t

ProductStock(p,t) := ProductStock(p,t-1) + Production(p,t) - Sales(p,t);

endfor ;

}

}

In this formulation, only one slice of the ProductStock parameter is computed

per period. A drawback of this formulation is that it will have to be restated

at various places in your model if the inputs of the definition are assigned at

several places in your model.

Use of macrosAs an alternative, you might consider the use of a Macro (see also Section 6.4) to

localize the defining expression of ProductStock at a single node in the model

tree. The disadvantage of macros is that they cannot be used in DISPLAY state-

ments, or saved to cases.

When to avoid

definitions

As illustrated above, it is best to avoid definitions, if, within a FOR loop, you

only need a slice of that definition to modify the inputs for another slice of

that same definition. Aimms is not designed to recognize this situation and

will repeatly evaluate the entire definition. The Aimms profiler will expose

such definitions by their high hitcount.

13.2.4 Identifying lower-dimensional subexpressions

Lower-

dimensional

subexpressions

Repeatedly performing the same computation is obviously a waste of time. In

this section, we will discuss a special, but not uncommon, instance of such

behavior, namely lower-dimensional sub-expressions. A lengthy expression,

that runs over several indices, can have distinct subexpressions that depend

on fewer indices. Let us illustrate this with two examples, the first being an

artificial example to explain the principle, and the second a larger example

that has actually been encountered in practice and permits the discussion of

related issues.

Chapter 13. Execution Efficiency Cookbook 199

Artificial

example

Consider the following artificial example:

F(i,k) := G(i,k) * Sum[j | A(i,j) = B(i,j), H(j)] ;

For every value of i, the sub-expression Sum[j | A(i,j) = B(i,j), H(j)] re-

sults in the same value for each k. Currently, the Aimms execution engine will

repeatedly compute this value. It is more efficient to rewrite the example as

follows.

FP(i) := Sum[j | A(i,j) = B(i,j), H(j)] ;

F(i,k) := G(i,k) * FP(i) ;

The principle of introducing an identifier for a specific sub-expression often

leads to dramatic performance improvements, as illustrated in the following

real-life example.

A complicated

assignment

Consider the following 4-dimensional assignment involving region-terminal-

terminal-region transports. Here, sr and dr (source region and destination

region) are indices in a set of Regions with m elements and st and dt (source

terminal and destination terminal) are indices in a set of Terminals with n ele-

ments.

Transport((sr,st,dt,dr) | TRDistance(sr,st) <= MaxTRDistance(st) AND

TRDistance(dr,dt) <= MaxTRDistance(dt) AND

sr <> dr AND MinTransDistance <= RRDistance(sr,dr) <= MaxTransDistance AND

st <> dt AND MinTransDistance <= TTDistance(st,dt) <= MaxTransDistance

) := Demand(sr,dr);

The domain condition states that region-terminal-terminal-region transport

should only be assigned if the various distances between regions and/or ter-

minals satisfy the given bounds.

Efficiency

analysis

The <= operator is dense and be evaluated for all possible values of the indices.

The subexpression TRDistance(sr,st) <= MaxTRDistance(st), for example, will

be evaluated for every possible value of dr and dt, even though it only depends

on sr and st. In other words, we’re computing the same thing over and over

again.

Effect of the

AND operator

There are multiple AND operators in this example. The AND operator is sparse,

and oten, sparse operators make execution quick. However, they fail to do just

that in this particular example. Bear with us. Although the AND operator is a

sparse binary operator, its effectiveness depends on how effectively the inter-

section is taken. What are we taking the intersection of? If we consider a partic-

ular argument of the AND operators: TRDistance(sr,st) <= MaxTRDistance(st),

as the operator <= is dense and this argument will be computed for all tuples

{(sr,st,dt,dr)} even though the results will be mostly 0.0’s. The domain of

evaluation for this argument is thus the full Cartesian product of four sets.

The evaluation domain of the other arguments of the AND operators will be the

Chapter 13. Execution Efficiency Cookbook 200

same. So, in this example, we are repeatedly taking the intersection of a Carte-

sian product with itself, resulting in that same Cartesian product. Thus, the

AND operator will be evaluated for all tuples in {(sr,st,dt,dr)} even though

this operator is sparse.

Example

reformulation

In the formulation below, we’ve named the following sub-expressions.

ConnectableRegionalTerminal((sr,st) | TRDistance(sr,st) <= MaxTRDistance(st)) := 1;

ConnectableRegions((sr,dr) | sr <> dr AND

MinTransDistance <= RRDistance(sr,dr) <= MaxTransDistance) := 1;

ConnectableTerminals((st,dt) | st <> dt AND

MinTransDistance <= TTDistance(st,dt) <= MaxTransDistance) := 1;

In each of these three assignments, each condition depends fully on the run-

ning indices and thus its evaluation is not unnecessarily repeated. By sub-

stituting the three newly introduced identifiers in the condition the original

assignment becomes:

Transport((sr,st,dt,dr) |

ConnectableRegionalTerminal(sr,st) AND

ConnectableRegionalTerminal(dr,dt) AND

ConnectableRegions(sr,dr) AND

ConnectableTerminals(st,dt))

:= Demand(sr,dr);

The newly created identifiers are all sparse, and the sparse operator AND can

effectively use this created sparsity in its arguments.

Effect of

reformulation

A modified version of the above example was sent to us by a customer. While

the original formulation took several minutes to execute for a given large

dataset, the reformulation only took a few seconds.

A bit of general

advice

Perhaps a modeling style which avoids the need for substitutions is best.

The easy way is to let Aimms identify the places in which such substitutions

can be made by switching the options in the option category Aimms - Tuning

- Substitute Lower Dimension Expressions to appropriate settings. The disad-

vantage of this easy method is that some opportunities are missed as Aimms

cannot guarantee the equivalence of the formulations, and some replacements

are missed. For instance, in the above example, Aimms will create an iden-

tifier for both TRDistance(sr,st) <= MaxTRDistance(st) and TRDistance(dr,dt)

<= MaxTRDistance(dt), even though only one suffices. You can avoid substitu-

tions by keeping your expressions brief relating only a few identifiers at a time.

This will also help to keep your model readable.

Chapter 13. Execution Efficiency Cookbook 201

13.2.5 Parameters with non-zero defaults

Sparse

execution

expects 0.0’s

Sparse execution is based on the effect of the number 0.0 on addition and mul-

tiplication. When other numbers are used as a default, all possible elements

of these parameters need to be considered rather than only the stored ones.

The advice is not to use such parameters in intensive computations. In the

example below, the summation operator will need to consider every possible

element of P rather than only its non-zeros.

Parameter P {

IndexDomain : (i,j);

Default : 1;

Body : {

CountP := Sum((i,j), P(i,j))

}

}

Appropriate use

of default

Identifiers with a non-zero default, may be convenient, however, in the inter-

face of your application as the GUI of Aimms can display non-default elements

only.

The NonDefault

function

For parameters with a non-zero default, you still may want to execute only

for its non-default values. For this purpose, the function NonDefault has been

introduced. This function allows one to limit execution to the data actually

stored in such a parameter. Consider the following example where the non

defaults of P are summed:

CountP := Sum((i,j)| NonDefault(P(i,j)), P(i,j));

In the above example the summation is limited to only those entries in P(i,j)

that are stored. If you would rather use familiar algebraic notation, instead of

the dedicated function NonDefault, you can change the above example to:

CountP := Sum((i,j) | P(i,j) <> 1, P(i,j));

This statement also sums only the non-default values of P. Aimms recognizes

this special use of the <> operator as actually using the NonDefault function;

the summation operator will only consider the tuples (i,j) that are actually

stored for P.

Suffices of

variables

Note that the suffices .Lower and .Upper of variables are like parameters with a

non-zero default. For example in a free variable the default of the .lower suffix

is -inf and the default of the suffix .upper is inf.

Chapter 13. Execution Efficiency Cookbook 202

13.2.6 Index ordering

Index orderingIn rare cases, the particular order of indices in a statement may have an ad-

verse effect on its performance. The efficiency aspects of index ordering, when

they occur, are inarguably the most difficult to understand and recognize.

Again, this inefficiency is best explained using an example.

An artificial

example

Consider the following assignment statement:

FS(i,k) := Sum(j, A(i,j) * B(j,k));

If A(i,j) and B(j,k) are binary parameters, where

� for any given i, the parameter A(i,j) maps to a single j, and,

� for any given j, the parameter B(j,k) maps to a single k,

one would intuitively expect that the assignment could be executed rather ef-

ficiently. When actually executing the statement, it may therefore come as an

unpleasant surprise that it takes a seemingly unexplainable amount of time.

An analysisIn the qualitative analysis above, implicitly the index order i selects j, and j

selects a few k’s, or, in Aimms terminology, a running index order [i,j,k]. The

actual running index order of Aimms is, however, first the indices [i,k] from

the assignment operator, followed by the index [j] from the summation oper-

ator: [i,k,j]. The effect of the actual index order is that, for a given value of

index i, the relevant values of index k cannot be restricted using the param-

eter chain A(i,j)–B(j,k) without the aid of an intermediate running index j.

Consequently, Aimms has to try every combination of (i,k).

ReformulationGiven the above analysis, the preferred index ordering [i,j,k] can be accom-

plished by introducing an intermediate identifier FSH(i,j,k), and replacing the

original assignment by the following statements.

FSH(i,j,k) := A(i,j) * B(j,k);

FS(i,k) := Sum(j, FSH(i,j,k));

With a real-life example, where the range of the indices i, j and k contained

over 10000 elements, the observed improvement was more than a factor 50.

Not for +A similar improvement could be obtained for the following example:

FSP(i,k) := Sum(j, A(i,j) + B(j,k));

Here a value is computed for each (i,k) of FSP, because, for every i, there is a

non-zero A(i,j), and for every k, there is a non-zero B(j,k).

Chapter 13. Execution Efficiency Cookbook 203

13.2.7 Set element ordering

Data entry

order

By default, all elements in a root set are numbered internally by Aimms in a

consecutive manner according to their data entry order, i.e. the order in which

the elements have been added to the set. Such additions can be either explicit

or implicit, and may take place, for example when the model text contains

references to explicit elements in the root set, or by reading the set from files,

databases, or cases.

Multi-

dimensional

storage

The storage of multidimensional data defined over a root set is always based

on this internal and consecutive numbering of root set elements. More ex-

plicitly, all tuple-value pairs associated with a multidimensional identifier are

stored according to a strict right-to-left ordering based on the respective root

set numberings.

Indexed

execution

By default, all indexed execution taking place in Aimms, either through implied

loops induced by indexed assignments or through explicit FOR loops, employs

the same strict right-to-left ordering of root set elements. Thus, there is a

perfect match between the execution order and the order in which identifiers

referenced in such loops are stored internally. As a consequence, it is very easy

for Aimms to synchronize the tuple for which execution is currently due with

an ordered route through all the non-zero tuples in the identifiers involved

in the statement. This principle is the basis of the sparse execution engine

underlying Aimms.

Execution over

ordered sets

Inefficiency is introduced if the elements in a set over which a loop takes place

have been ordered differently from the data entry order, either because of an

ordering principle specified in the OrderBy attribute of the set declaration or

through an explicit Sort operation. Consequently, there will no lomger be a

direct match between the execution order of the loop and the storage order

of the non-zero identifier values. Depending on the precise type of statement,

this may result in no, slight or serious increase in the execution time of the

statement, as Aimms may have to perform randomly-placed lookups for par-

ticular tuples. These random lookups are much more time consuming than

running over the data only once in an ordered fashion.

Effect on FOR

loops

In particular, you should avoid using FOR statements in which the running in-

dex is an index in a set with a nondefault ordering whenever possible. If not,

Aimms is forced to execute such FOR statements using the imposed nondefault

ordering and, as a result, all identifier lookups within the FOR loop are random.

In such a situation, you should carefully consider whether ordered execution

is really essential. If not, it is advisable to leave the original set unordered, and

Chapter 13. Execution Efficiency Cookbook 204

create an ordered subset (containing all the elements of the original set) for

use when the nondefault element ordering is required.

Effect on

assignments

In most situations, the efficiency of indexed assignments is not affected by

the use of indices in sets with a nondefault ordering. Aimms has only to rely

on the nondefault ordering if an assignment contains special order-dependent

constructs such as lag and lead operators. In all other cases, Aimms can use

the default data entry order.

Complete

reordering

If a nondefault ordering of some sets in your model causes a serious increase

in execution times, you may want to apply the CLEANDEPENDENTS statement (see

also Section 25.3) to those roots sets that are the cause of the increase of exe-

cution times. The CLEANDEPENDENTS statement will fully renumber the elements

in the root set according to their current ordering, and rebuild all data defined

over it according to this new numbering.

Use sparinglyAs all identifiers defined over the root set have to be completely rebuilt, CLEAN-

DEPENDENTS is an inherently expensive operation. You should, therefore, only

use it when really necessary.

13.2.8 Using Aimms’ advanced diagnostics

Using diagnostic

warnings

In order to help you create correct and efficient applications, Aimms is regu-

larly extended with diagnostics that incorporate the recognition of new types

of problematic situations. These diagnostics may help you detect model for-

mulations that lead to sub-optimal performance and/or ambiguous results.

These diagnostics can be controled through various options in the Warning

category.

Apply

diagnostics

regularly

As the list of diagnostic options is regularly extended, and some of the for-

mulation problems depend on the model data and, thus, can only be detected

at runtime, you are advised to apply the diagnostics provided by Aimms on a

regular basis during your application tests. Section 8.4.4 describes a way in

which you can switch on all the diagnostic options by just changing the value

of the two options strict warning default and common warning default.

Chapter 13. Execution Efficiency Cookbook 205

Diagnostic

options

Below we provide a list of performance-related diagnostics that may help you

tune the performance of your model:

� Warning repeated iterative evaluation: If the arguments of an iterative

operator do not depend on some of the indices, the iterative operator

is repeatedly evaluated with the same result. Consider the assignment

a(i) := sum(j,b(j)); in which the sum does not depend on the index i

and so the same value is computed for every value of i. See also Subsec-

tion 13.2.4.

� Warning unused index: If an index is not used inside the argument(s) or

index domain condition of an iterative iterator, this leads to inefficient

execution. In the assignment a(i) := sum((j,k),b(i,j));, the index k is

not used in the summation. Further, when an index in the index domain

of a constraint is not used inside the definition of that constraint this is

likely to lead to the generation of duplicate rows.

� Warning duplicate row: At the end of generating a mathematical pro-

gram it is verified that there are no duplicate rows inside that mathemat-

ical program. This might be caused by two constraints having the same

definition. Besides consuming more memory, duplicate rows cause the

problem to become degenerate and may cause the problem to become

more difficult to solve. This warning is not supported for mathematical

programs of type MCP or MPCC because, for these types the row col map-

ping is also relevant and duplicate rows cannot be simply eliminated.

� Warning duplicate column: At the end of generating a mathematical pro-

grram it is verified that there are no duplicate columns inside that math-

ematical program. Besides consuming more memory, duplicate columns

result in the generated mathematical program having non-unique solu-

tions.

� Warning trivial row: Generating and eliminating trivial rows such as

0 <= 1 takes time.

The help for the option category AIMMS - Progress, errors & warnings - warnings

provides more information on these options.

13.3 Summary

The recipe boils

down to three

steps

This chapter consists of a recipe for fine tuning an existing Aimms application

such that Aimms more efficiently executes the definitions and statements and

efficiently generates the constraints. The recipe consists of the following three

steps:

� First, construct active subsets by removing all elements for which the

variables are fixed in advance. These active subsets should then be used

throughout your core model. This reduces the work each time, even in

the evaluation of the index domain conditions to be constructed next.

Chapter 13. Execution Efficiency Cookbook 206

� Second, construct index domain conditions for the parameters, variables,

and constraints of the core model. This will make several dense expres-

sions seemingly execute more sparse, because only a limited number of

elements are evaluated. Especially with variables and constraints this

avoids the generation of columns for fixed variables and empty con-

straints. Thus the number of bottlenecks in your application is further

reduced.

� Finally, use the Aimms profiler to pinpoint those assignment statements,

FOR loops, and constraints that still absorb a considerable amount of

computation time, and analyze and possible modify them. A checklist

that can be used for this analysis has been presented in Section 13.2.

Part V

Optimization Modeling

Components

Chapter 14

Variable and Constraint Declaration

TerminologyThe word variable does not have a uniform meaning. In general, programmers

view a variable as a known but varying quantity that receives its value through

direct assignments. However, in the context of constraints in Aimms, the word

variable denotes an unknown quantity. Constraints can be grouped together

to form a system of simultaneous equations and/or inequalities, which is re-

ferred to as a mathematical program. Variables in a mathematical program

are assigned values when a solver (a solution algorithm) finds a solution for

the unknowns in the system.

Similarity of

parameters and

variables

When used outside the scope of constraints and the solution of mathematical

programs, variables in Aimms behave essentially the same as parameters in

Aimms. Like parameters, variables can be initialized, used as known quantities

in assignment statements, and be referred to as data from within the graphical

user interface.

14.1 Variable declaration and attributes

Declaration and

attributes

Variables have some additional attributes above those of parameters. These

extra attributes are used to steer a solver, or to hold additional information

about solution values provided by the solver. The possible attributes of vari-

ables are given in Table 14.1.

Index domain

for variables

By specifying the IndexDomain attribute you can restrict the domain of a vari-

able in the same way as that of a parameter. For variables, however, the domain

restriction has an additional effect. During the generation of individual con-

straints Aimms will reduce the size of the generated mathematical program by

including only those variables that satisfy all domain restrictions.

The Range

attribute

The values of the Range attribute of variables determine the bounds that are

passed on to the solver. In addition, during an assignment, the Range attribute

restricts the range of allowed values that can be assigned to a particular inter-

val (as for parameters). The possible values for the Range attribute are:

Chapter 14. Variable and Constraint Declaration 209

Attribute Value-type See also

page

IndexDomain index-domain 42

Range range 43

Default constant-expression 44

Unit unit-expression 45, 513

Priority expression

NonvarStatus expression

RelaxStatus expression

Property NoSave, numeric-storage-property, Inline 34, 45

SemiContinuous, Basic, Stochastic, Adjustable

ReducedCost, ValueRange, CoefficientRange,

constraint-related-sensitivity-property

Text string 19

Comment comment string 19

Definition expression 34, 44

Stage expression 216, 316

Dependency expression 216, 343

Table 14.1: Variable attributes

� one of the predefined ranges Real, Nonnegative, Nonpositive, Integer or

Binary,

� any one of the interval expressions [a,b], [a,b), (a,b] or (a,b), where

a and b can be a constant number, inf, -inf, or a parameter reference

involving some or all of the indices on the index list of the declared

variable,

� any enumerated integer set expression, e.g. {a .. b} with a and b as

above, or

� an integer set identifier.

If you specify Real, Nonnegative, Nonpositive, or an interval expression, Aimms

will interpret the variable as a continuous variable. If you specify Integer,

Binary or an integer set expression, Aimms will interpret the variable as a bi-

nary or integer variable.

ExampleThe following example illustrates a simple variable declaration.

Variable Transport {

IndexDomain : (i,j) in Connections;

Range : [MinTransport(i), Capacity(i,j)];

}

The declaration of the variable Transport(i,j) sets its lower bound equal to

MinTransport(i) and its upper bound to Capacity(i,j). When generating the

mathematical program, the variable Transport will only be generated for those

Chapter 14. Variable and Constraint Declaration 210

tuples (i,j) that lie in the set Connections. Note that the specification of the

lower bound only uses a subdomain (i) of the full index domain of the variable

(i,j).

The .Lower and

.Upper suffices

Besides using the Range attribute to specify the lower and upper bounds, you

can also use the .Lower and .Upper suffices in assignment statements to accom-

plish this task. The .Lower and .Upper suffices are attached to the name of the

variable, and, as a result, the corresponding bounds are defined for the entire

index domain. This may lead to increased memory usage when variables share

their bounds for slices of the domain. For this reason, you are advised to use

the Range attribute as much as possible when specifying the lower and upper

bounds.

When allowedYou can only make a bound assignment with either the .Lower or .Upper suffix

when you have not used a parameter reference (or a non-constant expression)

at the corresponding position in the Range attribute. Bound assignments via

the .Lower and .Upper suffices must always lie within the range specified in the

Range attribute.

ExampleConsider the variable Transport declared in the previous example. The fol-

lowing assignment to Transport.Lower(i,j) is not allowed, because you have

already specified a parameter reference at the corresponding position in the

Range attribute.

Transport.Lower(i,j) := MinTransport(i) ;

On the other hand, given the following declaration,

Variable Shipment {

IndexDomain : (i,j) in Connections;

Range : Nonnegative;

}

the following assignment is allowed:

Shipment.Lower(i,j) := MinTransport(i);

Aimms will produce a run-time error message if any value of MinTransport(i)

is less than zero, because this violates the bound in the Range attribute of the

variable Shipment.

The Default

attribute

Variables that have not been initialized, evaluate to a default value automati-

cally. These default values are also passed as initial values to the solver. You

can specify the default value using the Default attribute. The value of this at-

tribute must be a constant expression. If you do not provide a default value,

Aimms will use a default of 0.

Chapter 14. Variable and Constraint Declaration 211

The Unit

attribute

Providing a Unit for every variable and constraint in your model will help you

in a number of ways.

� Aimms will help you to check the consistency of all your constraints and

assignments in your model, and

� Aimms will use the units to scale the model that is sent to the solver.

Proper scaling of a model will generally result in a more accurate and robust

solution process. You can find more information on the definition and use of

units to scale mathematical programs in Chapter 32.

The Definition

attribute

It is not unusual that symbolic constraints in a model are equalities defining

just one variable in terms of others. Under these conditions, it is preferable

to provide the definition of the variable through its Definition attribute. As

a result, you no longer need to specify extra constraints for just variable def-

initions. In the constraint listing, the constraints associated with a defined

variable will be listed with a generated name consisting of the name of the

variable with an additional suffix “ definition”.

ExampleThe following example defines the total cost of transport, based on unit trans-

port cost and actual transport taking place.

Variable TransportCost {

Definition : sum((i,j), UnitTransportCost(i,j)*Transport(i,j));

}

14.1.1 The Priority, Nonvar and RelaxStatus attributes

The Priority

attribute

With the Priority attribute you can assign priorities to integer variables (or

continuous variables when using the solver Baron). The value of this attribute

must be an expression using some or all of the indices in the index domain of

the variable, and must be nonnegative and integer. All variables with priority

zero will be considered last by the branch-and-bound process of the solver. For

variables with a positive priority value, those with the highest priority value

will be considered first.

The .Priority

suffix

Alternatively, you can specify priorities through assignments to the .Priority

suffix. This is only allowed if you have not specified the Priority attribute. In

both cases, you can use the .Priority suffix to refer to the priority of a variable

in expressions.

Use of prioritiesThe solution algorithm (i.e. solver) for integer and mixed-integer programs ini-

tially solves without the integer restriction, and then adds this restriction one

variable at a time according to their priority. By default, all integer variables

have equal priority. Some decisions, however, have a natural order in time or

space. For example, the decision to build a factory at some site comes before

Chapter 14. Variable and Constraint Declaration 212

the decision to purchase production capacity for that factory. Obeying this

order naturally limits the number of subsequent choices, and could speed up

the overall search by the solution algorithm.

The

NonvarStatus

attribute

You can use the NonvarStatus attribute to tell Aimms which variables should

be considered as parameters during the execution of a SOLVE statement. The

value of the NonvarStatus attribute must be an expression in some or all of the

indices in the index list of the variable, allowing you to change the nonvariable

status of individual elements or groups of elements at once.

Positive versus

negative values

The sign of the NonvarStatus value determines whether and how the variable is

passed on to the solver. The following rules apply.

� If the value is 0 (the default value), the corresponding individual variable

is generated, along with its specified lower and upper bounds.

� If the value is negative, the corresponding individual variable is still gen-

erated, but its lower and upper bounds are set equal to the current value

of the variable.

� If the value is positive, the corresponding individual variable is no longer

generated but passed as a constant to the solver.

When you specify a negative value, you will still be able to inspect the corre-

sponding reduced cost values. In addition, you can modify the nonvariable

status to zero without causing Aimms to regenerate the model. When you

specify a positive value, the size of the mathematical program is kept to a

minimum, but any subsequent changes to the nonvariable status will require

regeneration of the model constraints.

The .NonVar

suffix

Alternatively, you can change the nonvariable status through assignments to

the .NonVar suffix. This is only allowed if you have not specified the Nonvar-

Status attribute. In both cases, you can use the .NonVar suffix to refer to the

variable status of a variable in expressions.

When to change

the nonvariable

status

By altering the nonvariable status of variables you are essentially reconfiguring

your mathematical program. You could, for instance, reverse the role of an in-

put parameter (declared as a variable with negative nonvariable status) and an

output variable in your model to observe what input level is required to obtain

a desired output level. Another example of temporary reconfiguration is to

solve a smaller version of a mathematical program by first discarding selected

variables, and then changing their status back to solve the larger mathematical

program using the previous solution as a starting point.

Chapter 14. Variable and Constraint Declaration 213

The RelaxStatus

attribute

With the RelaxStatus attribute you can tell Aimms to relax the integer restric-

tion for those tuples in the domain of an integer variable for which the value

of the relax status is nonzero. Aimms will generate continuous variables for

such tuples instead, i.e. variables which may assume any real value between

their bounds.

The .Relax

suffix

Alternatively, you can relax integer variables by making assignments to the

.Relax suffix. This is only allowed if you have not specified the RelaxStatus

attribute. In both cases, you can use the .Relax suffix to refer to the relax

status of a variable in expressions.

When to relax

variables

When solving large mixed integer programs, the solution times may become

unacceptably high with an increase in the number of integer variables. You

can try to resolve this by relaxing the integer condition of some of the integer

variables. For instance, in a multi-period planning model, an accurate integer

solution for the first few periods and an approximating continuous solution

for the remaining periods may very well be acceptable, and at the same time

reduce solution times drastically.

Effect on

mathematical

program type

As you will see in Chapter 15, there are several types of mathematical pro-

grams. By changing the nonvariable and/or relax status of variables you may

alter the type of your mathematical program. For instance, if your constraints

contains a nonlinear term x*y, then changing the nonvariable status of either x

or y will change it into a linear term. Eventually, this may result in a nonlinear

mathematical program becoming a linear one. Similarly, changing the nonva-

riable or relax status of integer variables may at some point change a mixed

integer program into a linear program.

14.1.2 Variable properties

Properties of

variables

Variables can have one or more of the following properties: NoSave, Inline,

SemiContinuous, ReducedCost, CoefficientRange, ValueRange, Stochastic, and Adj-

ustable. They are described in the paragraphs below.

Use of PROPERTY

statement

You can also change the properties of a variable during the execution of your

model by calling the PROPERTY statement. Identifier properties are changed

by adding the property name as a suffix to the identifier name in a PROPERTY

statement. When the value is set to off, the property no longer holds.

The NoSave

property

With the property NoSave you indicate that you do not want to store data asso-

ciated with this variable in a case. This property is especially suited for those

identifiers that are intermediate quantities in the model, and that are not used

anywhere in the graphical end-user interface.

Chapter 14. Variable and Constraint Declaration 214

Inline variablesWith the property Inline you can indicate that Aimms should substitute all

references to the variable at hand by its defining expression when generating

the constraints of a mathematical program. Setting this property only makes

sense for defined variables, and will result in a mathematical program with less

rows and columns but with a (possibly) larger number of nonzeros. After the

mathematical program has been solved, Aimms will compute the level values

of all inline variables by evaluating their definition. However, no sensitivity

information will be available.

Semi-continuous

variables

To any continuous or integer variable you can assign the property SemiContin-

uous. This indicates to the solver that this variable is either zero, or lies within

its specified range. Not all solvers support semi-continuous variables. In

the latter case, Aimms will automatically add the necessary constraints to the

model.

14.1.3 Sensitivity related properties

Basic,

superbasic, and

nonbasic

variables

With the Basic property you can instruct Aimms to retrieve basic information

of a specific variable from the solver. If retrieved, basic information can be

accessed through the .Basic suffix. The basic information is presented as an

element in the predefined Aimms set AllBasicValues (i.e. {Basic, Nonbasic, Su-

perbasic}). In linear programming a variable will either be basic or nonbasic,

while in nonlinear programming the number of variables with zero reduced

cost can be larger than the number of constraints. The solution algorithm

then divides these variables into so-called basics and superbasics. The basic

variables define a square system of nonlinear equations which is solved for

fixed values of the remaining variables. The superbasics are assigned a fixed

value between their bounds, while the nonbasics take their value at a bound.

The ReducedCost

property

You can use the ReducedCost property to specify whether you are interested

in the reduced cost values of the variable after each SOLVE step. Storing the

reduced costs of all variables may be very memory consuming, therefore, the

default in Aimms is not to store these values. If reduced costs are requested,

the stored values can be accessed through the suffices .ReducedCost or .m.

Interpretation

of reduced cost

The reduced cost indicates by how much the cost coefficient in the objective

function should be reduced before the variable becomes active (off its bound).

By definition, the reduced cost value of a variable between its bounds is zero.

The precise mathematical interpretation of reduced cost is discussed in most

text books on mathematical programming. Note: if a basic or superbasic vari-

able has a reduced cost of zero then it will be displayed as 0.0, but if a nonbasic

variable has a reduced cost of zero then it will be displayed as ZERO.

Chapter 14. Variable and Constraint Declaration 215

Unit of reduced

cost

When the variables in your model have an associated unit (see Chapter 32), spe-

cial care is required in interpreting the values returned through the .Reduced-

Cost suffix. To obtain the reduced cost in terms of the units specified in the

model, the values of the .ReducedCost suffix must be scaled as explained in

Section 32.5.1.

The property

Coefficient-

Range

With the property CoefficientRange you request Aimms to conduct a first type

of sensitivity analysis on this variable during a SOLVE statement of a linear

program. The result of this sensitivity analysis are three parameters, repre-

senting the smallest, nominal, and largest values for the objective coefficient

of the variable so that the optimal basis remains constant. Their values are

accessible through the suffices .SmallestCoefficient, .NominalCoefficient and

.LargestCoefficient.

The property

ValueRange

With the property ValueRange you request Aimms to conduct a second type

of sensitivity analysis during a SOLVE statement of a linear program. The re-

sult of the sensitivity analysis are two parameters, representing the small-

est and largest values that the variable can take while holding the objective

value constant. Their values are accessible through the .SmallestValue and

.LargestValue suffices.

Linear

programs only

Aimms only supports the sensitivity analysis conducted through the proper-

ties CoefficientRange and ValueRange for linear mathematical programs. If you

want to apply these types of analysis to the final solution of a mixed-integer

program, you should fix all integer variables to their final solution (using the

.NonVar suffix) and re-solve the resulting mathematical program as a linear

program (e.g. by adding the clause WHERE type:=’lp’ to the SOLVE statement).

Storage and

computational

costs

Setting any of the properties ReducedCost, CoefficientRange or ValueRange may

result in an increase of the memory usage. In addition, the computations re-

quired to compute the ValueRange may considerably increase the total solution

time of your mathematical program.

Constraint

related

properties

Whenever a defined variable (which is not declared Inline) is part of a math-

ematical program, Aimms implicitly adds a constraint to the generated model

expressing this definition. In addition to the variable-related sensitivity prop-

erties discussed in this section, you can specify the constraint-related sensitiv-

ity properties ShadowPrice, RightHandSideRange and ShadowPriceRange (see also

Section 14.2) for such variables to obtain the sensitivity information that can

be related to these constraint. You can access the requested sensitivity in-

formation by appending the associated suffices to the name of the defined

variable.

Chapter 14. Variable and Constraint Declaration 216

14.1.4 Uncertainty related properties and attributes

Stochastic

programming

and robust

optimization

The Aimms modeling language offers facilities for both stochastic programs

and robust optimization models. For both types of models you can specify

special Variable properties and attributes to define uncertainty-related rela-

tionships.

The Stochastic

property

Through the Stochastic property you can indicate that, within a stochastic

model, the variable can hold scenario-dependent solutions. Aimms will add a

Stage attribute for every variable for which the Stochastic property has been

set.

The Stage

attribute

The value of the Stage attribute must be a numerical expression evaluating

to in integer number indicating the stage at the end of which the variable

takes its value during the solution process of a stochastic model. Stochastic

programming, and the Stochastic property and Stage attribute are discussed

in full detail in Section 19.2.

The Adjustable

property

By setting the Adjustable property for a variable, you indicate that a variable in

a robust optimization model has a functional dependency on some or all of the

uncertain parameters in the model. If you declare a variable to be adjustable,

the Dependency attribute also becomes available for that variable.

The Dependency

attribute

Through the Dependency attribute you specify the precise collection of uncer-

tain parameters on which the variable at hand depends. At this moment,

Aimms only supports affine relations between uncertain parameters and ad-

justable variables. The precise semantics of the Dependency attribute is dis-

cussed in Section 20.4.

14.2 Constraint declaration and attributes

DefinitionsConstraints form the major mechanism for specifying a mathematical program

in Aimms. They are used to restrict the values of variables with interlocking

relationships. Constraints are numerical relations containing expressions in

terms of variables, parameters and constants.

Constraint

attributes

The possible attributes of constraints are given in Table 14.2.

Domain

restriction for

constraints

Restricting the domain of constraints through the IndexDomain attribute influ-

ences the matrix generation process. Constraints are generated only for those

tuples in the index domain that satisfy the domain restriction.

Chapter 14. Variable and Constraint Declaration 217

Attribute Value-type See also

page

IndexDomain index-domain 42

Unit unit-valued expression 45, 513

Text string 19

Comment comment string 19

Definition expression 44, 211

Property NoSave, Sos1, Sos2, IndicatorConstraint 34, 45

Level, Bound, Basic, ShadowPrice, 213

RightHandSideRange, ShadowPriceRange,

IsDiversificationFilter, IsRangeFilter,

IncludeInLazyConstraintPool,

IncludeInCutPool, Chance

SosWeight sos-weights

ActivatingCondition expression

Probability expression 225, 341

Aproximation element-expression 225, 342

Table 14.2: Constraint attributes

The Definition

attribute

With the Definition attribute of a constraint you specify a numerical relation-

ship between variables in your model. Without a definition a constraint is

indeterminate. Constraint definitions consist of two or three expressions sep-

arated by one of the relational operators “=”, “>=” or “<=”.

ExampleThe following constraints express the simultaneous requirements that the sum

of all transports from a city i must not exceed Supply(i), and that for each city

j the Demand(j) must be met.

Constraint SupplyConstraint {

IndexDomain : i;

Unit : kton;

Definition : sum(j, Transport(i,j)) <= Supply(i);

}

Constraint DemandConstraint {

IndexDomain : j;

Unit : kton;

Definition : sum(i, Transport(i,j)) >= Demand(j);

}

Allowed

relationships

If a and b are expressions consisting of only parameters and f(x, . . .) and

g(x, . . .) are expressions containing parameters and variables, the following

two kinds of relationships are allowed.

a ≤ f(x, . . .) ≤ b or f(x, . . .) ≷ g(x, . . .)

where ≷ denotes any of the relational operators “=”, “>=” or “<=”. Either a or b

can be omitted if there is no lower or upper bound on the expression f(x, . . .),

Chapter 14. Variable and Constraint Declaration 218

respectively. When both a and b are present, the constraint is referred to as

a ranged constraint. The expressions may have linear and nonlinear terms,

and may utilize the full range of intrinsic functions of Aimms except for the

random number functions.

Conditional

expressions in

constraints

You must take extreme care to ensure continuity when the constraints in your

model contain logical conditions that include references to variables. Such

constraints are viewed by Aimms as nonlinear constraints, and thus can only

be passed to a solver that can handle nonlinearities. It is possible that the out-

come of a logical condition, and thus the form of the constraint, changes each

time the underlying solver asks Aimms for function values and gradients. For

example, if x(i) is a decision variable, and a constraint contains the expression

sum[i, if (x(i) > 0) then x(i)ˆ2 endif]

it may or may not contain the term x(i)ˆ2, depending on the current value

of x(i). In this example, both the expression and its gradient are continuous

functions at x(i) = 0.

14.2.1 Constraint properties

The Property

attribute

With the Property attribute you can specify further characteristics of the con-

straint at hand. The possible properties of a constraint are NoSave, Sos1, Sos2,

Level, Bound, Basic, ShadowPrice, RightHandSideRange, and ShadowPriceRange.

The NoSave

property

When you specify the NoSave property you indicate that you do not want Aimms

to store data associated with the constraint in a case, regardless of the speci-

fied case identifier selection.

14.2.2 SOS properties

The SOS

properties

The constraint types Sos1 and Sos2 are used in mixed integer programming,

and mutually exclusive. In the context of mathematical programming SOS is

an acronym for Special Ordered Sets. A SOS set is associated with every (indi-

vidual) constraint of type Sos1 or Sos2.

Additional SOS

attribute

When you specify that a constraint is of type Sos1 or Sos2, an additional SOS-

specific attributes becomes available, namely the SosWeight attributes. With

this attributes, you can provide further information to the solver about the

contents and ordering of the SOS set to be associated with the constraint.

Chapter 14. Variable and Constraint Declaration 219

Sos1 constraintsA type Sos1 constraint specifies to the solver that at most one of the variables

within the SOS set associated with the constraint is allowed to be nonzero,

while all other variables in the SOS set must be zero. Inside a Sos1 constraint

all variables in the SOS set must have a lower bound of zero and an upper

bound greater than zero.

Sos2 constraintsA type Sos2 constraint specifies to the solver that at most two consecutive

variables within the SOS set associated with the constraint are allowed to be

nonzero, while all other variables within the SOS set must be zero. All indi-

vidual variables within the SOS set must have a lower bound of zero and an

upper bound greater than zero. The order of the individual variables within the

SOS set is determined by their weights (as specified in the SosWeight attribute),

where the ordering is from low to high weight.

The SosWeight

attribute

With the SosWeight attribute you must specify the contents of the SOS set to be

associated with a Sos1 or Sos2 constraint, as well the ordering of its elements.

Section 7.5 of the Aimms book on Optimization Modeling describes how these

weights are used during the branch-and- bound process. The syntax of the

SosWeight attribute is as follows.

Syntaxsos-weights :

variable-reference : reference

,

Within the SosWeight attribute you can (but need not) specify a weight for ev-

ery variable occurring in the constraint. Each weight must be an expression

using all the indices in the index domain of the variable plus some or all of the

indices in the index domain of the constraint. All weights specified for a par-

ticular constraint must be unique, i.e. you cannot specify the same weight for

two (individual) variables. The SOS set to be associated with the constraint will

be constructed from all variables—within the domain of both the constraint

and variable—for which a nonzero weight has been specified in the SosWeight

attribute, i.e. if the value of the specified weight is 0.0 for a particular tuple,

the corresponding individual variable will not be included in the SOS set. The

ordering of variables within the SOS set is from low to high weight.

ConsistencyIf you do not specify SOS weights, Aimms will make sure that ordering of vari-

ables in each SOS set is consistent over all SOS sets. If you specify SOS weights

yourself, you have to make sure that the variable orderings of all SOS sets of

type Sos2 are consistent, or your model might become infeasible if feasibility

requires that two adjacent variables in one SOS set become nonzero, which are

ordered inconsistently in another SOS set. Therefore, Aimms requires that you

Chapter 14. Variable and Constraint Declaration 220

specify the SosWeight attributes for all SOS constraints in your model, when-

ever you specify it for one SOS constraint.

ExampleThe following is specification of Sos2 constraint to determine the variable y

piece-wise linearly from a variable x(i).

Constraint DetermineY {

Property : Sos2;

Definition : y = sum[i, x(i)*c(i)];

SosWeight : x(i) : XWeight(i);

}

14.2.3 Solution pool filtering

Solution poolDuring the solution process of a MIP problem, the solvers Cplex and Gurobi

are capable of storing multiple feasible integer solutions in a solution pool,

for instance, to capture solutions with attractive properties that are hard to

express in a linear fashion.

FilteringWhile populating the solution pool, Cplex offers advanced filtering capabili-

ties, allowing you to control which solutions end up in the solution pool. Cplex

provides two predefined ways to filter solutions:

� if you want to filter solutions based on their difference as compared to a

reference solution, use a diversity filter, or

� if you want to filter solutions based on their validity in an additional

linear constraint, use a range filter.

To enable filters the Cplex option Do_Populate need to be on.

Diversity filtersA diversity filter allows you to generate solutions that are similar to (or differ-

ent from) a set of reference values that you specify for a set of binary variables.

In particular, you can use a diversity filter to generate more solutions that are

similar to an existing solution or to an existing partial solution. Several diver-

sity filters can be used simultaneously, for example, to generate solutions that

share the characteristics of several different solutions.

The IsDiversi-

ficationFilter

property

In Aimms, a constraint is used as a diversity filter if the constraint property

IsDiversificationFilter has been set. In a diversification filter, the Abs func-

tion is used to measure the distance from a given binary variable, and all vari-

ables should only occur as the argument of an Abs function.

Chapter 14. Variable and Constraint Declaration 221

ExampleThis following diversification filter forces the solutions to have a distance of

at least 1 from variable x.

Constraint filter1 {

Property : IsDiversificationFilter;

Definition : Abs(x - 1) >= 1;

}

Range filtersA range filter allows you to generate solutions that obey a new constraint,

specified as a linear expression within a range. Range filters can be used to

express diversity constraints that are more complex than the standard form

implemented by diversity filters. In particular, range filters also apply to gen-

eral integer variables, semi-integer variables, continuous variables, and semi-

continuous variables, not just to binary variables.

The IsRange-

Filter property

In Aimms, a constraint is used as a range filter if the constraint property

IsRangeFilter has been set for the constraint.

ExampleThe following range filter specifies that any solution to be added to the solu-

tion pool should satisfy the following constraint.

Contraint filter2 {

Property : IsRangeFilter;

Definition : x + y + z >= 2;

}

14.2.4 Indicator constraints, lazy constraints and cut pools

Indicator

constraints

An indicator constraint is a new way of controlling whether or not a constraint

takes effect, based on the value of a binary variable. Traditionally, such rela-

tionships are expressed by so-called big-M formulations. Big-M formulations,

however, can introduce unwanted side-effects and numerical instabilities into

a mathematical program. Using indicator constraints, such relationships be-

tween a constraint and a variable can be directly expressed in the constraint

declaration. Indicator constraints are supported by the solvers Cplex, Gurobi

and Odh-Cplex.

The Indicator-

Constraint

property

You can specify that a constraint is an indicator constraint by settings it Indi-

catorConstraint property. For indicator constraints, a new attribute called

ActivatingCondition will become available in the constraint declaration.

The Activating-

Condition

attribute

Through the ActivatingCondition attribute you can specify under which con-

dition the constraint definition should become active during the solution pro-

cess. Its value should be an expression of the form

binary-variable = expression

Chapter 14. Variable and Constraint Declaration 222

where the expression must take one of the values 0 or 1. Note: stochastic

variables and parameters are not allowed inside an activation condition.

ExampleConsider the following big-M constraint

Constraint BigMConstraint {

Definition : x1 + x2 <= M*y;

}

where y is a binary variable. Using the IndicatorConstraint property, the con-

straint can be reformulated as an indicator constraint as follows

Constraint NonBigMConstraint {

Property : IndicatorConstraint;

ActivatingCondition : y = 0;

Definition : x1 + x2 = 0;

}

The constraint only becomes effective, whenever the binary variable y takes

the value 0. To solve the model with the indicator constraint, you need the

Cplex, Gurobi or Odh-Cplex solver.

Lazy constraintsSometimes, for a MIP formulation, a user can already identify a group of con-

straints that are unlikely to be violated (lazy constraints). Simply including

these constraints in the original formulation could make the LP subproblem of

a MIP optimization very large or too expensive to solve. Cplex, Gurobi and

Odh-Cplex can handle problems with lazy constraints more efficiently, and

therefore Aimms allows you to identify lazy constraints in your model.

The IncludeIn-

LazyConstraint-

Pool property

You can specify that a constraint should be added to the pool of lazy con-

straints considered by Cplex, Gurobi or Odh-Cplex by setting the property

IncludeInLazyConstraintPool. You need the Cplex, Gurobi or Odh-Cplex solver

to use this constraint property. When solving your MIP model, Cplex, Gurobi

and Odh-Cplex will only consider these constraints when they are violated.

User cut poolsAs discussed in Section 15.2, Aimms allows you to add cuts to your mathemati-

cal program on the fly during the solution process by using the CallbackAddCut

callback. However, when the set of cuts you want to generate is fixed and

known upfront, using the CallbackAddCut may add significant overhead to the

solution process of your model while you don’t need its flexibility. For those

situations, Cplex allows you to specify a fixed pool of user cuts during the

generation of your mathematical program.

The Include-

InCutPool

property

By setting the constraint property IncludeInCutPool you can indicate that this

constraint should be included in the pool of user cuts associated with your

mathematical program. You need the Cplex solver to use this constraint prop-

erty. When solving your MIP model, Cplex will consider the user cuts added in

this manner when appropriate.

Chapter 14. Variable and Constraint Declaration 223

14.2.5 Constraint levels, bounds and marginals

Constraint

levels and

bounds

A constraint in Aimms can conceptually be divided such that one side consists

of all variable terms, whereas the other side consists of all remaining constant

terms. The level value of a constraint is the accumulated value of the variable

terms, while the constant terms make up the bound of the constraint.

The Level,

Bound, Basic and

ShadowPrice

properties

With the Level, Bound, Basic and ShadowPrice properties you indicate whether

you want to store (and have access to) particular parametric data associated

with the constraint.

� When you specify the Level property Aimms will retain the level values of

the constraint as provided by the solver. You can access the level values

of a constraint by using the constraint name as if it were a parameter.

� By specifying the Bound property, Aimms will store the upper and lower

bound of the constraint as employed by the solver. You get access to

the bounds by using the .Lower and .Upper suffices with the constraint

identifier.

� If the Basic property has been specified, Aimms stores basic information

is available through the .Basic suffix as an element in of the predefined

Aimms set AllBasicValues. A constraint is said to be basic (nonbasic or

superbasic) if its associated slack variable is basic (nonbasic or superba-

sic).

� With the ShadowPrice property you indicate that you want to store the

shadow prices as computed by the solver. You can access these shadow

prices by means of the .ShadowPrice attribute.

Interpretation

of shadow

prices

The shadow price (or dual value) of a constraint is the marginal change in

the objective value with respect to a change in the right-hand side (i.e. the

constant part) of the constraint. This value is determined by the solver after

a SOLVE statement has been executed. The precise mathematical interpretation

of the shadow price is discussed in detail in many text books on mathematical

programming. Note: if a basic or superbasic constraint has a shadow price of

zero then it will be displayed as 0.0, but if a nonbasic constraint has a shadow

price of zero then it will be displayed as ZERO.

Unit of shadow

price

When the variables and constraints in your model have an associated unit

(see Chapter 32), special care is required in interpreting the values returned

through the .ShadowPrice suffix. To obtain the shadow price in terms of the

units specified in the model, the values of the .ShadowPrice suffix must be

scaled as explained in Section 32.5.1.

Chapter 14. Variable and Constraint Declaration 224

The property

RightHand-

SideRange

By specifying the RightHandSideRange property you request Aimms to conduct a

first type of sensitivity analysis on this constraint during a SOLVE statement of

a linear program. The result of this sensitivity analysis are three parameters

defined over the domain of the constraint. Two of these parameters represent

the smallest and largest values of an interval over which an individual right-

hand side (or left-hand side) value can be varied such that the basis remains

constant. Consequently, the shadow prices and the reduced costs remain un-

changed for variations of a single value within the interval. The third parame-

ter specifies the nominal value for the right-hand side (or left-hand side) of the

constraint.

Single sided or

ranged

constraint

There are three cases we have to consider for the RightHandSideRange property:

� if the constraint is single sided (i.e. f(x) ≤ a) then the smallest, nom-

inal, and largest value for the constraint side are reported (both when

constraint is binding and not binding)

� if the constraint is of range type (i.e. a ≤ f(x) ≤ b) and it is binding at

one side, then the smallest, nominal, and largest value for the binding

side of the constraint are reported

� if the constraint is of range type (i.e. a ≤ f(x) ≤ b) and it is not binding

at neither side, then the lowest upper bound and the highest lower bound

are reported.

The values are accessible through the suffices .SmallestRightHandSide, .Nomin-

alRightHandSide, and .LargestRightHandSide.

The property

Shadow-

PriceRange

With the ShadowPriceRange property you request Aimms to conduct a second

type of sensitivity analysis on this constraint during a SOLVE statement of a

linear program. The result of the sensitivity analysis are two parameters de-

fined over the domain of the variable. The values assigned to the parame-

ters will be the smallest and largest values that the shadow price of the con-

straint can take while holding the objective value constant. The smallest and

largest values of the constraint marginals are accessible through the suffices

.SmallestShadowPrice and .LargestShadowPrice.

Linear

programs only

As with the advanced sensitivity properties of variables (see Section 14.1.2),

Aimms also supports the advanced sensitivity analysis conducted through the

properties RightHandSideRange and ShadowPriceRange for linear mathematical

programs only. Again, if you want to apply these types of analysis to the fi-

nal solution of a mixed-integer program, you should fix all integer variables to

their final solution (using the .NonVar suffix) and re-solve the resulting mathe-

matical program as a linear program.

Chapter 14. Variable and Constraint Declaration 225

Storage and

computational

costs

Setting any of the properties ShadowPrice, ShadowPriceRange or RightHandSide-

Range may result in an increase of the memory usage. In addition, the compu-

tations required to compute the ShadowPriceRange may considerably increase

the total solution time of your mathematical program.

14.2.6 Constraint suffices for global optimization

Suffices for

global opti-

mization

Aimms provides a number of constraint suffices especially for the global opti-

mization solver Baron. They are:

� the .Convex suffix, and

� the .RelaxationOnly suffix.

By providing additional knowledge, that cannot be determined automatically

by Baron itself, about the constraints in your model through these suffices,

the Baron solver may be able to optimize your global optimization model

in a more efficient manner. For more detailed information about the spe-

cific capabilities of the Baron solver, you are referred to the Baron website

http://www.theoptimizationfirm.com/.

The .Convex

suffix

The algorithm of the Baron solver exploits convexity—either identified auto-

matically by Baron itself or explicitly supplied in the model formulation—in

order to generate polyhedral cutting planes and relaxations for multivariate

non-convex problems. Through the .Convex suffix you can explicitly indicate

that a particular constraint is convex if Baron is unable to determine its con-

vexity automatically.

The .Relax-

ationOnly suffix

Using the .RelaxationOnly suffix, you can considerably enhance the convexi-

fication capabilities of Baron. Some nonlinear problem reformulations can

often tighten the relaxation process of Baron’s branch-and-bound algorithm

while making local search considerably more difficult. By assigning a nonzero

value to the .RelaxationOnly suffix, you indicate to Baron that the constraint

at hand should only be included as a relaxation to the branch-and-bound algo-

rithm, while it should be excluded from the local search.

14.2.7 Chance constraints

Chance

constraints

The Aimms modeling language offers facilities for robust optimization models,

including support for chance constraints (see also Section 20.3). By setting the

Chance property of a constraint, the constraint will become a chance constraint

when solving a mathematical program using robust optimization, using the

distributions specified for the random parameters contained in its definition.

When setting the Chance property, two new attributes will become available,

the Probability attribute and the Approximation attribute.

http://www.theoptimizationfirm.com/

Chapter 14. Variable and Constraint Declaration 226

Only for robust

optimization

Note that setting the Chance property does not influence the availability and

use of the constraint outside the context of robust optimization. In that

case, Aimms will just use the original, deterministic, constraint definition, com-

pletely disregarding the uncertainty of the parameters used in the constraint.

The Probability

attribute

Through the Probability attribute, you can specify the probability with which

you want the constraint to be satisfied for any feasible solution to the robust

counterpart of a robust optimization model. Its value must be a numerical

expression in the range [0,1].

The

Approximation

attribute

When constructing the robust counterpart, Aimms can use several types of

approximations to approximate the chance constraint at hand. You can use

the Approximation attribute to specify the type of approximation you want to be

applied. The chosen type of approximation may lead to a robust counterpart

which is easier or harder to solve (see also Section 20.3). The value of the

attribute must be an element expression into the predefined set AllChance-

ApproximationTypes.

Chapter 15

Solving Mathematical Programs

Mathematical

program

components

A mathematical program consists of

� a set of unknowns to be determined,

� a collection of constraints that has to be satisfied, and

� an (optional) objective function to be optimized.

The aim of a mathematical program is to find a solution with the aid of a solver

such that the objective function assumes an optimal (i.e. minimal or maximal)

value.

Different typesDepending on the characteristics of the variables and constraints, a mathemat-

ical program in Aimms can be classified as one of the following.

� If the objective function and all constraints contain only linear expres-

sions (in terms of the variables), and all variables can assume continuous

values within their ranges, then the program is a linear program.

� If some of the variables in a linear program can assume only integer

values, then the program is a linear mixed integer program.

� If the objective is a quadratic function in terms of the variables while the

constraints are linear, then the program is a quadratic program.

� If the objective is neither linear nor quadratic, or some of the constraints

contain nonlinear expressions, the program is a nonlinear program.

Aimms will automatically call the appropriate solver to find an (optimal) solu-

tion.

This chapterThis chapter first discusses the declaration of a mathematical program, to-

gether with auxiliary functions that you can use to specify its set of variables

and constraints. The SOLVE execution statement needed to solve any type of

mathematical program is presented, and, finally, Aimms’ capabilities to help

resolve infeasibilities in your model are discussed.

Chapter 15. Solving Mathematical Programs 228

15.1 MathematicalProgram declaration and attributes

AttributesThe attributes of mathematical programs are listed in Table 15.1.

Attribute Value-type See also

page

Objective variable-identifier

Direction minimize, maximize

Variables variable-set

Constraints constraint-set

Type model-type

ViolationPenalty reference 238

Text string 19

Comment comment string 19

Convention convention 534

Table 15.1: MathematicalProgram attributes

ExampleThe following example illustrates a typical mathematical program.

MathematicalProgram TransportModel {

Objective : TransportCost;

Direction : minimize;

Constraints : AllConstraints;

Variables : AllVariables;

Type : lp;

}

It defines the linear program TransportModel, which is built up from all con-

straints and variables in the model text. The variable TransportCost serves as

the objective function to be minimized.

The Objective

attribute

With the Objective attribute you can specify the objective of your mathematical

program. Its value must be a reference to a (defined) variable or any other

variable expression. When you want to use the objective value in the end-user

interface of your model, the Objective attribute must be a variable reference.

Omitting the

objective

If you do not specify an objective, your mathematical program will be solved

to find a feasible solution and it will then terminate.

Chapter 15. Solving Mathematical Programs 229

The Direction

attribute

In conjunction with an objective you must use the Direction attribute to in-

dicate whether the solver should minimize or maximize the objective. During a

SOLVE statement you can override this direction by using a WHERE clause for the

direction option.

The Variables

attribute

With the Variables attribute you can specify which set of variables are to be

included in your mathematical program. Its must be either the predefined set

AllVariables or a subset thereof. The set AllVariables is predefined by Aimms,

and it contains the names of all the variables declared in your model. Its con-

tents cannot be changed. If you mathematical program contains an objective,

Aimms will automatically add this to set of generated variables during genera-

tion.

Variables as

parameters

If the Variables attribute is assigned a subset of the set AllVariables, Aimms

will treat all the variables outside this set as if they were parameters. That is,

all occurrences of such variables will not result in the generation of individual

variables for the solver, but will be accounted for in the right-hand side of the

constraint according to their value during generation.

Compare to

NonvarStatus

The Variables attribute performs a similar function as the NonvarStatus at-

tribute or the .NonVar suffix of a variable (see also Section 14.1). The Variables

attribute in a mathematical program allows you to quickly change the status

of an entire class of variables, while the NonvarStatus (in a variable declaration)

gives much finer control at the individual level. As shown below, the latter is

very useful to perform model algebra.

The Constraints

attribute

With the Constraints attribute you can specify which constraints are part of

your mathematical program. Its value must be either the predefined set All-

Constraints or a subset thereof. The set AllConstraints contains the names of

all declared constraints plus the names of all variables which have a definition

attribute. Its contents is computed at compile time, and cannot be changed.

� If you specify the set AllConstraints, Aimms will generate individual con-

straints for all declared constraints and variables with a definition.

� If you specify a subset of the set AllConstraints, Aimms will only generate

individual constraints for the declared constraints and defined variables

in that subset.

If you mathematical program has an objective which is a defined variable, its

definition is automatically added to the set of generated constraints during

generation.

Chapter 15. Solving Mathematical Programs 230

Defined

variables

Variables with a nonempty definition attribute have a somewhat special sta-

tus. Namely, for every defined variable Aimms will not only generate this vari-

able, but will also generate a constraint containing its definition. Therefore,

defined variables are contained in both the predefined sets AllVariables and

AllConstraints. You can add a defined variable to the variable and constraint

set of a mathematical program independently.

� If you omit a defined variable from the variable set of a mathematical

program, all occurrences of the variable will be fixed to its current value

and accounted for in the right-hand side of all constraints.

� If you omit a defined variable from the constraint set of a mathematical

program, the defining constraint will not be generated.

Performing

model algebra

By changing the contents of the identifier sets that you have entered at the

Variables and Constraints attributes of a mathematical program you can per-

form a simple form of model algebra. That is, you can investigate the effects

of adding or removing constraints from within the graphical interface. Fur-

thermore, it allows you to reconfigure your model based on the value of your

model data.

Synchronizing

variable and

constraint sets

When changing the contents of either the variable or the constraint set of a

mathematical program, you may find that the contents of the other set also

needs some adjustment. For instance, adding a variable to a mathematical

program makes no sense if there are no constraints that refer to it. Aimms

offers two special set-valued functions to help you to accomplish this task.

The function

Variable-

Constraints

The function VariableConstraints takes a subset of the predefined set All-

Variables as its argument, and returns a subset of the predefined set AllCon-

straints. The resulting constraint set contains all constraints which use one

or more of the variables in the argument set.

The function

Constraint-

Variables

The function ConstraintVariables performs the opposite task. It takes a sub-

set of the set AllConstraints as its arguments, and returns a subset of the set

AllVariables. The resulting variable set contains all variables which are re-

ferred to in one or more constraints in the argument set. Also included are all

variables referred to in the definitions of other variables inside the set.

ExampleConsider the use of the functions VariableConstraints and ConstraintVariables

in conjunction with the following declaration of a mathematical program.

MathematicalProgram PartialTransportModel {

Objective : TransportCost;

Direction : minimize;

Constraints : PartialConstraintSet;

Variables : PartialVariableSet;

}

Chapter 15. Solving Mathematical Programs 231

Assume that the set PartialVariableSet contains a subset of the variables

declared in the model. Further assume that you would like to build up the

contents of the set PartialConstraintSet together with the required additions

to PartialVariableSet so that the contents of both sets are maximal. This

is referred to as their transitive closure. By successively calling the functions

VariableConstraints and ConstraintVariables, the following loop computes the

transitive closure of the variable and constraint sets.

repeat

PreviousCardinality := Card(PartialVariableSet);

PartialConstraintSet := VariableConstraints(PartialVariableSet);

PartialVariableSet := ConstraintVariables(PartialConstraintSet);

break when Card(PartialVariableSet) = PreviousCardinality;

endrepeat ;

The break occurs when the set PartialVariableSet has not increased in size.

The Type

attribute

With the Type attribute of a mathematical program you can prescribe a solution

type. When the specified type is not compatible with the generated mathemat-

ical program, Aimms will return an error message. You can override the type

during a SOLVE statement using a WHERE clause for the type option. You can use

this, for instance, to easily switch between the mip and rmip types.

Available typesA complete list of the mathematical program types available within Aimms is

given in Table 15.2. Most are self-explanatory. When the type rmip is specified,

all integer variables are treated as continuous within their bounds. The rmip

type is the global version of the Relax attribute associated with individual vari-

ables (see also Section 14.1). The types ls and nls can only be selected in the

absence of the Objective attribute.

The Convention

attribute

You can use the Convention attribute to specify the unit convention that you

want to be used for scaling the variables and constraints in your mathematical

program. For further details on this issue you are referred to Section 32.8.

The Violation-

Penalty

attribute

With the ViolationPenalty attribute you can instruct Aimms to automatically

add artificial terms to the constraints of your mathematical program to help

resolve and/or track infeasibilities in your mathematical program. Infeasibility

analysis and the use of the ViolationPenalty attribute is discussed in full detail

in Section 15.4.

15.2 Suffices and callbacks

SufficesA mathematical program has a number of suffices which can be used for vari-

ous purposes. Typical examples are:

Chapter 15. Solving Mathematical Programs 232

Type Description

lp linear program

ls linear system

qp quadratic program

nlp nonlinear program

nls nonlinear system

mip mixed integer program

rmip relaxed mixed integer program

minlp mixed integer nonlinear program

rminlp relaxed mixed integer nonlinear program

qp quadratic program

miqp mixed integer quadratic program

qcp quadratic constraint program

miqcp mixed integer quadratic constraint program

network pure network program

mcp mixed complementarity program

mpcc mathematical program with complementarity constraint

Table 15.2: Available model types with Aimms

� To obtain information about the solution process. This information is

filled in by the solver at the end of the solution process. These suffixes

are presented in Table 15.3.

� To determine when and how to activate a callback procedure. This in-

formation can be filled in between solution steps. See also Chapter 16

where an alternative method for callbacks is presented. These suffixes

are presented in Table 15.4.

� To get statistics of the generated mathematical program. These statis-

tics are determined when the generated mathematical program is con-

structed. These suffixes are presented in Table 15.5.

Solver callbacksAfter each iteration the external solver calls back to the Aimms system to offer

Aimms the opportunity to take control. Aimms, in turn, allows you to execute a

procedure which is referred to as a callback procedure. Once the callback pro-

cedure has finished, the control is returned to the external solver to continue

with the next iteration. By including a callback procedure you can perform

several tasks such as:

� inspect the current status of the solution process,

� update one or more model parameters, which can be used, for instance,

to provide a graphical overview of the solution process,

� retrieve (part of) the current solution, and

� abort the solution process, and

Chapter 15. Solving Mathematical Programs 233

Suffix Meaning

Objective Current objective value

Incumbent Current incumbent value

BestBound Best bound on objective value

ProgramStatus Current program status

SolverStatus Current solver status

Iterations Current number of iterations

Nodes Current number of nodes

(mip, miqp, and miqcp only)

GenTime Current generation time in [second]

SolutionTime Current solution time in [second]

NumberOfBranches Number of nodes visited by a CP solver

NumberOfFails Number of leaf nodes without

solution in a CP search tree

NumberOfInfeasibilities Final number of infeasibilities

SumOfInfeasibilities Final sum of the infeasibilities

Table 15.3: Suffices of a mathematical program filled by the solver

You can nominate any procedure as a callback procedure by assigning its name

to the suffix CallbackProcedure of the associated mathematical program as in:

TransportModel.CallbackProcedure := ’MyCallbackProcedure’ ;

Note that values assigned to the suffix CallbackProcedure or any of the other

suffices holding the name of a callback procedure, must be elements of the

predefined set AllProcedures. Therefore, if you assign a literal procedure name

to such a suffix, you should make sure to quote it, as illustrated in the example

above.

When activatedCallback procedures under your control may cause a considerable computa-

tional overhead, and should only be activated when necessary. To give you

control of the frequency of callbacks, Aimms provide three separate suffices to

trigger a callback procedure. Specifically, a callback procedure can be called

� after a specified number of iterations,

� after a specified number of seconds,

� after a change of status of the solution process, or

� at every new incumbent during the solution process of a mixed integer

program.

Activated after

iterations

With the suffix CallbackIterations you can indicate after how many iterations

the callback procedure specified by the CallbackProcedure suffix must be called

again. If you specify the number 0 (default), no such callbacks will be made.

Chapter 15. Solving Mathematical Programs 234

Suffix Meaning

CallbackProcedure Name of callback procedure

CallbackIterations Return to callback after this

number of iterations

CallbackTime Name of callback procedure to be

called after some elapsed time

CallbackStatusChange Name of callback procedure to be

called after a status change

CallbackIncumbent Name of callback procedure to be

called for every new incumbent

CallbackAddCut Name of callback procedure to be

called to add additional cuts

(Cplex and Gurobi)

CallbackReturnStatus Return status of callback

CallbackAOA Name of AOA callback procedure

Table 15.4: Suffices of a mathematical program stated by the user

Activated after

time

With the suffix CallbackTime you specify the name of the callback procedure to

be called when a certain number of seconds has elapsed. When not specified

(the default), no such callbacks are made.

Activated after

status change

With the suffix CallbackStatusChange you specify the name of the callback pro-

cedure to be performed when the status of the solution process changes. When

not specified (the default), no such callbacks are made.

Activated after

new incumbent

With the suffix CallbackIncumbent you specify the name of the callback pro-

cedure to be performed when the solver finds a new incumbent during the

solution process of a mixed integer program. When not specified (the default),

no such callbacks are made.

Watch objective

values

During a callback procedure you can access various objective values as they

are reported by the solver during a mixed integer program through several

suffices of the mathematical program at hand. The following suffices provide

information about the objective values:

� through the suffix Incumbent you can obtain the objective value of the

best integer solution found so far,

� through the suffix BestBound you can obtain the best bound on the objec-

tive value during the branch-and-bound process, and

� through the suffix Objective you can obtain the current objective value

reported by the solver at the precise time of the callback.

For mixed integer programs the suffix Objective will be meaningless in most

cases during the solution process.

Chapter 15. Solving Mathematical Programs 235

Suffix Meaning

SolverCalls Total number of applied SOLVE’s

NumberOfConstraints Number of individual constraints

NumberOfVariables Number of individual variables

NumberOfNonzeros Number of nonzeros

NumberOfIntegerVariables Number of individual integer variables

NumberOfIndicatorConstraints Number of individual constraints

with an activating condition

NumberOfSOS1Constraints Number of individual SOS1 constraints

NumberOfSOS2Constraints Number of individual SOS2 constraints

NumberOfNonlinearConstraints Number of individual nonlinear

constraints

NumberOfNonlinearVariables Number of individual nonlinear

variables

NumberOfNonlinearNonzeros Number of nonlinear nonzeros

Table 15.5: Suffices of a mathematical program statistics from Aimms

Watch

intermediate

solution values

In a callback procedure you can access the current solution values of the vari-

ables in the mathematical program, and assign these to other identifiers in

your model. One possible use of this feature is to store multiple feasible inte-

ger solutions of a mixed integer linear program.

The procedure

RetrieveCur-

rentVariable-

Values

For some solvers there may be a considerable overhead involved to retrieve the

current variable values during the running solution process. Therefore, Aimms

will only do so when you explicitly call the procedure

RetrieveCurrentVariableValues(VariableSet)

With the VariableSet argument you can specify the subset of the set AllVari-

ables consisting of all (symbolic) variables for which you want the current

values to be retrieved. When you call this procedure outside the context of a

solver callback procedure, Aimms will produce a runtime error.

Adding

additional cuts

When you want to add additional cuts during the solution process of a mixed

integer program, you should install a callback procedure to generate these

constraints using the CallbackAddCut suffix. This procedure is called at every

node that has an LP-optimal solution with an objective function value below

the current cutoff and is integer infeasible. The procedure allows you to add

individual constraints using the GenerateCut(row, local) function. The row

argument should always be a scalar reference to an existing constraint name

in your model. The local argument should be a scalar binary that indicates

whether the cut is a local cut (value 1) or a global one (value 0). The local

argument is an optional argument, and has a default of 1.

Chapter 15. Solving Mathematical Programs 236

ExampleConsider a model with the following constraint.

Constraint Triangle_Cut {

IndexDomain : (i1,i2,i3) | (i1 < i2) and (i2 < i3);

Definition : x(i1) + x(i2) + x(i3) - y(i1,i2) - y(i1,i3) - y(i2,i3) <= 1;

}

Then the following piece of code, when specified as the procedure body of the

CallbackAddCut procedure, will only add those triangle cuts that are violated.

RetrieveCurrentVariableValues(AllVariables);

for ((i1,i2,i3) | (i1 < i2) and (i2 < i3)) do

if (x(i1) + x(i2) + x(i3) - y(i1,i2) - y(i1,i3) - y(i2,i3) > 1 + eps) then

GenerateCut(Triangle_Cut(i1,i2,i3), 1);

endif;

endfor;

Aborting the

solution process

When you want to abort the solution process, you can set the suffix Callback-

ReturnStatus to ’abort’ during the execution of your callback procedure, as

in:

TransportModel.CallbackReturnStatus := ’abort’ ;

After aborting the process, Aimms will retrieve the current solution and set the

final solver status to UserInterrupt.

ExampleConsider a mathematical program TransportModel which incorporates a call-

back procedure. The following callback procedure will abort the solution pro-

cess if the total solution time exceeded 1800 seconds, and if the progress is

less than 1% compared to the last nonzero objective function value.

if (TransportModel.SolutionTime > 1800 [second] and PreviousObjective and

(TransportModel.Objective - PreviousObjective) < 0.01*PreviousObjective)

then

TransportModel.CallbackReturnStatus := ’abort’;

else

PreviousObjective := TransportModel.Objective;

endif;

Solver and

program status

Both the ProgramStatus and the SolverStatus suffix take their value in the pre-

defined set AllSolutionStates presented in Table 15.6.

15.3 The SOLVE statement

The SOLVE

statement

With the SOLVE statement you can instruct Aimms to compute the solution of a

MathematicalProgram, resulting in the following actions.

� Aimms determines which solution method(s) are appropriate, and checks

whether the specified type is also appropriate.

Chapter 15. Solving Mathematical Programs 237

Program status Solver status

ProgramNotSolved SolverNotCalled

Optimal NormalCompletion

LocallyOptimal IterationInterrupt

Unbounded ResourceInterrupt

Infeasible TerminatedBySolver

LocallyInfeasible EvaluationErrorLimit

IntermediateInfeasible Unknown

IntermediateNonOptimal UserInterrupt

IntegerSolution PreprocessorError

IntermediateNonInteger SetupFailure

IntegerInfeasible SolverFailure

InfeasibleOrUnbounded InternalSolverError

UnknownError PostProcessorError

NoSolution SystemFailure

Table 15.6: Mathematical program and solver status

� Aimms then generates the Jacobian matrix (first derivatives of all the con-

straints), the bounds on all variables and constraints, and an objective

where appropriate.

� Aimms communicates the problem to an underlying solver that is able to

perform the chosen solution method.

� Aimms finally reads the computed solution back from the solver.

SyntaxIn addition to initiating the solution process of a MathematicalProgram, you can

also use the SOLVE statement to provide local overrides of particular Aimms

settings that influence the way in which the solution process takes place. The

syntax of the SOLVE statement follows.

solve-statement :

SOLVE identifier IN REPLACE

MERGE

MODE

WHERE option := expression

,

;

Replace and

merge mode

You can instruct Aimms to read back the solution in either replace or merge

mode. If you do not specify a mode, Aimms assumes replace mode. In re-

place mode Aimms will, before reading back the solution of the mathematical

Chapter 15. Solving Mathematical Programs 238

program, remove the values of the variables in the Variables set of the mathe-

matical program for all index tuples except those that are fixed

� because they are not within their current domain (i.e. inactive),

� through the NonvarStatus attribute or the .NonVar suffix of the variable,

� because they are outside the planning interval of a Horizon (see Sec-

tion 33.3), or

� because their upper and lower bounds are equal.

In merge mode Aimms will only replace the individual variable values involved

in the mathematical program. This mode is very useful, for instance, when you

are iteratively solving subproblems which correspond to slices of the symbolic

variables in your model.

Infeasible and

unbounded

problems

Whenever the invoked solver finds that a mathematical program is infeasible

or unbounded, Aimms will assign one of the special values na, inf or -inf to the

objective variable. For you, this will serve as a reminder of the fact that there

is a problem even when you do not check the ProgramStatus and SolverStatus

suffices. For all other variables, Aimms will read back the last values computed

by the solver just before returning with infeasibility or unboundedness.

Temporary

option settings

Sometimes you may need some temporary option settings during a single SOLVE

statement. Instead of having to change the relevant options using the OPTION

statement and set them back afterwards, Aimms also allows you to specify

values for options that are used only during the current SOLVE statement. The

syntax is similar to that of the OPTION statement.

Also for

attributes

Apart from specifying temporary option settings you can also use the WHERE

clause to override the type and direction attributes specified in the declaration

of the mathematical program, as well as the solver to use for the solution

process.

ExampleThe following SOLVE statement selects ’cplex’ as its solver, sets the model type

to ’rmip’, and sets the Cplex option LpMethod to ’Barrier’.

solve TransportModel in replace mode

where solver := ’cplex’,

type := ’rmip’,

LpMethod := ’Barrier’ ;

15.4 Infeasibility analysis

Infeasibility

analysis

One of the more daunting tasks in mathematical programming is to find the

cause of an infeasible mathematical program. Such infeasibilities may occur

� either when you are developing a new model due to modeling errors,

Chapter 15. Solving Mathematical Programs 239

� or in a complete (and well-tested), model-based, end-user application em-

ployed by your customers due to inconsistencies in the model data.

Infeasibilities

due to modeling

errors

There are several types of modeling errors that you can make during the de-

velopment of a mathematical program that can lead to hard-to-explain infeasi-

bilities. The most common are:

� simple typing errors, leading, for instance, to a wrong variable being

referenced in a constraint,

� a logical flaw in the model formulation, i.e. the formulation of one or

more constraints just makes no sense,

� the domain restriction of a constraint is not restrictive enough, i.e. con-

straints are generated that should not be generated,

� the domain restriction of a variable is wrong, leading to too many or too

few terms being generated in constraints referring to such a variable, or

� the restriction in iterative operators (such as SUM or PROD) in the definition

of constraints or defined variables is wrong, leading to too many or too

little terms being generated in that particular constraint.

In general, trying to find infeasibilities that occur during model development

may force you to generate a constraint listing of your mathematical program

and carefully examine the generated constraints in order to find the modeling

error.

Infeasibilities

due to data

inconsistencies

Even when the formulation of a mathematical program is internally consistent,

and shipped as an end-user application to your customers, infeasibilities may

occur due to inconsistencies in the model data. The most common data errors

are:

� inconsistencies in the structural data defining the topology of a model,

e.g. in a network model a demand node may have been added for which

no incoming arcs have been specified, or

� inconsistencies in the quantitive model data, e.g. to total demand exceeds

the total supply.

While most data inconsistencies may be detected by methodically checking the

consistency all input data prior to actually solving the mathematical program

(for example, by using Assertions, see also Section 25.2), it is often hard to

cover all possible data inconsistencies.

Adding excess

variables

A commonly used approach to try and deal with infeasibilities, is to add ex-

plicit excess variables to all or some constraints in a model, along with a

penalty term in the objective that will keep all excess variables equal to 0 if

the model is feasible. If this procedure is executed properly, the modified

mathematical program will always be feasible, while the original mathematical

program is feasible if and only if the excess variables are all equal to 0. In the

Chapter 15. Solving Mathematical Programs 240

case of an infeasibility, an examination of the excess variables may provide

useful information about the cause of infeasibility.

Laborious

procedure

While adding excess variables to your model may certainly help you to resolve

any infeasibilities, the process of manually adding these excess variables to a

mathematical program is laborious and error-prone:

� you have to add the declarations of the excess variables for all (or some)

constraints in your model,

� the selected constraints have to be modified to include these excess vari-

ables, and

� the objective has to be modified to include the excess-related penalty

terms.

In addition, adding excess variables may considerably increase the size of the

generated matrix, so you may want to write supporting code to exclude the

excess variables from your mathematical program unless you encounter an

infeasibility.

15.4.1 Adding infeasibility analysis to your model

The Violation-

Penalty

attribute

To ease the manual process described above, Aimms offers support to auto-

matically extend your mathematical program with excess variables during the

generation of the matrix for the solver. You enable this feature through the

ViolationPenalty attribute of a MathematicalProgram declaration. The value of

the ViolationPenalty attribute must be either a

� 1-dimensional parameter with index domain AllVariablesConstraints, or

� 2-dimensional parameter defined over AllVariablesConstraints and All-

ViolationTypes.

The predefined set AllVariablesConstraints is a subset of the set AllIdenti-

fiers and contains the names of all the variables and constraints in your

model. Through one of these two types of parameters you can specify for

which variables and constraints in your mathematical program Aimms must

generate excess variables, as well as the penalty coefficient of these excess

variables in the modified objective.

The set AllVio-

lationTypes

The predefined set AllViolationTypes is a fixed set containing the three types

of possible violations for which Aimms can generate excess variables. The

elements in the set AllViolationTypes are

� Lower: generate excess variables for the violation of a lower bound,

� Upper: generate excess variables for the violation of an upper bound, and

� Definition: generate excess variables for the violation of the equality

between a defined variable and its definition.

Chapter 15. Solving Mathematical Programs 241

Interpretation

of Violation-

Penalty

attribute

If a parameter you entered in the ViolationPenalty attribute contains no data,

Aimms will generate the mathematical program without any generated excess

variables. If you specify a 2-dimensional parameter which is not empty, all

values must be nonnegative or assume the special value ZERO (see also Sec-

tion 6.1.1), and Aimms will interpret its contents as follows.

Penalty for

objective

variable

The modified objective will include the original objective, unless a value of

ZERO has been assigned to Definition violation type for the original objective

variable. Aimms will treat any other penalty value than ZERO assigned to the

objective variable as 1.0! Note that by including the original objective the pe-

nalized mathematical program may become unbounded.

Penalty for

constraints

Aimms will add nonnegative excess variables for the violation of a (finite) lower

and/or upper bound of every constraint for which a penalty value other than

0.0 has been specified for the Lower and/or Upper violation type, respectively.

If a bound is infinite, no corresponding excess variable will be generated. A

penalty term will be added to the modified objective consisting of the prod-

uct of the specified (nonnegative) penalty coefficient times the excess variable

associated with the constraint, unless a penalty of ZERO has been specified in

which case the corresponding term will not be added to the modified objective.

Penalty for

variables

Aimms will add nonnegative excess variables for the violation of a (finite) lower

and/or upper bound of every variable for which a penalty value other than 0.0

has been specified for the Lower and/or Upper violation type, respectively. If a

bound is infinite, no corresponding excess variable will be generated. A penalty

term will be added to the modified objective consisting of the product of the

specified (nonnegative) penalty coefficient times the excess variable associated

with the variable, unless a penalty of ZERO has been specified in which case the

corresponding term will not be added to the modified objective. The effect

of using Lower and/or Upper violations is that the variable can assume values

outside their bounds throughout the mathematical program.

Penalty for

variable

definitions

Aimms will add nonnegative excess variables for the violation of the equal-

ity between a defined variable and its definition for every defined variable for

which a penalty value other than 0.0 has been specified for the Definition vio-

lation type. A penalty term will be added to the modified objective consisting

of the product of the specified (nonnegative) penalty times the excess vari-

able(s) associated with the constraint expressing the equality, unless a penalty

of ZERO has been specified in which case the corresponding term(s) will not be

added to the modified objective.

Chapter 15. Solving Mathematical Programs 242

Definition

versus

lower/upper

violations

You can both use the Lower and/or Upper violation types and Definition vi-

olation type to compensate for a violation between the value of the defined

variable and its definition. However, when you use the Definition violation

type, the value of the variable will remain within its specified bounds through-

out the mathematical program. It is up to you to decide which violation type

suits your needs best for a particular defined variable.

Interpretation

of 1-dimension-

al parameter

If you specify a 1-dimensional parameter for the ViolationPenalty attribute,

Aimms will interpret this parameter as if it were a 2-dimensional parameter,

with the same value for all three violation types Lower, Upper and Definition.

15.4.2 Inspecting your model for infeasibilities

Finding

violations

After you have let Aimms extend your model with excess variables to find an

infeasibility, you must inspect the variables and constraints in your model to

find the violations. Aimms allows you to do this through the use of two suffices,

the .Violation suffix and the .DefinitionViolation suffix.

The .Violation

suffix. . .

The .Violation suffix denotes the amount by which a variable or constraint

violates its lower or upper bound. If you have specified a nonzero violation

penalty for the Upper violation type, the .Violation suffix can assume positive

values, while it can assume negative values whenever you have specified a

nonzero violation penalty for the Lower violation type.

. . . for variablesFor variables the .Violation suffix denotes the amount by which the variable

violates its

� upper bound (if the suffix assumes a positive value), or

� lower bound (if the suffix assumes a negative value).

. . . for

constraints

For constraints the .Violation suffix denotes the amount by which the con-

straint violates its

� upper bound (if the suffix assumes a positive value),

� lower bound (if the suffix assumes a negative value, for ranged con-

straints).

If the constraint is an equality constraint, the .Violation suffix denotes the

(positive or negative) amount by which the left hand side differs from the (con-

stant) right hand side.

Chapter 15. Solving Mathematical Programs 243

The

.Definition-

Violation suffix

With the .DefinitionViolation suffix, you can locate violations in the defini-

tions of defined variables for which you have specified a positive penalty for

the Definition violation type. The value of the suffix denotes the (positive

or negative) amount by which the defined variable differs from its definition.

Note that a defined variable may violate both its bounds and its definition,

depending on the type of allowed violations you have specified.

Locating

violations

To locate violations in a model which was extended by Aimms with excess vari-

ables, you may use the Card function to locate variables and constraints with

nonzero .Violations suffices. The following example shows how to proceed,

where v is assumed to be an index in AllVariables.

for (v | Card(v, ’Violation’})) do

! Take any action that you want to perform on this violated variable

endfor;

15.4.3 Application to goal programming

Goal program-

ming . . .

In goal programming a distinction is made between hard constraints that can-

not be violated and soft constraints, which represent goals or targets one would

like to achieve. The objective function in goal programming is to minimize the

weighted sum of deviations from the goals set by the soft constraints.

. . . interpreted

as violations

In Aimms, goal programming can be easily implemented using the Violation-

Penalty attribute of a mathematical program, without the need to modify the

formulation of all soft constraints. For each soft constraint in your goal pro-

gramming model, you can assign the appropriate weight to the Violation-

Penalty attribute to penalize deviations from the set target for that constraint.

Inspecting

deviations

Through the .Violation suffix of constraints and variables you can inspect the

deviations from the goals of the soft constraints in your goal programming

model.

Chapter 16

Implementing Advanced Algorithms for

Mathematical Programs

Control over the

solution process

The SOLVE statement discussed in Section 15.3 offers a convenient way to ex-

ecute all necessary steps to generate and solve a single instance of a mathe-

matical program in one simple statement. For most applications, this level of

control over the individual steps required to execute the generation and solu-

tion process is sufficient. However, for advanced applications, you may need a

finer-grained level of control, e.g. to

� work with multiple, differing, instances of a single symbolic mathemati-

cal program,

� manipulate the individual rows and columns and the coefficient matrix of

a mathematical program instance, for example to efficiently implement

a column generation scheme,

� work with a repository of solutions associated with a mathematical pro-

gram instance, for instance as a means to store multiple starting solu-

tions or, within a solver callback, to setup and update a collection of

incumbents of a mixed integer model, or

� start multiple solver sessions for a mathematical program instance, ei-

ther locally or remotely.

This chapterThis chapter describes a library of procedures that offers you fine-grained con-

trol over the generation, manipulation and solution of a mathematical program

instance, and allows you to manage a collection of solutions and solver ses-

sions associated with such mathematical program instances. As you will see

later on, the SOLVE statement can be completely expressed in terms of the pro-

cedures in this library.

16.1 Introduction to the gmp library

IntroductionWith every MathematicalProgram declared as part of your model, the gmp library

allows you to associate

� one or more Generated Math Program instances (GMPs),

and with each GMP

Chapter 16. Implementing Advanced Algorithms for Mathematical Programs 245

� a conceptual matrix of coefficients that can be manipulated,

� a repository of initial, intermediate or final solutions, and

� a pool of local or remote solver sessions.

Figure 16.1 illustrates the interrelationship between symbolic mathematical

programs and the concepts of the gmp library, as well as the main properties

that can be associated with each of them.

� symbolic variables

� symbolic constraints

Symbolic MP ∈ AllMathematicalPrograms

� generated columns

� generated rows

� generated matrix coefficients

� mapping to symbolic variables and constraints

Matrix

Solution repository ⊆ Integers

� solution status

� level values

� [basis information]

� [marginals]
� . . .

Solution 1

� . . .

� . . .
� . . .

� . . .

� . . .

Solution 2

. . .

Solver session pool ⊆ AllSolverSessions

� solver process specification

� solver option settings

Solver session 1

. . .

Generated MP ∈ AllGeneratedMathematicalPrograms

Figure 16.1: Concepts associated with a GMP

Chapter 16. Implementing Advanced Algorithms for Mathematical Programs 246

Generated

mathematical

program

instances

For every MathematicalProgram declaration in your model, modifications in the

index sets and input data referenced in constraints and variable definitions

may give rise to completely different instances of the coefficient matrix when

the mathematical program at hand is being generated.

An example:

indexed

instances

An illustrative example of such differing instances occurs when the constraints

and variables of a symbolic mathematical program are indexed over a subset

of some other superset. If you let the subset contain a single element of the su-

perset, the generated instances will be completely different for each element of

the superset. The effect of changing the contents of the subset in this manner,

would almost compare to having an indexed MathematicalProgram declaration

(which Aimms does not support). In the worked example of Section 16.13.1

you will see, however, how you can obtain an indexed collection of generated

mathematical program instances using the gmp library.

Need for

multiple

instances

With the standard SOLVE statement (see Section 15.3) you only have access to

a single generated mathematical program instance for every symbolic mathe-

matical program, namely the instance associated with the last call to the SOLVE

statement for that particular mathematical program. This effectively elimi-

nates the capability to efficiently implement an algorithm which requires the

interaction between two or more generated instances of the same symbolic

mathematical program. For this reason, the gmp library allows you to main-

tain and work with a collection of generated mathematical program instances

simultaneously.

Matrix

manipulation

The gmp library also allows you to manipulate the rows, columns and coef-

ficients of the matrix of a mathematical program instance once it has been

generated. If the number of modifications is relatively small, manipulating

the matrix directly will save a considerable amount of time compared to let-

ting Aimms completely regenerate the matrix again through the standard SOLVE

statement. You can use matrix manipulation, for instance

� to quickly add columns, and adapt the existing rows of the matrix ac-

cordingly, in a column generation scheme, or

� to dynamically add cuts to a mixed integer linear program.

Keeping

multiple

solutions

With the standard SOLVE statement, you only have access to a single solution

of a mathematical program, namely the one stored in the symbolic variables

and constraints that make up the mathematical program. There are, however,

many situations where it would be convenient to have access to a repository

of solutions. A solution repository can be used, for instance

� to store a collection of starting solutions for a NLP or MINLP problem.

Solving the problem, in either a serial or parallel manner, with each of

these starting solutions may help you find a better solution than by sim-

ply solving the problem with only a single starting solution.

Chapter 16. Implementing Advanced Algorithms for Mathematical Programs 247

� during the solution process of a mixed integer program, if you are inter-

ested in other integer solutions than the final solution returned by the

solver. You can use the solution repository to store a fixed size collec-

tion of the best incumbent solutions returned by the solver during the

solution process.

Solution

repository

The gmp library comes with a solution repository for each generated mathe-

matical program instance, and offers a number of functions to easily transfer

a solution from and to either

� the data of the variables and constraints that make up the associated

mathematical program in your model, or

� any solver session (explained below) associated with the generated math-

ematical program instance.

In fact, in the gmp library there is no direct solution/starting point transfer

between a solver and the model, but such transfer always takes place through

the solution repository.

Solver session

pool

The final concept that is part of the gmp library is that of solver sessions.

In principle, the gmp library is prepared to allow a generated mathematical

program instance to keep a pool of associated solver sessions, each possibly

set up with a different solver, or with different solver settings, and to be run

either locally or remotely.

When usefulUsing multiple solver session it becomes possible, for example, to let the same

(or another) solver with different solver settings solve a mixed integer program

instance in parallel, and pass tighter bound information found by one solver

session to the other sessions by means of a callback implemented in your

model.

GMP namespaceTo prevent naming conflicts, all functions and procedure in the gmp library

are member of the predefined GMP namespace. The GMP namespace is further

partitioned into the namespaces

� GMP::Instance,

� GMP::Row,

� GMP::Column,

� GMP::Coefficient,

� GMP::Event,

� GMP::QuadraticCoefficient,

� GMP::Solution,

� GMP::SolverSession,

� GMP::Stochastic,

� GMP::Robust,

� GMP::Benders,

Chapter 16. Implementing Advanced Algorithms for Mathematical Programs 248

� GMP::Linearization, and

� GMP::ProgressWindow.

In the following sections we will discuss the procedures and functions con-

tained in each of these namespaces.

Return valuesWhen using the gmp library, it may be particularly important to check for any

kind of error conditions that can occur. To help you catch such errors, the

procedures and functions in the GMP namespace either return

� a 1 when successful, or 0 otherwise (for procedures), or

� a non-empty element in one of the gmp-related predefined sets when

successful, or the empty element otherwise (for functions).

Note that, for the sake of brevity, most of the examples in this chapter do not

perform error checking of any kind.

16.2 Managing generated mathematical program instances

Managing math

program

instances

The procedures and functions of the GMP::Instance namespace are listed in Ta-

ble 16.1 and take care of the creation and management of generated mathemat-

ical program instances. Mathematical program instances also provide access

to the solution repository and solver sessions associated with the instance.

Creation of

mathematical

program

instances

New mathematical program instances can be created by calling

� the SOLVE statement,

� the GMP::Instance::Generate function,

� the GMP::Instance::GenerateRobustCounterpart function,

� the GMP::Instance::GenerateStochasticProgram function,

� the GMP::Instance::Copy function,

� the GMP::Instance::CreateDual function,

� the GMP::Instance::CreateFeasibility function,

� the GMP::Instance::CreatePresolved function,

� the GMP::Instance::CreateMasterMIP function,

� the GMP::Stochastic::CreateBendersRootproblem function,

� the GMP::Stochastic::BendersFindFeasibilityReference function, or

� the GMP::Stochastic::BendersFindReference function.

Chapter 16. Implementing Advanced Algorithms for Mathematical Programs 249

Generate(MP, name)→AllGeneratedMathematicalPrograms

Copy(GMP, name)→AllGeneratedMathematicalPrograms

Rename(GMP, name)

Delete(GMP)

GenerateRobustCounterpart(MP, UncertainParameters, UncertaintyConstraints

[, Name])→AllGeneratedMathematicalPrograms

GenerateStochasticProgram(MP, StochasticParameters, StochasticVariables,

Scenarios, ScenarioProbability, ScenarioTreeMap, RootScenario

[, GenerationMode][, Name])→AllGeneratedMathematicalPrograms

CreateMasterMIP(GMP, name)→AllGeneratedMathematicalPrograms

FixColumns(GMP1, GMP2, solNr, varSet)

AddIntegerEliminationRows(GMP, solNr, elimNo)

DeleteIntegerEliminationRows(GMP, elimNo)

CreateDual(GMP, name)→AllGeneratedMathematicalPrograms

CreateFeasibility(GMP[, name][, useMinMax])→AllGeneratedMathematicalPrograms

CreatePresolved(GMP, name)→AllGeneratedMathematicalPrograms

GetSymbolicMathematicalProgram(GMP)→AllMathematicalPrograms

GetNumberOfRows(GMP)

GetNumberOfColumns(GMP)

GetNumberOfNonzeros(GMP)

GetDirection(GMP)→AllMathematicalProgrammingDirections

SetDirection(GMP, dir)

GetOptionValue(GMP, OptionName)

SetOptionValue(GMP, OptionName, Value)

CreateProgressCategory(GMP[, Name])→AllProgressCategories

GetMathematicalProgrammingType(GMP)→AllMathematicalProgrammingTypes

SetMathematicalProgrammingType(GMP, type)

GetSolver(GMP)→AllSolvers SetSolver(GMP, solver)

SetCallbackAddCut(GMP, CB) SetCallbackAddLazyConstraint(GMP, CB)

SetCallbackBranch(GMP, CB) SetCallbackCandidate(GMP, CB)

SetCallbackIncumbent(GMP, CB) SetCallbackStatusChange(GMP, CB)

SetCallbackHeuristic(GMP, CB) SetCallbackIterations(GMP, CB, nrIters)

SetCallbackTime(GMP, CB)

SetIterationLimit(GMP, nrIters) SetMemoryLimit(GMP, nrMB)

SetTimeLimit(GMP, nrSeconds) SetCutoff(GMP, value)

Solve(GMP)

FindApproximatelyFeasibleSolution(GMP, sol1, sol2, nrIter[, maxIter][, feasTol]

[, moveTol][, imprTol][, maxTime][, useSum][, augIter][, useBest])

GetObjective(GMP)

GetBestBound(GMP)

GetMemoryUsed(GMP)

MemoryStatistics(GMPSet, OutputFileName[, optional-arguments . . .])

GetColumnNumbers(GMP, varSet)→Integers

GetRowNumbers(GMP, conSet)→Integers

GetObjectiveColumnNumber(GMP)→Integers

GetObjectiveRowNumber(GMP)→Integers

DeleteMultiObjectives(GMP)

CreateSolverSession(GMP[, Name][, Solver])→AllSolverSessions

DeleteSolverSession(solverSession)

Table 16.1: Procedures and functions in GMP::Instance namespace

Chapter 16. Implementing Advanced Algorithms for Mathematical Programs 250

All mathematical program instances created through each of these calls, are

uniquely represented by elements in the predefined set AllGeneratedMathemati-

calPrograms. For the functions in the GMP::Instance namespace creating GMPs

you can explicitly specify the name of the associated set element to be created.

When calling the SOLVE statement, Aimms will generate an element with the

same name as the MathematicalProgram at hand. When the name of the element

to be created is already contained in the set AllGeneratedMathematicalPrograms,

the mathematical program instance associated with the existing element will

be completely replaced by the newly created mathematical program instance.

Special math

programming

types

Stochastic programming and the use of the function GenerateStochasticProgram

is discussed in Section 19.4. Robust optimization and the use of the function

GenerateRobustCounterpart is explained in Section 20.5. The functionality of the

CreateDual function is explained in more detail in Section 16.2.1. The function

CreateMasterMIP is used by the Aimms Outer Approximation solver, which is

discussed in full detail in Chapter 18. Presolving of mathematical programs is

discussed in Section 17.1.

Deleting and

renaming

instances

Through the procedures GMP::Instance::Delete and GMP::Instance::Rename you

can delete and rename mathematical program instances and their associated

elements in the set AllGeneratedMathematicalPrograms. If you rename a mathe-

matical program instance to a name that already exists in the set AllGenerated-

MathematicalPrograms, the associated mathematical program instance will be

deleted prior to renaming.

CLEANDEPEN-

DENTS

statement

Note that also the CLEANDEPENDENTS statement may remove mathematical pro-

gram instances from memory when it affects any constraint or variable refer-

enced by that instance.

Retrieving and

setting basic

properties

Through the functions

� GMP::Instance::GetSymbolicMathematicalProgram,

� GMP::Instance::GetNumberOfRows,

� GMP::Instance::GetNumberOfColumns,

� GMP::Instance::GetNumberOfNonzeros,

� GMP::Instance::GetDirection, and

� GMP::Instance::GetMathematicalProgrammingType

you can retrieve the current value of some basic properties of a mathematical

program instance. The number of rows, columns and nonzeros can be changed

by manipulating the matrix of the mathematical program instance (see also

Section 16.3). You can use the functions

� GMP::Instance::SetDirection, and

� GMP::Instance::SetMathematicalProgrammingType

Chapter 16. Implementing Advanced Algorithms for Mathematical Programs 251

to modify the optimization direction and mathematical programming type.

The type of a mathematical program must be a member of the set Mathemati-

calProgrammingTypes (see also section 15.1) The direction associated with a

mathematical program is either

� ’maximize’,

� ’minimize’, or

� ’none’.

The direction ’none’ is the instruction to the solver to find a feasible solution.

Installing

callbacks

For each mathematical program instance, you can set up to six callback func-

tions that will be called by any solver session associated with the mathematical

program instance at hand. Through the following procedures you can install

or uninstall a callback function for a mathematical program instance.

� GMP::Instance::SetCallbackAddCut

� GMP::Instance::SetCallbackAddLazyConstraint

� GMP::Instance::SetCallbackBranch

� GMP::Instance::SetCallbackCandidate

� GMP::Instance::SetCallbackIncumbent

� GMP::Instance::SetCallbackStatusChange

� GMP::Instance::SetCallbackHeuristic

� GMP::Instance::SetCallbackIterations

� GMP::Instance::SetCallbackTime

Each of these procedures expects an element of the set AllProcedures, or an

empty element ’’ to uninstall the callback.

Callback

procedures

Callback procedures for each type of callback should be declared as follows:

AnExampleCallback(solverSession)

where the solverSession argument should be a scalar input element parameter

into the set AllSolverSessions. Callback procedures should have a return value

of

� 0, if you want the solver session to stop, or

� 1, if you want the solver session to continue.

As discussed before, each solver session can be uniquely associated with a sin-

gle mathematical program instance. You can find this instance by calling the

function GMP::SolverSession::GetInstance (see also Section 16.5), and, within

the callback procedure, use this instance to get access to its associated prop-

erties.

Chapter 16. Implementing Advanced Algorithms for Mathematical Programs 252

ExampleThe following example implements a callback procedure for the incumbent

callback. The callback procedure finds the associated mathematical program

instance, and stores all incumbents reported by the solver into the next solu-

tion of the solution repository.

Procedure IncumbentCallBack {

Arguments : solvSess;

Body : {

theGMP := GMP::SolverSession::GetInstance(solvSess);

GMP::Solution::RetrieveFromSolverSession(solvSess, solutionNumber(theGMP));

solutionNumber(theGMP) += 1;

return 1; ! continue solving

}

}

Note that the callback procedure uses the GMP::Solution::RetrieveFromSolver-

Session function (discussed in Section 16.4) to retrieve the solution from the

solver.

Solving

mathematical

program

instances

In contrast to the SOLVE statement, the philosophy behind the gmp library is to

break down the optimization functionality in Aimms to a level which offers op-

timum support for implementing advanced algorithms around a Mathematical-

Program in your model. One of the consequences of this philosophy is that the

solution is never directly transferred between the symbolic variables and con-

straints and the solver, but is intermediately stored in a solution repository.

Therefore, solving a MathematicalProgram using the gmp library breaks down

into the following basic steps:

1. generate a mathematical program instance for the MathematicalProgram,

2. create a solver session for the mathematical program instance,

3. transfer the initial point from the model to the solution repository,

4. transfer the initial point from the solution repository to the solver ses-

sion,

5. let the solver session solve the problem,

6. transfer the final solution from the solver session to the solution reposi-

tory, and

7. transfer the final solution from the solution repository to the model.

Solving the

instance directly

For your convenience, however, the gmp library contains a procedure

� GMP::Instance::Solve

which, given a generated mathematical program instance, takes care of all

intermediate steps (i.e. steps 2-7) necessary to solve the mathematical pro-

gram instance. In case you need access to the solution in the solution repos-

itory after calling the GMP::Instance::Solve call, you should notice that the

GMP::Instance::Solve procedure (as well as the SOLVE statement) performs all

of its solution transfer through the fixed solution number 1 in the solution

repository.

Chapter 16. Implementing Advanced Algorithms for Mathematical Programs 253

Emulating the

SOLVE statement

The following Aimms code provides an emulation of the SOLVE statement in

terms of GMP::Instance functions.

! Generate an instance of the mathematical program MPid and add

! the element ’MPid’ to the set AllGeneratedMathematicalPrograms.

! This element is returned into the element parameter genGMP.

genGMP := GMP::Instance::Generate(MPid, FormatString("%e", MPid));

! Actually solve the problem using the solve procedure for an

! instance (which communicates through solution number 1).

GMP::Instance::Solve(genGMP);

Multistart

support

The function FindApproximatelyFeasibleSolution is used by the Aimms multi-

start algorithm (see Section 17.2) to compute an approximately feasible so-

lution for an NLP problem. The algorithm used by this function to find the

approximately feasible solution is described in [Ch04].

Creating solver

sessions

For each generated mathematical program instance, you can explicitly create

and delete one or more solver sessions using the following functions:

� GMP::Instance::CreateSolverSession, and

� GMP::Instance::DeleteSolverSession.

Once created, you can use the solver session to solve the generated mathemat-

ical program

� in a blocking manner by calling the GMP::SolverSession::Execute func-

tion, or

� in a non-blocking manner by calling the GMP::SolverSession::Asynchro-

nousExecute function.

Prior to calling the GMP::SolverSession::Execute or GMP::SolverSession::Asyn-

chronousExecute functions, you should call the function GMP::Solution::Send-

ToSolverSession to initialize the solver session with a solution stored in the

solution repository. Using an explicit solver session allows you, for instance,

to solve an NLP problem with several initial solutions stored in the solution

repository.

Multiple sessions

allowed

Aimms allows you to create multiple solver sessions per mathematical program

instance, and solve them in parallel. You can solve multiple mathematical pro-

gram instances in parallel, by calling the function GMP::SolverSession::Asyn-

chronousExecute multiple times. The function starts a separate thread of ex-

ecution to solve the math program instance asynchronously, and returns im-

mediately. To solve multiple mathematical program instances in parallel, your

computer should have multiple processors or a multi-core processor.

Chapter 16. Implementing Advanced Algorithms for Mathematical Programs 254

Deleting solver

sessions

Once the function GMP::SolverSession::Execute or GMP::SolverSession::Asyn-

chronousExecute has been called, the internal solver representation of the math-

ematical program instance will be created. The solver representation will

only be deleted—and its associated resources freed—when the corresponding

solver session has been deleted by calling the function GMP::Instance::Delete-

SolverSession.

Implementing

the procedure

GMP::Instance::

Solve

The GMP:Instance::Solve procedure discussed previously can be emulated us-

ing solver sessions, as illustrated in the equivalent code below.

! Create a solver session for genMP, which will create an element

! in the set AllSolverSessions, and assign the newly created element

! to the element parameter session.

session := GMP::Instance::CreateSolverSession(genMP);

! Copy the initial solution from the variables in AIMMS to

! solution number 1 of the generated mathematical program.

GMP::Solution::RetrieveFromModel(genMP,1);

! Send the solution stored in solution 1 to the solver session

GMP::Solution::SendToSolverSession(session, 1);

! Call the solver session to actually solve the problem.

GMP::SolverSession::Execute(session);

! Copy the solution from the solver session into solution 1.

GMP::Solution::RetrieveFromSolverSession(session, 1);

! Store this solution in the AIMMS variables and constraints.

GMP::Solution::SendToModel(genMP, 1);

Setting default

solver session

limits

You can use the following procedures to set various default limits that apply

to all solver sessions created through GMP::Instance::CreateSolverSession.

� GMP::Instance::SetIterationLimit

� GMP::Instance::SetMemoryLimit

� GMP::Instance::SetTimeLimit

� GMP::Instance::SetCutoff

Setting

GMP-specific

options

For every GMP you can override the default project options using the function

GMP::Instance::SetOptionValue. You can also set options for a specific solver

session associated with a GMP through the function GMP::SolverSession::Set-

OptionValue. In turn, option values set for a specific solver session override the

option values for the associated GMP.

Setting the

default solver

Similarly, you can get and set the default solver that will be used by all solver

sessions created through GMP::Instance::CreateSolverSession.

� GMP::Instance::GetSolver

� GMP::Instance::SetSolver

Chapter 16. Implementing Advanced Algorithms for Mathematical Programs 255

Outer

approximation

support

Through the functions

� GMP::Instance::CreateMasterMIP

� GMP::Instance::FixColumns

� GMP::Instance::AddIntegerEliminationRows

� GMP::Instance::DeleteIntegerEliminationRows

the gmp library offers support for solving mixed integer nonlinear (MINLP)

problems using a white box outer approximation approach. The Aimms Outer

Approximation solver is discussed in full detail in Chapter 18.

16.2.1 Dealing with degeneracy and non-uniqueness

BackgroundWhen solving a mathematical program, some practical difficulties may arise

when the optimal solution of the underlying model is either degenerate and/or

not unique (i.e. there are multiple optimal solutions). These difficulties may

concern both the primal and dual solution (i.e. the shadow prices).

Problems with

degeneracy

In the case of degeneracy (see also Section 4.2 of the Aimms Modeling Guide

for an explanation), the solution status of one or more variables is “basic at

bound”. In the presence of degeneracy, shadow prices are no longer unique,

and their interpretation is therefore ambiguous. As a result, if the shadow

prices have an economic interpretation in the application, the particular sha-

dow prices found by the solver cannot be presented to the end-user in a mean-

ingful and reliable fashion.

Problems with

multiple

solutions

In the case of multiple solutions, the situation is even worse. There are multi-

ple optimal bases, and the associated shadow prices differ between these bases

(just as with degeneracy). In addition, the solution presented to the end-user

is no longer unique, which may raise questions by the end-user as to why a

particular solution is presented.

Degeneracy and

multiple

solutions

Both degeneracy and multiple solutions can occur at the same time, having

their combined effect on the non-uniqueness of both the primal and the dual

solution (the optimal shadow prices). The following two paragraphs present

possible solutions to deal with multiple primal and dual solutions.

Towards a

unique primal

solution

One way to deal with multiple solutions is to find a new and second objec-

tive function specifically designed to deal with eliminating the multiplicity of

solutions. This might be accomplished, for instance, by adding new sets of

variables and constraints to cap some aspect of the primal model, and the

maximum cap could then be minimized. Or perhaps a straightforward mod-

ification of the original objective function could become the second auxiliary

objective. It is important to note that this second objective function is opti-

Chapter 16. Implementing Advanced Algorithms for Mathematical Programs 256

mized only after the first objective function is fixed at its previous optimal

value and has been added as a constraint.

Implementing

primal

uniqueness

Using the functionality provided by the gmp library, constructing a second

objective function for a mathematical program is a straightforward task:

� generate and solve the original mathematical program,

� use the matrix manipulations procedures discussed in Section 16.3 to

create a new objective and fix the original one in the associated mathe-

matical program instance,

� resolve the modified mathematical program instance.

Towards a

unique dual

solution

In the presence of primal degeneracy and/or multiple primal solutions, it is im-

possible to influence the selection of shadow prices, as this decision is made by

the solver. To give the control back to you as a model developer, the only sen-

sible step is to go directly to the dual formulation, and work with the model

expressed in terms of shadow prices. It is then possible to construct a sec-

ond auxiliary objective function designed to produce economically meaning-

ful shadow prices. Again, it is important to note that this second objective

function is optimized only after the original objective function is fixed at the

optimal objective function value of the primal model, and has been added as a

constraint.

Creating a dual

mathematical

program

instance

To support the procedure for reaching dual uniqueness, the gmp library con-

tains the function

� GMP::Instance::CreateDual

which creates the dual mathematical program instance associated with a given

primal mathematical program instance.

Standard dual

formulation

For a mathematical program of the form

Minimize: ∑

i

cixi

Subject to: ∑

i

Aijxi ≥ bj ∀j

xi ≥ 0 ∀i

the dual mathematical program can be formulated as follows

Maximize: ∑

j

bjλj

Chapter 16. Implementing Advanced Algorithms for Mathematical Programs 257

Subject to: ∑

j

Aijλj ≤ ci ∀i

λj ≥ 0 ∀j

where the λj represent the shadow prices of the constraints of the primal

formulation.

Sign changesIf the primal formulation contains nonpositive or free variables, or contains ≤
or equality constraints, a number of simple substitution will bring the formu-

lation back into the standard form above, after which the above dual formula-

tion can be used directly. The resulting changes to the dual formulation are as

follows:

� a nonpositive variable xi corresponds to a dual ≥ constraint,

� a free variable xi corresponds to a dual equality constraint,

� a ≤ constraint corresponds to a nonpositive dual variable λj , and

� an equality constraint corresponds to a free dual variable λj .

Bounded va-

riables and

ranged

constraints

However, such simple transformation are not possible anymore if the primal

model contains:

� bounded variables, i.e. li ≤ xi ≤ ui, or

� ranged constraints, i.e. di ≤
∑
iAijxi ≤ bj .

In these cases, additional constraints (implicitly) have to be added as follows

to satisfy the above standard formulation:

� xi ≥ li whenever li ≠ 0,−∞,

� xi ≤ ui whenever ui ≠ 0,∞, and

�
∑
iAijxi ≥ dj .

In the generated dual mathematical program, such implicit constraint addi-

tions in the primal formulation will lead to the explicit introduction of addi-

tional variables in the dual formulation. Such variable additions to the dual

formulation are taken care of by Aimms automatically, but will have conse-

quences when you want to manipulate the matrix of the dual mathematical

program instance, as discussed in Section 16.3.7.

Implementing

dual uniqueness

Using the function GMP::Instance::CreateDual, it is relatively straightforward

to implement the procedure outlined above to reach dual uniqueness:

� generate and solve the original mathematical program,

� generate a dual mathematical program instance from the primal mathe-

matical program instance,

� use the matrix manipulations procedures discussed in Section 16.3 to

create a new dual objective and fix the original dual objective in the newly

created dual mathematical program instance,

� solve the modified dual mathematical program instance.

Chapter 16. Implementing Advanced Algorithms for Mathematical Programs 258

16.3 Matrix manipulation procedures

Matrix

manipulation

The matrix manipulation procedures in the gmp library allow you to implement

efficient algorithms for generated mathematical program instances which re-

quire only slight modifications of the matrix associated with the mathematical

program instance during successive runs. These procedures operate directly

on the coefficient matrix underlying the mathematical program, and thus avoid

the constraint-generation process normally initiated by the SOLVE statement af-

ter input data has been modified.

This sectionPrior to discussing the individual matrix manipulation procedures, the follow-

ing section will provide some motivation when and when not to use matrix

manipulation.

16.3.1 When to use matrix manipulation

When to use

matrix

manipulation

Even though Aimms offers a library of matrix manipulation procedures, you

should not use them blindly. As explained below, it is important to distinguish

between manual and automatic input data changes inside an Aimms applica-

tion. Your decision whether or not to use the matrix manipulation procedures

described in this section, should depend on this distinction.

Manual data

input . . .

Consider an end-user of an Aimms application who, after having looked at the

results of a mathematical program, wants to make changes in the input data

and then look again at the new solution of the mathematical program. The

effect of the data changes on the input to the solver cannot be predicted in

advance. Even a single data change could lead to multiple changes in the input

to the solver, and could also cause a change in the number of constraints and

variables inside the particular mathematical program.

. . . requires

structure

recognition

As a result, Aimms has to determine whether or not the structure of the un-

derlying mathematical program has changed. Only then can Aimms decide

whether the value of existing coefficients can be overwritten, or whether a new

and structurally different data set has to be provided to the solver. This struc-

ture recognition step is time consuming, and cannot be avoided in the absence

of any further information concerning the changes in input data.

Automatic data

input . . .

Whenever input data are changed inside an Aimms procedure, their effect on

the input to the solver can usually be determined in advance. This effect may

be nontrivial, in which case it is not worth the effort to establish the conse-

quences. Rather, letting Aimms perform the required structure recognition

step through the regular SOLVE statement before passing new information to

Chapter 16. Implementing Advanced Algorithms for Mathematical Programs 259

the solver seems to be a better remedy. There are several instances, however,

in which the effect of data changes on the solver input data is easy to deter-

mine.

. . . may reflect

particular

structure

Consider, for instance, automatic data changes that have a one-to-one cor-

respondence with values in the underlying mathematical program. In these

instances, the incidence of variables in constraints is not modified, and only

the replacement values of some coefficients need to be supplied to the partic-

ular solver. Other examples include automatic data changes that could create

new values for particular variable-constraint combinations, or that could even

cause new constraints or variables to be added to the input of the solver. In

all these instances, the exact effects on the input of the solver can easily be

determined in advance, and there is no need to let Aimms perform of the com-

putationally intensive structure recognition step of the SOLVE statement before

passing new information to the solver.

Restrictions on

usage

The above effects of data input modifications on the input to the solver are

straightforward to implement with linear and quadratic mathematical pro-

grams, because the underlying data structures are matrices with rows, columns

and nonzero elements. The input data structures for nonlinear mathematical

programs are essentially nonlinear expressions. Modifications of the type dis-

cussed in the previous paragraph are not easily passed onto these nonlinear

data structures. For this reason, the efficient updating of solver input has been

confined to

� linear and quadratic constraints, and

� coefficients of nonlinear constraints with respect to variables that only

occur linearly in that constraint.

Regeneration of

nonlinear

constraints

Whenever the input data of a nonlinear expression in a nonlinear constraint

has changed, it is not possible anymore to change the nonlinear expression

used by the solver directly to reflect the data change. You can still request

Aimms to regenerate the entire row, which will then use the updated inputs.

You should note, however, that any modifications to the linear part of the

regenerated constraint are lost after the constraint has been regenerated.

Scalar

arguments only

All matrix procedures listed in Tables 16.2–16.5 and most procedures listed in

Table 16.13 have scalar-valued arguments. The row argument should always

be

� a scalar reference to an existing constraint name in your model, or

� a row number which is an integer in the range {0..m− 1} whereby m is

the number of rows.

The column argument should always be

� a scalar reference to an existing variable name in your model, or

Chapter 16. Implementing Advanced Algorithms for Mathematical Programs 260

� a column number which is an integer in the range {0..n− 1} whereby n

is the number of columns.

Modifying a

group of

columns or rows

For most matrix procedures listed in Tables 16.2–16.5, that can be used to

modify a generated mathematical program, there also exists a “multi” variant

which can be applied to a group of columns of rows, belonging to one variable

or constraint respectively. These procedures are listed in Section 16.3.6.

Mathematical

program

instance

required

Before you can apply any of the procedures of Tables 16.2–16.5, you must first

create a mathematical program instance using any of the functions for this

purpose discussed in Section 16.2. Either of these methods will set up the

initial row-column matrix required by the matrix manipulation procedures.

Also, any row or column referenced in the matrix manipulation procedures

must either have been generated during the initial generation step, or must

have been generated later on by a call to the procedures GMP::Row::Add, or

GMP::Column::Add, respectively.

16.3.2 Coefficient modification procedures

Coefficient

modification

procedures

The procedures and functions of the GMP::Coefficient namespace are listed in

Table 16.2 and take care of the modification of coefficients in the matrix and

objective of a generated mathematical program instance.

Get(GMP, row, column)

Set(GMP, row, column, value)

GetQuadratic(GMP, column1, column2)

SetQuadratic(GMP, column1, column2, value)

Table 16.2: Procedures and functions in GMP::Coefficient namespace

Modifying

coefficients

You can instruct Aimms to modify any particular coefficient in a matrix by spec-

ifying the corresponding row and column (in Aimms notation), together with

the new value of that coefficient, as arguments of the procedure GMP::Coeffici-

ent::Set. This procedure can also be used when a value for the coefficient does

not exist prior to calling the procedure.

Quadratic

coefficients

For quadratic mathematical programs, you can modify the quadratic objective

coefficients by applying the function GMP::Coefficient::SetQuadratic to the ob-

jective row. For every two columns x1 and x2 you can specify the modified

coefficient c12 if c12x1x2 is to be part of the quadratic objective.

Chapter 16. Implementing Advanced Algorithms for Mathematical Programs 261

16.3.3 Quadratic coefficient modification procedures

Quadratic

coefficient

modification

procedures

The procedures and functions of the GMP::QuadraticCoefficient namespace

are listed in Table 16.3 and take care of the modification of coefficients of

quadratic rows in the matrix other than the objective of a generated mathe-

matical program instance.

Get(GMP, row, column1, column2)

Set(GMP, row, column1, column2, value)

Table 16.3: Procedures and functions in GMP::QuadraticCoefficient namespace

Modifying

coefficients

You can instruct Aimms to modify any particular quadratic coefficient in a

matrix by specifying the corresponding row and columns (in Aimms notation),

together with the new value of that coefficient, as arguments of the procedure

GMP::QuadraticCoefficient::Set. This procedure can also be used when a value

for the quadratic coefficient does not exist prior to calling the procedure.

16.3.4 Row modification procedures

Row

modification

procedures

The procedures and functions of the GMP::Row namespace are listed in Ta-

ble 16.4 and take care of the modification of properties of existing rows and

the creation of new rows.

Row typesThe row type refers to one of the four possibilities

� ’<=’,

� ’=’,

� ’>=’, and

� ’ranged’

You are free to change this type for each row. Deactivating and subsequently

reactivating a row are instructions to the solver to ignore the row as part of

the underlying mathematical program and then reconsider the row again as an

active row.

Row generationWhen you add a new row to a matrix using GMP::Row::Add, the newly added

row will initially only have any zero coefficients, regardless of whether the cor-

responding Aimms constraint had a definition or not. Through the procedure

GMP::Row::Generate you can tell Aimms to discard the current contents of a row

in the matrix, and insert the coefficients as they follow from the definition of

the corresponding constraint in your model.

Chapter 16. Implementing Advanced Algorithms for Mathematical Programs 262

Add(GMP, row)

Delete(GMP, row)

Activate(GMP, row)

Deactivate(GMP, row)

Generate(GMP, row)

GetLeftHandSide(GMP, row)

SetLeftHandSide(GMP, row, value)

GetRightHandSide(GMP, row)

SetRightHandSide(GMP, row, value)

GetType(GMP, row) → AllRowTypes

SetType(GMP, row, type)

GetStatus(GMP, row) → AllRowColumnStatuses

DeleteIndicatorCondition(GMP, row)

GetIndicatorColumn(GMP, row)

GetIndicatorCondition(GMP, row)

SetIndicatorCondition(GMP, row, column, value)

GetConvex(GMP, row)

GetRelaxationOnly(GMP, row)

SetConvex(GMP, row, value)

SetRelaxationOnly(GMP, row, value)

SetPoolType(GMP, row, value[, mode])

Table 16.4: Procedures and functions in GMP::Row namespace

Indicator

conditions

When you are using the Cplex, Gurobi or Odh-Cplex solver, you can declar-

atively specify indicator constraints through the IndicatorConstraint property

of a constraint declaration (see Section 14.2.4). You can also set and delete

indicator constraints programmatically for a given GMP using the functions

GMP::Row::SetIndicatorCondition and GMP::Row::DeleteIndicatorCondition

Lazy and cut

pool constraints

When you are using the Cplex, Gurobi or Odh-Cplex solver, you can declar-

atively specify constraints to be part of a pool of lazy constraints or cuts

through the IncludeInLazyConstraintPool and IncludeInCutPool properties of

a constraint declaration respectively (see Section 14.2.4). You can also spec-

ify lazy and cut pool constraints programmatically for a given GMP using the

function GMP::Row::SetPoolType.

Convex and

relaxation-only

constraints

Through the .Convex and .RelaxationOnly suffices of constraints you can set

special constraint properties for the Baron global optimization solver (see

also Section 14.2.6). For a given GMP you can also set these constraint proper-

ties programmatically using the GMP::Row::SetConvex and GMP::Row::SetRelax-

ationOnly functions.

Chapter 16. Implementing Advanced Algorithms for Mathematical Programs 263

16.3.5 Column modification procedures

The procedures and functions of the GMP::Column namespace are listed in Ta-

ble 16.5 and take care of the modification of properties of existing columns

and the creation of new columns.

Add(GMP, column)

Delete(GMP, column)

Freeze(GMP, column, value)

Unfreeze(GMP, column)

GetLowerBound(GMP, column)

SetLowerBound(GMP, column, value)

GetUpperBound(GMP, column)

SetUpperBound(GMP, column, value)

GetType(GMP, column) → AllColumnTypes

SetType(GMP, column, type)

GetStatus(GMP, column) → AllRowColumnStatuses

SetDecomposition(GMP, column, value)

SetAsObjective(GMP, column)

SetAsMultiObjective(GMP, column, priority, weight)

Table 16.5: Procedures and functions in GMP::Column namespace

Column typesThe column type refers to one of the three possibilities

� ’integer’,

� ’continuous’, and

� ’semi-continuous’.

You are free to specify a different type for each column. For newly added

columns, Aimms will (initially) use the lower bound, upper bound and column

type as specified in the declaration of the (symbolic) variable associated with

the added column. Freezing a column and subsequently unfreezing it are in-

structions to the solver to fix the corresponding variable to its current value,

and then free it again by letting it vary between its bounds.

Changing the

objective

column

If you want to implement the procedures for reaching primal or dual unique-

ness as described in Section 16.2.1, you can use the procedure

� GMP::Column::SetAsObjective

to change the objective function used by either the primal or dual mathemati-

cal program instance that you want to solve for a second time. Notice that the

defining constraint for this variable should be

Chapter 16. Implementing Advanced Algorithms for Mathematical Programs 264

� part of the original mathematical program formulation for which Aimms

has generated a mathematical program instance, or

� added later on to the primal or dual generated mathematical program

instance using the GMP::Row::Add procedure, where the row definition is

generated by Aimms through the GMP::Row::Generate procedure or con-

structed explicitly through several calls to the GMP::Coefficient::Set pro-

cedure.

16.3.6 More efficient modification procedures

If you want to change the data of many columns or rows belonging to some

variable or constraint then it is more efficient to use the multi variant of a mod-

ification procedure. The available multi procedures are listed in Table 16.6.

Coefficient::SetMulti(GMP, binding, row, column, value)

Column::AddMulti(GMP, binding, column)

Column::DeleteMulti(GMP, binding, column)

Column::FreezeMulti(GMP, binding, column, value)

Column::UnfreezeMulti(GMP, binding, column)

Column::SetLowerBoundMulti(GMP, binding, column, value)

Column::SetUpperBoundMulti(GMP, binding, column, value)

Column::SetTypeMulti(GMP, binding, column, type)

Column::SetDecompositionMulti(GMP, binding, column, value)

Row::AddMulti(GMP, binding, row)

Row::DeleteMulti(GMP, binding, row)

Row::GenerateMulti(GMP, binding, row)

Row::ActivateMulti(GMP, binding, row)

Row::DeactivateMulti(GMP, binding, row)

Row::SetRightHandSideMulti(GMP, binding, row, value)

Row::SetTypeMulti(GMP, binding, row, type)

Row::SetPoolTypeMulti(GMP, binding, row, value, mode)

Table 16.6: Multi procedures in GMP namespace

Binding

argument

All procedures in Table 16.6 contain an index binding argument. The index

binding argument specifies which columns or rows will be modified. If the

procedure contains a value argument then the size of this vector is defined

by the index binding argument. Further information on index binding can be

found in Chapter 9.

Chapter 16. Implementing Advanced Algorithms for Mathematical Programs 265

16.3.7 Modifying an extended math program instance

Extended math

program

instances

To use the matrix manipulation routines of the gmp library, you must be able

to associate every row and column of the matrix of the math program instance

you want to manipulate with a symbolic constraint or variable within your

model. However, some routines in the gmp library generate rows and columns

that cannot be directly associated with specific symbolic constraints and vari-

ables in your model. Examples of such routines are:

� the GMP::Instance::CreateDual procedure, which may generate additional

variables in the dual formulation for bounded variables and ranged con-

straints in the primal formulation (see also Section 16.2.1),

� the GMP::Linearization::Add and GMP::Linearization::AddSingle procedu-

res, which add linearizations of nonlinear constraints to a specific math

program instance (see also Section 16.11), and

� the GMP::Instance::AddIntegerEliminationRows procedure.

The rows and columns generated by these procedures can, however, be in-

directly associated with symbolic constraints, variables or mathematical pro-

grams, as will be explained below.

Extended

suffices

To support the use of the matrix manipulation routines in conjunction with

rows and columns generated by Aimms that can only be indirectly associated

with symbolic identifers in the model, Aimms provides the following suffices

which allow you to do so:

� .ExtendedVariable, and

� .ExtendedConstraint.

These suffices are supported for Variables, Constraints and MathematicalPro-

grams. They behave like variables and constraints, which implies that it is pos-

sible to refer to the .ReducedCost and .ShadowPrice suffices of these extended

suffices to get hold of their sensitivity information.

Suffix

dimensions

Each of the suffices listed above has one additional dimension compared to the

dimension of the original identifier, over the predefined set AllGMPExtensions.

For example, assuming that ae is an index into the set AllGMPExtensions,

� if z(i,j) is a variable or constrain, the .ExtendedVariable suffix will have

indices z.ExtendedVariable(ae,i,j),

� if mp is a mathematical program, the .ExtendedConstraint suffix will have

indices mp.ExtendedConstraint(ae).

Each of the procedures listed above, will add elements to the set AllGMPExten-

sions as necessary. The names of the precise elements added to the set is

explained below in more detail.

Chapter 16. Implementing Advanced Algorithms for Mathematical Programs 266

Suffices

generated by

CreateDual

The procedure GMP::Instance::CreateDual will add the following elements to

the set AllGMPExtensions:

� DualObjective, DualDefinition, DualUpperBound, DualLowerBound.

In addition, it will generate the following extended variables and constraints

� For the mathematical program mp at hand

– the variable mp.ExtendedVariable(’DualDefinition’),

– the constraint mp.ExtendedConstraint(’DualObjective’).

� For every ranged constraint c(i)

– the constraint c.ExtendedConstraint(’DualLowerBound’,i),

– the constraint c.ExtendedConstraint(’DualUpperBound’ i).

� For every bounded variable x(i) in [li, ui]

– the constraint x.ExtendedConstraint(’DualLowerBound’,i)

(if li ≠ 0,−∞),

– the constraint x.ExtendedConstraint(’DualUpperBound’ i)

(if ui ≠ 0,∞).

Modifying the

dual math

program

Using the matrix manipulation procedures, you can modify the matrix or objec-

tive associated with a dual mathematical program instance created by calling

the procedure GMP::Instance::CreateDual. Below you will find how you can ac-

cess the rows and columns of a dual mathematical program instance created

by Aimms.

Row and

column names

For each procedure in the GMP::Coefficient, GMP::Row and GMP::Column name-

spaces you must refer to a scalar constraint and/or variable reference from

your symbolic model. For the dual formulation, you must

� use the symbolic primal constraint name, to refer to the dual shadow

price variable associated with that constraint in the dual mathematical

program instance, and

� use the symbolic primal variable name, to refer to the dual constraint

associated with that variable in the dual mathematical program instance.

In other words, when modifying matrix coefficients, rows or columns the role

of the symbolic constraints and variables is interchanged.

Implicitly added

variables and

constraints

You can refer to the implicitly added variables and constraints in the proce-

dures of the GMP::Coefficient, GMP::Row and GMP::Column namespaces through

the .ExtendedVariable and .ExtendedConstraint suffices described above. After

solving the dual math program, Aimms will store the dual solution in the suf-

fices .ExtendedVariable.ReducedCost and .ExtendedConstraint.ShadowPrice, re-

spectively.

Chapter 16. Implementing Advanced Algorithms for Mathematical Programs 267

Extended

suffices for

linearization

By calling the procedures GMP::Linearization:Add or GMP::Linearization::Add-

Single, Aimms will add the linearization for a single nonlinear constraint in-

stance, or for all nonlinear constraints from a set of nonlinear constraints to

a given math program instance. When doing so, Aimms will add an element

Linearizationk (where k is a counter) to the set AllGMPExtensions, and will cre-

ate for each nonlinear constraint c(i)

� a constraint c.ExtendedConstraint(’Linearizationk’,i), and

� a variable c.ExtendedVariable(’Linearizationk’,i) if deviations from the

constraint are permitted (see also Section 16.11).

Elimination

constraints and

variables

By calling the procedure GMP::Instance::AddIntegerEliminationRows, Aimms will

add one or more constraints and variables to a math program instance, which

will eliminate the current integer solution from the math program instance.

When called, Aimms will add elements of the form

� Eliminationk,

� EliminationLowerBoundk, and

� EliminationUpperBoundk

to the set AllGMPExtensions. In addition, Aimms will add

� a constraint mp.ExtendedConstraint(’Linearizationk’) to exclude current

solution for all binary variables from the math program mp at hand, and

� for every integer variable c(i) with a level value between its bounds the

variables and constraints

– c.ExtendedVariable(’Eliminationk’,i),

– c.ExtendedVariable(’EliminationLowerBoundk’,i),

– c.ExtendedVariable(’EliminationUpperBoundk’,i),

– c.ExtendedConstraint(’Eliminationk’,i),

– c.ExtendedConstraint(’EliminationLowerBoundk’,i), and

– c.ExtendedConstraint(’EliminationUpperBoundk’,i).

16.4 Managing the solution repository

The solution

repository

The gmp library maintains a solution repository for every generated mathe-

matical program instance. You can use this repository, for instance, to store

� a number of starting solutions for a NLP problem to be solved succes-

sively,

� a number of incumbent solutions as reported by a MIP solver, or

� let a solver store multiple solutions.

If you are using solver sessions to initiate a solver, you must explicitly trans-

fer the initial, intermediate or final solutions between the model, the solution

repository and the solver session. As discussed in Section 16.2, the function

GMP::Instance::Solve performs these necessary solution transfer steps for you,

and uses the fixed solution number 1 for all of its communication.

Chapter 16. Implementing Advanced Algorithms for Mathematical Programs 268

Some solvers are capable of finding multiple solutions instead of at most one.

Examples of such solvers are Baron, Cplex and Gurobi. When such a solver

finds multiple solutions, these solutions are stored in the solution repository

from number 1 on upwards. The control mechanism to let solvers find multi-

ple solutions is solver specific:

� BARON 19: For more information see the Help file for option Number of

best solutions in option category Specific solvers – BARON 19 – General.

� CPLEX 12.9: For more information see the Help file for option Do populate

in option category Specific solvers – CPLEX 12.9 – MIP solution pool.

� GUROBI 8.1: For more information see the Help file for option Pool search

mode in option category Specific solvers – GUROBI 8.1 – Solution pool.

Solution

repository

functions

The procedures and functions of the GMP::Solution namespace are listed in

Table 16.7. Through these functions you can

� transfer a solution between the solution repository on the one side and

the symbolic model or the solver on the other side,

� obtain and set solution properties of a solution in the repository, or

� perform a feasibility check on a solution in the repository.

Solution

contents

Each solution in the repository is represented by a solution vector containing

all relevant solution data, such as

� solution status,

� level values,

� basis information,

� marginals, and

� other relevant requested sensitivity information.

Solution

numbering

Each generated mathematical program instance has its own associated solu-

tion repository. Each solution in the repository is represented by an integer

solution number. Through the function GMP::Solution::GetSolutionsSet you

can retrieve a subset of the predefined set Integers containing the set of all so-

lution numbers that are currently in use for the given mathematical program

instance.

Solution

transfer to the

model

Through the functions

� GMP::Solution::RetrieveFromModel,

� GMP::Solution::SendToModel, and

� GMP::Solution::SendToModelSelection

you can (re-)initialize a solution with the values currently contained in the

symbolic model, and vice versa. The function SendToModelSelection allows you

to only initialize a part of the model identifiers and suffices with a solution of

from the solution repository.

Chapter 16. Implementing Advanced Algorithms for Mathematical Programs 269

Copy(GMP, fromSol, toSol)

Move(GMP, fromSol, toSol)

Delete(GMP, solNo)

DeleteAll(GMP)

GetSolutionsSet(GMP)→Integers

Count(GMP)

RetrieveFromModel(GMP, SolNr)

SendToModel(GMP, SolNr)

SendToModelSelection(GMP, SolNr, Identifiers, Suffices)

RetrieveFromSolverSession(solverSession, SolNr)

SendToSolverSession(solverSession, SolNr)

GetObjective(GMP, SolNr)

GetBestBound(GMP, SolNr)

GetProgramStatus(GMP, SolNr)→AllSolutionStatus

GetSolverStatus(GMP, SolNr)→AllSolutionStatus

GetIterationsUsed(GMP, SolNr)

GetMemoryUsed(GMP, SolNr)

GetTimeUsed(GMP, SolNr)

SetObjective(GMP, SolNr, value)

SetProgramStatus(GMP, SolNr, PrStatus)

SetSolverStatus(GMP, SolNr, PrStatus)

SetIterationCount(GMP, SolNr, IterCnt)

GetColumnValue(GMP, SolNr, column)

SetColumnValue(GMP, SolNr, column, value)

GetRowValue(GMP, SolNr, row)

SetRowValue(GMP, SolNr, row, value)

Check(GMP, SolNr, NumInf, SumInf, MaxInf[, skipObj])

IsInteger(GMP, SolNr)

IsPrimalDegenerated(GMP, SolNr)

IsDualDegenerated(GMP, SolNr)

GetFirstOrderDerivative(GMP, SolNr, row, column)

ConstraintListing(GMP, SolNr, name)

Table 16.7: Procedures and functions in GMP::Solution namespace

Solution

transfer to a

solver session

Through the functions

� GMP::Solution::RetrieveFromSolverSession, and

� GMP::Solution::SendToSolverSession

you can set a solution in the repository equal to a solution reported by a given

solver session, or initialize the (initial) solution of a solver session with a so-

lution stored in the repository. Notice that these functions do not have a GMP

argument. Because each solver session is uniquely associated with a single

mathematical program instance, Aimms is able to determine the correct solu-

tion repository.

Chapter 16. Implementing Advanced Algorithms for Mathematical Programs 270

Computing first

order

derivatives

Using the function GMP::Solution::GetFirstOrderDerivative, you can compute,

for the given solution, first order derivative of a particular row in a mathemat-

ical program with respect to a given variable. You can use such a function, for

instance, to implement a sequential linear programming approach for nonlin-

ear programs, as outlined in Section 16.13.5.

16.5 Using solver sessions

Using solver

sessions

The procedures and functions of the GMP::SolverSession namespace are listed

in Table 16.8. Solver sessions are created implicitly by Aimms or explicitly by

calling the procedure GMP::Instance::CreateSolverSession.

Execute(solverSession)

AsynchronousExecute(solverSession)

ExecutionStatus(solverSession)→AllExecutionStatuses

Interrupt(solverSession)

WaitForCompletion(Objects)

WaitForSingleCompletion(Objects)→AllSolverSessionCompletionObjects

CreateProgressCategory(solverSession[, Name][, Size])

GetOptionValue(solverSession, optionName)

SetOptionValue(solverSession, optionName, value)

GetInstance(solverSession)→AllGeneratedMathematicalPrograms

GetSolver(solverSession)→AllSolvers

GetCallbackInterruptStatus(solverSession)→AllSolverInterrupts

GetIterationsUsed(solverSession)

GetMemoryUsed(solverSession)

GetTimeUsed(solverSession)

GetBestBound(solverSession)

GetCandidateObjective(solverSession)

GetObjective(solverSession)

GetProgramStatus(solverSession)→AllSolutionStates

GetSolverStatus(solverSession)→AllSolutionStates

SetSolverStatus(solverSession)

GenerateCut(solverSession, row[, local][, purgeable])

RejectIncumbent(solverSession)

GetNodeNumber(solverSession)

GetNodeObjective(solverSession)

GetNodesLeft(solverSession)

GetNodesUsed(solverSession)

GetNumberOfBranchNodes(solverSession)

Transfer(solverSession, GMP)

Table 16.8: Procedures and functions in GMP::SolverSession namespace

Chapter 16. Implementing Advanced Algorithms for Mathematical Programs 271

Solving a

mathematical

program

instance

By calling the GMP::SolverSession::Execute procedure, the given solver session

will take care of solving the associated mathematical program instance in a

blocking manner, i.e. the function will not return until the solver has com-

pleted the solution process. This function is called implicitly by the GMP::In-

stance::Solve function or by the SOLVE statement.

Asynchronous

solve

Alternatively, you can solve a mathematical program instance in an non-block-

ing manner by using the function GMP::SolverSession::AsynchronousExecute.

Rather than waiting for the solution process to complete, this function will

dispatch the solution process to a separate thread of execution, and return im-

mediately. This allows multiple mathematical program instances to be solved

in parallel, assuming your computer has multiple processors or a multi-core

processor. Note that requests for a synchronous solve through the SOLVE state-

ment will fail if a Aimms is still executing an asynchronous solution process.

Session

synchronization

To allow your application to synchronize its execution when multiple solver

sessions are executed asynchronously, Aimms offers the following synchro-

nization procedures

� GMP::SolverSession::Interrupt,

� GMP::SolverSession::ExecutionStatus,

� GMP::SolverSession::WaitForCompletion, and

� GMP::SolverSession::WaitForSingleCompletion.

Through the GMP::SolverSession::Interrupt function you can request Aimms to

interrupt a solver session that is executing (asynchronously). You can call the

function GMP::SolverSession::ExecutionStatus to check the status of a given

solver session.

Waiting for

multiple

completions

Using the function GMP::SolverSession::WaitForCompletion you can halt the

main Aimms thread of execution to wait until the entire set of solver sessions

passed as an argument to the function have completed. You can use this func-

tion, for instance, to end the solution phase of your model, prior to moving on

to the post-processing phase of your model.

. . . and for

single

completion

In addition, Aimms offers a function GMP::SolverSession::WaitForSingleCom-

pletion which returns as soon as a single solver session from the given set of

solver sessions has completed its execution. The return value of the function

is the completed solver session that caused the function to return. You can use

WaitForSingleCompletion, for instance, to asynchronously solve the next math-

ematical program instance from a queue of mathematical program instances

waiting to be solved.

Chapter 16. Implementing Advanced Algorithms for Mathematical Programs 272

No solution

transfer

Note that neither GMP::SolverSession::Execute and GMP::SolverSession::Asyn-

chronousExecute will copy the initial solution into the solver, or copy the final

solution back into solution repository or model identifiers. When you use these

functions you always have to explicitly call functions from the GMP::Solution

namespace to accomplish these tasks.

Support for

callbacks

When callbacks for the mathematical program instance associated with a sol-

ver session have been set (see also Section 16.2), Aimms will make sure that the

specified callback procedures in your model will be called whenever appropri-

ate. If you have specified a single callback procedure for multiple callback

reasons, you can call the procedure

� GMP::SolverSession::GetCallbackInterruptStatus

to retrieve the reason why your callback procedure was called. The result

is an element in the predeclared set AllSolverInterrupts which contains the

elements

� Candidate,

� Incumbent,

� AddCut,

� Iterations,

� Heuristic,

� StatusChange, and

� Finished.

When the solver session has not yet been called, the status is ’’ (empty ele-

ment). During a callback, you can call the function

� GMP::SolverSession::GetInstance

if you need the mathematical program instance associated with the given sol-

ver session, and you can retrieve the current objective values using the func-

tions

� GMP::SolverSession::GetBestBound, and

� GMP::SolverSession::GetObjective.

Synchronous

nested solves

allowed

During any callback you are allowed to generate and solve other mathematical

program instances in a synchronous manner. You can use such nested solves,

for instance, for finding a heuristic solution during a Heuristic callback. Once

you have found a heuristic solution, you can pass it onto the running solver

session using the function GMP::Solution::SendToSolverSession. Note that this

functionality is currently only supported by Cplex and Gurobi.

Chapter 16. Implementing Advanced Algorithms for Mathematical Programs 273

No

asynchronous

solves

During a callback Aimms does not allow you to call the function GMP::Solver-

Session::AsynchronousExecute to solve another mathematical program instance

in an asynchronous manner. However, Aimms offers a special class of synchro-

nization objects called events, which allow you to notify the main thread of

execution that some event has occurred and act accordingly. When set during

a callback, the main thread of execution may respond, for instance, by generat-

ing a mathematical program instance based on solver data set by the callback,

and solve that mathematical program instance in an asynchronous manner.

Events are discussed in full detail in Section 16.6.

Adding cutsDuring an AddCut callback you may use the procedure GMP::SolverSession::Gen-

erateCut to generate a local or global cut. A local cut will only be added

to the current node in the solution process and all its descendant nodes,

while a global cut will remain to exist for all nodes onwards. The result

of the procedure will be the temporary addition of row to the matrix, as if

GMP::Row::Generate had been called. Note that this functionality is currently

only supported by Cplex, Gurobi and Odh-Cplex.

Rejecting

incumbents

During a Candidate callback you can reject the incumbent found by the solver

by calling the procedure GMP::SolverSession::RejectIncumbent. Note that this

functionality is currently only supported by Cplex.

Setting optionsYou can set options for a specific solver session associated through the func-

tion GMP::SolverSession::SetOptionValue. These option values override the op-

tion values for the associated GMP, set through GMP::Instance::SetOptionValue,

which in their turn override the project options.

16.6 Synchronization events

Events for

synchronization

To allow for more advanced thread synchronization during parallel solves,

Aimms offers synchronization objects called events, which can be manipulated

using the function listed in Table 16.9.

Create(name)→AllGMPEvents

Delete(event)

Set(event)

Reset(event)

Table 16.9: Procedures and functions in GMP::Event namespace

Chapter 16. Implementing Advanced Algorithms for Mathematical Programs 274

Creating eventsThrough the function GMP::Event::Create you can create a new event, while

the function GMP::Event::Delete deletes existing events. Using the function

GMP::Event::Set you can notify Aimms that an event has occurred. The function

GMP::Event::Reset resets the event.

Waiting for

events

Events are elements of the predefined set AllGMPEvents, which, along with the

set AllSolverSessions, is a subset of the predefined set AllSolverSessionCom-

pletionObjects. As both the functions

� GMP::SolverSession::WaitForCompletion, and

� GMP::SolverSession::WaitForSingleCompletion

expect a subset of the set AllSolverSessionCompletionObjects as their argu-

ments, these functions can be used to wait for both solver session completion

and the occurrence of events.

Using eventsYou can use events, for example, to notify the main thread of execution in your

model that you want a new mathematical program instance to be generated

and solved asynchronously based on input data provided by a solver callback.

Aimms does not allow asynchronous solves to be started from within a callback

itself.

16.7 Multi-objective optimization

Multi-objective

optimization

Multi-objective optimization deals with mathematical optimization problems

involving more than one objective function that have to be optimized simulta-

neously. Optimal decisions need to take into account the presence of trade-offs

between two or more conflicting objectives. For example, minimizing the trav-

elling distance while minimizing the travelling time (which might conflict if the

shortest route is not the fastest). Aimms allows you to define multiple objec-

tives for linear models only. Multi-objective optimization in Aimms is currently

only supported by Cplex and Gurobi.

Blended or

lexicographic

objective

You can define a mixture of blended and lexicographic (or hierarchical) objec-

tives. A blended objective consists of the linear combination of several objec-

tives with given weights. A lexicographic objective assumes that the objectives

can be ranked in order of importance. A solution is considered lexicographi-

cally better than another solution if it is better in the first objective where they

differ (following the order). For a minimization problem, an optimal solution

is one that is lexicographically minimal.

Chapter 16. Implementing Advanced Algorithms for Mathematical Programs 275

The procedure

GMP::Column::Set-

AsMultiObjec-

tive

Currently, the only way to specify a multi-objective optimization model is by

using the gmp library. The procedure GMP::Column::SetAsMultiObjective can be

used to mark a variable as an objective used for multi-objective optimization.

Typically, the definition of such a variable defines the objective but the variable

can also be used in an equality constraint which then defines the objective.

ExampleConsider the following declarations

Variable TotalDistance {

Definition : sum((i,j), Distance(i,j) * X(i,j));

}

Variable TotalTime {

Definition : sum((i,j), TravelTime(i,j) * X(i,j));

}

Here X(i,j) is a (binary) variable indicating whether the road between i and j is

used. The variables TotalDistance and TotalTime can be specified as objectives

in a multi-objective optimization model using:

GMP::Column::SetAsMultiObjective(genMP, TotalDistance, 2, 1.0, 0, 0.1);

GMP::Column::SetAsMultiObjective(genMP, TotalTime, 1, 1.0, 0, 0.0);

In this example, Aimms will only pass the coefficients of the variable X as the

multi-objective coefficients to the solver, so Distance(i,j) for the first objec-

tive and TravelTime(i,j) for the second objective. (In other words, the multi-

objective variables TotalDistance and TotalTime will be substituted by their

definitions.) After solving the model, the objectives can be deleted by calling

the procedure GMP::Instance::DeleteMultiObjectives.

Priority and

weight

The priority of the objective can be specified using the third argument of

the procedure GMP::Column::SetAsMultiObjective. Its fourth argument defines

the weight by which the objective coefficients are multiplied when forming a

blended objective, i.e., if multiple objectives have the same priority. The last

two (optional) arguments specify the absolute and relative tolerance respec-

tively, which define the amount by which a solution may deviate from the

optimal value for the objective.

Mathematical

program

objective

In case of multi-objective optimization, the variable specified in the Objective

attribute of the mathematical program will be treated as a normal variable,

that is, it will not be used as one of the multi-objectives.

16.8 Supporting functions for stochastic programs

Supporting

functions for

stochastic

models

The stochastic Benders algorithm (see Section 19.4.2) is implemented in Aimms

as a combination of a system module that can be included into your model, and

a number of supporting functions in the GMP::Stochastic namespace of the

Chapter 16. Implementing Advanced Algorithms for Mathematical Programs 276

BendersFindFeasibilityReference(GMP, stage, scenario)

→AllGeneratedMathematicalPrograms

BendersFindReference(GMP, stage, scenario)

→AllGeneratedMathematicalPrograms

CreateBendersRootproblem(GMP[, name])

→AllGeneratedMathematicalPrograms

UpdateBendersSubproblem(GMP, solution)

AddBendersFeasibilityCut(GMP, solution, cutNo)

AddBendersOptimalityCut(GMP, solution, cutNo)

MergeSolution(GMP, solution1, solution2[, updObj])

GetRepresentativeScenario(GMP, stage, scenario)→AllStochasticScenarios

GetObjectiveBound(GMP, solution)

GetRelativeWeight(GMP, stage, scenario)

Table 16.10: Procedures and functions in GMP::Stochastic namespace

gmp library. The procedures and functions of the GMP::Stochastic namespace

are listed in Table 16.10.

Overview of

functionality

For a more detailed overview of the functionality offered by the functions in

the GMP::Stochastic namespace, we refer to

� Section 19.4.2 for an outline of the stochastic Benders algorithm,

� the system module containing the Aimms implementation of the stochas-

tic Benders algorithm, and

� the Aimms Function Reference for a detailed explanation of the function-

ality of each function.

16.9 Supporting functions for robust optimization models

Supporting

functions for

robust models

Table 16.11 lists the functions available in the GMP::Robust namespace in sup-

port of working with robust optimization models.

EvaluateAdjustableVariables(GMP, Variables[, merge])

Table 16.11: Procedures and functions in GMP::Robust namespace

Overview of

functionality

For a more detailed overview of the functionality offered by the functions in

the GMP::Robust namespace, we refer to

� Section 20.4 for an outline of the functionality offered by the procedure

GMP::Robust::EvaluateAdjustableVariables, and

� the Aimms Function Reference for a more detailed explanation.

Chapter 16. Implementing Advanced Algorithms for Mathematical Programs 277

16.10 Supporting functions for Benders’ decomposition

Supporting

functions for

Benders’

decomposition

The Benders’ decomposition algorithm (see Chapter 21) is implemented in

Aimms as a combination of a system module that can be included into your

model, and a number of supporting functions in the GMP::Benders namespace

of the gmp library. The procedures and functions of the GMP::Benders names-

pace are listed in Table 16.12.

CreateMasterProblem(GMP, Variables, name[, feasibilityOnly][, addConstraints])

→AllGeneratedMathematicalPrograms

CreateSubProblem(GMP1, GMP2, name[, useDual][, normalizationType])

→AllGeneratedMathematicalPrograms

UpdateSubProblem(GMP1, GMP2, solution[, round])

AddFeasibilityCut(GMP1, GMP2, solution, cutNo)

AddOptimalityCut(GMP1, GMP2, solution, cutNo)

Table 16.12: Procedures and functions in GMP::Benders namespace

Overview of

functionality

For a more detailed overview of the functionality offered by the functions in

the GMP::Benders namespace, we refer to

� Chapter 21 for an outline of the Benders’ decomposition algorithm,

� the system module containing the Aimms implementation of the Benders’

decomposition algorithm, and

� the Aimms Function Reference for a detailed explanation of the function-

ality of each function.

16.11 Creating and managing linearizations

MINLP problems

and lineariza-

tions

When solving a mixed integer nonlinear (MINLP) problem using an outer ap-

proximation approach (see also Chapter 18 for a more detailed description),

an associated master MIP problem is created and extended with linearizations

of the nonlinear constraints of the original problem with respect to succes-

sive solutions of the underlying NLP sub-problem. Using the procedures in

the GMP::Linearization namespace, Aimms allows you to add linearizations of

nonlinear constraints to a particular math program instance. Together with

the GMP::Instance::CreateMasterMIP procedure to create the initial master MIP

problem, these procedures form the heart of the implementation of the outer

approximation algorithm in Aimms, as discussed in Section 18.6.

Chapter 16. Implementing Advanced Algorithms for Mathematical Programs 278

Managing

linearizations

The procedures and functions of the GMP::Linearization namespace are listed

in Table 16.13.

Add(GMP1, GMP2, solNr, conSet, devPermitted, penalty, linNr[, jacTol])

AddSingle(GMP1, GMP2, solNr, row, devPermitted, penalty, linNr[, jacTol])

Delete(GMP, linNr)

RemoveDeviation(GMP, row, linNr)

GetDeviation(GMP, row, linNr)

GetDeviationBound(GMP, row, linNr)

GetWeight(GMP, row, linNr)

GetLagrangeMultiplier(GMP, row, linNr)

GetType(GMP, row, linNr)→AllRowTypes

SetDeviationBound(GMP, row, linNr, value)

SetWeight(GMP, row, linNr, value)

SetType(GMP, row, linNr, rowType)

Table 16.13: Procedures and functions in GMP::Linearization namespace

Creating and

deleting

linearizations

Through the procedures

� GMP::Linearization::Add,

� GMP::Linearization::AddSingle,

� GMP::Linearization::Delete, and

� GMP::Linearization::RemoveDeviation

you can instruct Aimms to add and delete one or more rows and columns to

a given math program instance, representing the linearizations of (nonlinear)

constraints of another math program instance at a particular solution point.

Modifying

linearizations

You can modify the rows and columns generated by these procedures using the

matrix manipulation routines discussed in Section 16.3. The rows and columns

generated by Aimms cannot be associated directly with constraints and vari-

ables in your model, but must be addressed using the .ExtendedConstraint

and .ExtendedVariable suffices. Section 16.3.7 discusses the precise suffices

generated by Aimms when using the functions GMP::Linearization::Add and

GMP::Linearization::AddSingle.

Remaining

functions

Through the remaining functions in the GMP::Linearization namespace you can

� get and set information about the devation variables added to the lin-

earized constraints, and their penalties added to the objective, and

� get and set the row types of the generated constraints.

Note the you must use the appropriate .ExtendedConstraint suffix to refer to

the particular linearization constraint when using these functions.

Chapter 16. Implementing Advanced Algorithms for Mathematical Programs 279

16.12 Customizing the progress window

Customizing the

progress

window

When you are using the gmp library to implement a customized algorithm

for a particular problem or problem class, you can use the procedures in

the GMP::ProgressWindow namespace to customize the contents of the Aimms

Progress Window. This allows you to provide customized feedback to the end-

user regarding the progress of the overall solution algorithm, or to provide

simultaneous progress information about multiple solver session executing in

parallel.

Customizing

progress

The procedures and functions of the GMP::ProgressWindow namespace are listed

in Table 16.14. They allow you to modify every aspect of the solver part of the

Aimms progress window.

DisplaySolver(name[, Category])

DisplayLine(lineNr, title, value[, Category])

DisplayProgramStatus(status[, Category][, lineNo])

DisplaySolverStatus(status[, Category][, lineNo])

FreezeLine(lineNo, totalFreeze[, Category])

UnfreezeLine(lineNo[, Category])

DeleteCategory(Category)

Transfer(Category, solverSession)

Table 16.14: Procedures and functions in GMP::ProgressWindow namespace

Creating a new

progress

category

When your model executes multiple solver sessions in parallel, you can re-

quest Aimms to create a new progress category to display separate solver

progress for each solver session in a separate area of the progress window. Us-

ing the function GMP::Instance::CreateProgressCategory, you can create a new

progress category for a specific mathematical program instance that will sub-

sequently be used to display solver progress for all solver sessions associated

with that mathematical program instance. Alternatively, you can create a per-

session category to display separate solver progress for every single solver ses-

sion using the function GMP::SolverSession::CreateProgressCategory. The pro-

cedure GMP::ProgressWindow::Transfer allows you to share a progress category

among several solver sessions. Through the function GMP::ProgressWindow::De-

leteCategory you can delete progress categories created by either function.

Freezing

category

content

Through the functions GMP::ProgressWindow::FreezeLine and GMP::ProgressWin-

dow::UnfreezeLine you can instruct Aimms to stop and start updating particular

areas of the solver progress area associated with the progress category.

Chapter 16. Implementing Advanced Algorithms for Mathematical Programs 280

Displaying

custom content

When you are writing a custom algorithm you can use the progress window to

display custom progress information supplied by you using the functions

� GMP::ProgressWindow::DisplaySolver,

� GMP::ProgressWindow::DisplayLine,

� GMP::ProgressWindow::DisplayProgramStatus, and

� GMP::ProgressWindow::DisplaySolverStatus.

When your custom algorithm consists of a sequence of solves, you can use

these functions, for instance, to display custom progress information for the

overall algorithm, possibly in combination with regular progress for the un-

derlying solves in a separate category.

Example of useAn example of the usage of the GMP::ProgressWindow can be found in the Aimms

module containing the gmp Outer Approximation algorithm discussed in Sec-

tion 18.6. In this module, the contents of the Aimms progress window is

adapted for the Aimms Outer Approximation solver.

16.13 Examples of use

This sectionIn this section there are five examples to illustrate the use of the gmp library.

Each example consists of two paragraphs. The first paragraph explains the

basic problem and an algorithmic approach, while the second paragraph pro-

vides the corresponding implementation in Aimms using the gmp procedures.

Note that these algorithms could also have been implemented using Aimms’

regular SOLVE statement, but at the cost of one or more structure recognition

steps during every iteration.

16.13.1 Indexed mathematical program instances

Indexed

mathematical

program

instances

Aimms does not support indexed mathematical program declarations, which

would result in a different mathematical program for every index value when

generated. Using the gmp library, however, it is straightforward to generate

indexed mathematical program instances

Declarations in

Aimms

Consider the following declarations

Set Cities {

Index : c, j;

}

Set SelectedCities {

SubsetOf : Cities;

Index : i;

}

together with a mathematical program declaration TransportModel defining a

standard transportation problem determining transports from cities i to j.

Chapter 16. Implementing Advanced Algorithms for Mathematical Programs 281

When SelectedCities equals Cities we would solve the mathematical program

for all possible combinations of cities.

Procedure in

Aimms

Further assume that we have an element parameter IndexedTransportModel(c)

into the set AllGeneratedMathematicalPrograms. The following procedure illus-

trates how indexed mathematical program instances for every city c which

restricts the transports from c to all cities j.

for (c) do

SelectedCities := {c};

IndexedTransportModel(c) := GMP::Instance::Generate(TransportModel,

"TransportModel-" + FormatString("%e", c));

endfor;

16.13.2 Sensitivity analysis

Parametric

changes

Sensitivity analysis considers how the optimal solution, and the corresponding

objective function value, change as a result of changes in input data. Using

the gmp library, it is straightforward to write a procedure to determine these

sensitivities for a discrete set of input values.

Procedure in

Aimms

The following procedure illustrates how parametric changes can be imple-

mented using matrix manipulation functions. The resulting objective function

values are stored in a separate identifier.

myGMP := GMP::Instance::Generate(MathProgramOfInterest);

for (n) do

GMP::Coefficient::Set(myGMP,

ResourceConstraint(SelectedResource),

ActivityVariable(SelectedActivity),

OriginalCoefficient + Delta(n));

GMP::Instance::Solve(myGMP);

ObjectiveValue(n) := GMP::Solution::GetObjective(myGMP, 1);

endfor;

16.13.3 Finding a feasible solution for a binary program

Fixing one

variable at a

time

There have been instances in which the following simple but greedy heuristic

was used successfully to solve a binary program. The algorithm considers lin-

ear programming solutions in sequence. During each iteration, the algorithm

� selects the single variable that, of all the variables, is nearest but not

equal to one of its bounds, and

� fixes the value of this variable to that of the nearest bound.

Chapter 16. Implementing Advanced Algorithms for Mathematical Programs 282

As soon as such variables can no longer be found (and the last linear program-

ming solution is optimal), a feasible integer solution to the binary program has

been found.

Procedure in

Aimms

The following procedure illustrates how fixing one variable at a time can be

implemented using matrix manipulation functions. The procedure terminates

as soon as there is no solution, or all variables have been fixed.

relaxedGMP := GMP::Instance::Generate(RelaxedBinaryProgram);

GMP::Instance::Solve(relaxedGMP);

repeat

LargestLessThanOne := ArgMax(j | x(j) <= 1 - Tolerance, x(j));

SmallestGreaterThanZero := ArgMin(j | x(j) >= Tolerance, x(j));

break when (RelaxedBinaryProgram.ProgramStatus = ’Infeasible’ or

not (LargestLessThanOne or SmallestGreaterThanZero));

if (x(SmallestGreaterThanZero) < 1 - x(LargestLessThanOne))

then GMP::Column::Freeze(relaxedGMP, x(SmallestGreaterThanZero), 0);

else GMP::Column::Freeze(relaxedGMP, x(LargestLessThanOne), 1);

endif;

GMP::Instance::Solve(relaxedGMP);

endrepeat;

16.13.4 Column generation

Adding columnsChapter 20 of the Aimms book on Optimization Modeling describes a cutting

stock problem. This problem is modeled as a linear program with an initial

selection of cutting patterns. An auxiliary integer programming model is in-

troduced to generate a new “best” pattern based on the current solution of the

linear program and the corresponding shadow prices. Such a pattern is then

added to the existing patterns in the linear program, and the next optimal so-

lution is found. This process continues until no further improvement in the

value of the objective function can be achieved.

Procedure in

Aimms

The following procedure illustrates how adding columns can be implemented

using matrix manipulation functions. During each iteration of the overall pro-

cess, two different mathematical programs are modified in turn.

cuttingStockGMP := GMP::Instance::Generate(CuttingStock);

GMP::Instance::Solve(cuttingStockGMP);

findPatternGMP := GMP::Instance::Generate(FindPattern);

GMP::Instance::Solve(findPatternGMP);

MaxPattern := 0;

while (PatternContribution > 1) do

MaxPattern += 1;

AllPatterns += MaxPattern;

LastPattern := last(AllPatterns);

Chapter 16. Implementing Advanced Algorithms for Mathematical Programs 283

GMP::Column::Add(GMP: cuttingStockGMP, column: RollsUsed(LastPattern));

for (width) do

GMP::Coefficient::Set(GMP : cuttingStockGMP,

row : MeetCutDemand(width),

column: RollsUsed(LastPattern),

value : CutsInPattern(width));

endfor;

GMP::Instance::Solve(cuttingStockGMP);

for (width) do

GMP::Coefficient::Set(GMP : findPatternGMP,

row : PatternContribution,

column: CutsInPattern(width),

value : MeetCutDemand(width).ShadowPrice);

endfor;

GMP::Instance::Solve(findPatternGMP);

endwhile;

Here MaxPattern is a parameter of type integer, AllPatterns a subset of Integers,

and LastPattern an element parameter with range AllPatterns.

16.13.5 Sequential linear programming

Sequential

linear

programming

Linear constraints and a nonlinear objective function together form a special

class of nonlinear programs. It is possible to solve a problem of this class

by solving a sequence of linear programs. The main requirement is that the

nonlinear objective function has first-order derivatives. The objective func-

tion can then be linearized around the solution of a previous linear program.

By restricting the linearized function to an appropriate finite box, a new so-

lution point is found. The sequence of linear programs terminates when the

appropriate box has become sufficiently small. Upon termination, the optimal

solution, as last found, is considered to be a local optimum of the underlying

nonlinear program.

Procedure in

Aimms

The following procedure illustrates how sequential linear programming can be

implemented using matrix manipulation functions. The procedure assumes

the existence of finite upper and lower bounds on the variables, and the pres-

ence of a function ComputeGradient to compute the required first partial deriva-

tives with respect to the variables in the objective function. To implement the

function ComputeGradient one can, for instance, use the built-in gmp function

GMP::Solution::GetFirstOrderDerivative (see also Section 16.4).

linearizedGMP := GMP::Instance::Generate(LinearizedProgram);

GMP::Instance::Solve(linearizedGMP);

BoxWidth(j) := 0.1 * (x.upper(j) - x.lower(j));

x(j) := 0.5 * (x.upper(j) + x.lower(j));

while (max(j, BoxWidth(j)) > Tolerance) do

ObjCoeff(j) := ComputeGradient(x)(j);

Chapter 16. Implementing Advanced Algorithms for Mathematical Programs 284

for (j) do

GMP::Column::SetLowerBound (linearizedGMP, x(j),

max(x.lower(j), x(j) - 0.5*BoxWidth(j)));

GMP::Column::SetUpperBound (linearizedGMP, x(j),

min(x.upper(j), x(j) + 0.5*BoxWidth(j)));

GMP::Coefficient::Set(linearizedGMP, ObjectiveRow,

x(j), ObjCoeff(j));

endfor;

GMP::Instance::Solve(linearizedGMP);

BoxWidth(j) *= ShrinkFactor;

endwhile;

Chapter 17

Advanced Methods for Nonlinear Programs

Problems of

nonlinear

programs

For non-convex nonlinear mathematical programs (NLPs), nonlinear solvers

have no guarantee of returning the global optimum. Due to the local search

algorithms employed by nonlinear solvers, their solution process depends on

the starting point provided by the user. Nonlinear solvers can, therefore, eas-

ily end up in, non-unique, local optima, or, even worse, may not even find a

feasible solution for a given starting point.

How to

counteract?

To counteract these facts, a number of possible actions can be taken.

� Use a global solver, such as Baron, to solve the NLP. Global solvers,

however, usually only work well on relatively small NLP problems.

� Use a multistart algorithm to solve the NLP problem for multiple starting

points in order to have a better chance to find the global optimum.

� Use the Aimms Presolver to reduce the problem size and tighten the

bounds of the remaining variables and constraints of the NLP. This will

reduce the space which the nonlinear solver needs to search in order to

find an optimal solution.

This chapterThis chapter discusses the presolve techniques for nonlinear programs avail-

able in Aimms. The chapter also discusses the multistart algorithm built into

Aimms. Using the multistart algorithm will increase the total solution time,

but, in general, will also improve the solution found by nonlinear solvers.

17.1 The Aimms Presolver

The need for a

presolver

Of all nonlinear solvers in Aimms only a couple use (limited) preprocessing

techniques. Therefore, Aimms itself has implemented a presolve algorithm

with the goal to reduce the size of the problem and to tighten the variable

bounds, which may help the solver to solve nonlinear problems faster. Besides

the Baron global solver, all nonlinear solvers in Aimms are local solvers, i.e.

the solution found by the solver is a local solution and cannot be guaranteed

to be a global solution. The presolve algorithm may help the solver in finding a

better solution. A local solver might sometimes fail to find a solution and then

it is often not clear whether that is caused by the problem being infeasible or

Chapter 17. Advanced Methods for Nonlinear Programs 286

by the solver failing to find a solution for a feasible problem. The presolve al-

gorithm may reveal inconsistent constraints and/or variable bounds and hence

identify a problem as infeasible.

Presolve

techniques

Consider the following constrained nonlinear optimization problem:

Minimize:

f(x)

Subject to:

g(x) ≤ d
Ax ≤ b

l ≤ x ≤ u

The objective function f(x) can either be linear or nonlinear, while g(x) is a

nonlinear function. The Aimms presolve algorithm will (amongst others)

� remove singleton rows by moving the bounds to the variables,

� reduce variable bounds from linear and nonlinear constraints that con-

tain bounded variables,

� delete fixed variables,

� remove one variable of a doubleton, and

� delete redundant constraints.

A detailed description of each of these techniques can be found in [Fo94].

Singleton rowsA singleton row is a linear constraint that contains only one variable. An equal-

ity singleton row fixes the variable to the right-hand-side value of the row, and

unless this value conflicts with the current bounds of the variable in which

case the problem is infeasible, Aimms can remove both the row and variable

from the problem. An inequality singleton row introduces a new bound on the

variable which can be redundant, tighter than an existing bound in which case

Aimms will update the bound, or infeasible. The Aimms presolve algorithm will

remove all singleton rows.

Deleting fixed

variables

If a variable is fixed then sometimes another row becomes a singleton row, and

if that row is an equality row Aimms can fix the remaining variable and remove

it from the problem. By repeating this process Aimms can solve any triangular

system of linear equations that is part of the problem.

Bound reduc-

tions using

linear

constraints

The following analysis applies to a linear “less than or equal to” constraint.

A similar analysis applies to other constraint types. Assume we have a linear

constraint i that originally has the form

∑

j

aijxj ≤ bi (17.1)

Chapter 17. Advanced Methods for Nonlinear Programs 287

Assuming that all variables in this constraint have finite bounds, we can deter-

mine the following lower and upper limits on constraint i

bi =
∑

j∈Pi
aijlj +

∑

j∈Ni
aijuj (17.2)

and

bi =
∑

j∈Pi
aijuj +

∑

j∈Ni
aijlj (17.3)

where Pi = {j | aij > 0} and Ni = {j | aij < 0} define the sets of variables with

a positive coefficient and negative coefficient in constraint i respectively.

Bound analysisBy comparing the lower and upper limits of a constraint with the right-hand-

side value we obtain one of the following situations:

� bi > bi: constraint (17.1) cannot be satisfied and is infeasible.

� bi = bi: constraint (17.1) can only be satisfied if all variables in the con-

straint are fixed on their lower bound if they have a positive coefficient,

or fixed on their upper bound if they have a negative coefficient. The

constraint and all its variables can be removed from the problem.

� bi ≤ bi: constraint (17.1) is redundant, i.e. will always be satisfied, and

can be removed from the problem.

� bi < bi < bi: constraint (17.1) cannot be eliminated but can often be used

to improve the bounds of one or more variables as we will see below.

If bi < bi < bi, then combining (17.1) with (17.2) gives the following bounds

on a variable k in constraint i:

xk ≤ lk + (bi − bi)/aik if aik > 0 (17.4)

and

xk ≥ uk + (bi − bi)/aik if aik < 0 (17.5)

If the upper bound given by (17.4) is smaller than the current lower bound

of variable k then the problem is infeasible. If it is smaller then the current

upper bound of variable k, Aimms will update the upper bound for variable

k. Something similar holds for the lower bound as given by (17.5). Note that

bounds (17.4) and (17.5) can only be derived if all bounds lj and uj in (17.2)

are finite. But also if exactly one of the bounds in (17.2) is an infinite bound,

Aimms can still find an implied bound for the corresponding variable.

Bound reduc-

tions using

nonlinear

constraints

We can rewrite a nonlinear constraint gi(x) ≤ di as

∑

j

aijxi + hi(y) ≤ di (17.6)

separating the linear variables x in this constraint from the nonlinear variables

y . As before, we can find lower and upper limits on the linear part of the con-

straint, and again we denote them by bi and bi respectively. For this constraint

Chapter 17. Advanced Methods for Nonlinear Programs 288

we can derive the following upper bound on the nonlinear term in (17.6):

hi(y) ≤ di − bi (17.7)

Note that if there are no linear terms in constraint (17.6) then bi = 0.

Nonlinear

analysis using

expression trees

Nonlinear expressions in Aimms are stored in an expression tree. By going

through the expression tree from the top node to the leafs we can sometimes

derive bounds on some of the variables in the expression. For example, assume

we have the constraint √
lnx ≤ 2

with x unbounded. It follows that the lnx sub-expression should be in the

range [0,4] since
√
y is not defined for y < 0, which in turn implies that x

should be in the range (1, e4].

Types of

nonlinear

analysis

Aimms can analyze nonlinear expressions for various types of reductions, and

uses various types of techniques, such as:

� operator domain analysis: reduce bounds on operator arguments by the

implicit domains of operators such as
√
x or lnx,

� operator range analysis: compute the bounds of a nonlinear expression

on the basis of known bounds on the argument(s) and use those bounds

for further reductions, and

� for invertible functions, compute bounds on operator arguments on the

basis of bounds on a known operator range.

Supported

operators

The presolve algorithm can handle nonlinear expressions build up by the op-

erators listed in Table 17.1. If a nonlinear constraint contains an operator that

is not in this table then it will be ignored by the presolve algorithm.

log10 x, lnx expx, ex

xa, ax (a ≠ 0) xy

sinx, cosx, tanx arcsinx, arccosx, arctanx

x +y , x −y x ·y , x/y

Table 17.1: Operators used by the presolve algorithm

DoubletonsIf a problem contains a constraint of the form x = ay , a ≠ 0, then the variables

x and y define a doubleton. If the presolve algorithm detects a doubleton

then it will replace the variable x by the term ay in every constraint in which

x appears, and remove the variable x from the problem. For some problems

good initial values are given to the variables. In case the initial value given to

x does not match the initial value of y according to the relationship x = ay ,

it is unclear which initial value we should assign to y . Preliminary test results

Chapter 17. Advanced Methods for Nonlinear Programs 289

showed that in such a case it is better not to remove the doubleton, and pass

both variables to the solver with their own initial value. This has become the

default behavior of our presolve algorithm regarding doubletons.

The presolve

algorithm

The Aimms Presolver iteratively applies all reduction techniques discussed

above until no further reductions are available anymore, or an iteration limit

has been reached. Various options are available in the Solvers general - Aimms

presolver section of the option tree to steer the presolve algorithm. For in-

stance a user can choose to only use linear constraints for reducing bounds,

or to not remove doubletons.

Mixed integer

programming

problems

If the optimization problem contains binary variables then the Aimms Pre-

solver can apply probing which is a technique that looks at the logical im-

plications of fixing a binary variable to 0 or 1. Probing can be used to reduce

more variables bounds, reformulate constraints or improve coefficients. In

some cases quadratic constraints containing binary variables can be reformu-

lated as linear constraints. Coefficient improvement is a process of improving

the coefficients of the binary variables such that the relaxation becomes more

tight. A detailed description of probing and coefficient improvement can be

found in [Sa94].

Successes may

vary

The benefits of using the Aimms Presolver may vary from model to model.

The solution of presolved NLPs may become better or worse compared to the

original NLP. Presolving may change infeasible NLPs to feasible problems for

a given starting point, or vice versa. Also, presolving may make the model

more degenerate and harder to solve. Finaly, for eliminated constraints and

variables dual information is lost, and Aimms makes no effort yet to recover

the lost dual information, as this may be very hard in the presence of nonlinear

reductions.

17.2 The Aimms multistart algorithm

The multistart

algorithm

A multistart algorithm calls an NLP solver from multiple starting points, keeps

track of (all) feasible solutions found by the NLP solver, and reports back the

best of these as its final solution.

Why use

multistart?

A multistart algorithm can improve the reliability of any NLP solver, by calling

it with many starting points. A single call to a NLP solver can fail (return a

status of infeasible), but multiple calls from the widely spaced starting points

provided by a multistart algorithm have a much better chance of success.

Chapter 17. Advanced Methods for Nonlinear Programs 290

Basic techniquesIn a pure multistart algorithm many local searches will converge to the same

local minimum. Computational effort can be reduced if the minimizations

leading to the same local minimum point can be identified and combined at

early stages. An improvement is to use cluster analysis techniques to identify

regions of points that will lead to the same local minimum.

Algorithm used

by Aimms

Aimms uses a multistart algorithm that does not use advanced cluster analysis

techniques, but instead tries to identify areas of points that will lead to the

same local solution. These areas are updated (and become larger) whenever

a starting point is found that leads to a local solution that has already been

found before. An more detailed description of a multistart algorithm similar

to the one used by Aimms can be found in [Ka87].

DefinitionsThe following terminology is used for the multistart algorithm

� Sample points: a set of points that were randomly sampled.

� Cluster point: a point that defines the center of a cluster, i.e., a cluster is

a circle/ball with a cluster point as its center.

� Starting point: a point used as an initial solution (“hotstart”) for solving

the NLP.

� Local solution: a solution found by the NLP solver (by using a starting

point). A local solution belongs to exactly one cluster point. A local

solution can be infeasible.

Two algorithmsThe multistart module implements two algorithms, namely a basic algorithm

and a dynamic algorithm in which the number of iterations is changed dynam-

ically. The inputs for both algorithms are:

� a gmp associated with an NLP,

� NumberOfSamplePoints, and

� NumberOfSelectedSamplePoints.

The basic

algorithm

The basic algorithm employs the following steps:

0. Set IterationCount equal to 1.

1. Generate NumberOfSamplePoints sample points from the uniform distribu-

tion. Calculate the penalized objective for all sample points and select

the best NumberOfSelectedSamplePoints sample points.

2. For all sample points (NumberOfSelectedSamplePoints in total) do:

� For all clusters, calculate the distance between the sample point

and the center of the cluster. If the distance is smaller than the

radius of the cluster (i.e., the sample point belongs to the cluster)

then delete the sample point.

3. For all (remaining) sample points do:

� Solve the NLP by using the sample point as its starting point to

obtain a candidate local solution.

Chapter 17. Advanced Methods for Nonlinear Programs 291

� For all clusters do:

– Calculate the distance between the candidate local solution

and the local solution belonging to the cluster.

– If the distance equals 0 (which implies that the candidate local

solution is the same as the local solution belonging to the clus-

ter) then update the center and radius of the cluster by using

the sample point.

– Else, construct a new cluster by using the mean of the sample

point and the candidate local solution as its center with radius

equal to half the distance between these two points. Assign

the candidate local solution as the local solution belonging to

the cluster.

� For all remaining sample points, calculate the distance between the

sample point and the center of the updated or the new cluster. If

the distance is smaller than the radius of the cluster then delete

the sample point.

4. Increment IterationCount. If the number of iterations exceeds the Itera-

tionLimit, then go to step (5). Else go to step (1).

5. Order the local solutions and store the NumberOfBestSolutions solutions

in the solution repository.

By default, the algorithm uses the initial variable values as the first “sample”

point in the first iteration.

The dynamic

algorithm: first

phase

The dynamic algorithm contains two phases. The first phase is similar to the

basic algorithm but with some differences. The dynamic algorithm starts by

determining the best sampling box for the creation of the random points (in

step 0). For the first sample point, which can be an initial point provided by

the user or the first randomly generated point, a method is applied to compute

an approximately feasible solution (see [Ch04]) to increase the chance that

this first sample point will lead to a feasible solution. Finally, if the dynamic

algorithm did not find any feasible solution during the first iterations, and all

local solutions found contain large infeasibilities, then a heuristic will be used

to update the variable bounds (in step 4).

The dynamic

algorithm:

second phase

The second phase of the dynamic algorithm is only conducted if no feasible

solution was found in the first phase, or if the objective values of the feasi-

ble solutions found in the first phase vary. The second phase differs for both

situations. If no feasible solution was found in the first phase then the algo-

rithm will continue with steps 1 to 4 until a feasible solution is found or the

time limit is hit. In each iteration, the algorithm will now use the method for

computing an approximately feasible solution for the first randomly generated

point. In the other case, in which the objective values of the feasible solutions

found in the first phase vary, the second phase will continue with steps 1 to 4

until enough feasible solutions are found to satisfy a Bayesian estimate for the

number of local feasible solutions (or if the time limit is hit).

Chapter 17. Advanced Methods for Nonlinear Programs 292

Using the

Aimms

multistart

algorithm

The Aimms multistart algorithm is implemented as a system module, with the

name Multi Start, that you can add to your project. You can install this mod-

ule using the Install System Module command in the Aimms Settings menu.

The algorithm outlined above is implemented in the Aimms language. Some

supporting functions that are computationally difficult, or hard to express in

the Aimms language, have been added to the gmp library in support of the

Aimms multistart algorithm.

Calling the

multistart

algorithm

The main procedure to start the multistart algorithm is the procedure DoMulti-

Start. The only mandotory input is a generated mathematical program ob-

tained by calling the GMP::Instance::Generate function of the gmp library dis-

cussed in Section 16.2. Therefore the multistart algorithm can be called by

using for example:

MulStart::DoMultiStart(myGMP);

Here MulStart is the prefix of the multistart module. The behavior of the mul-

tistart algorithm is influenced by several control parameters, which are dis-

cussed in Section 17.3.

Optional

arguments

The procedure DoMultiStart contains two optional arguments (with a default

value of 0) which can be used to specify the number of sample points and the

number of selected sample points (as outlined above). If both arguments are

not specified (like in the example of the previous paragraph) or are equal to 0,

then the multistart algorithm will use the dynamic algorithm, and otherwise

the basic algorithm. For example, if

MulStart::DoMultiStart(myGMP, 20, 10);

is used then the basic algorithm will be used with 20 sample points and 10

selected sample points. If the dynamic algorithm is used then the multistart

algorithm will automatically select values for the number of sample points

and the number of selected sample points. It is possible to use the dynamic

algorithm and specify the number of sample points and the number of selected

sample points yourself by calling the procedure DoMultiStartDynamic.

Supporting gmp

functions

The gmp library contains the following functions to support the multistart

algorithm:

� GMP::Solution::RandomlyGenerate (used in step (1))

� GMP::Solution::GetPenalizedObjective (used in step (1))

� GMP::Solution::GetDistance (used in steps (2) and (4))

� GMP::Solution::ConstructMean (used in step (4))

� GMP::Solution::UpdatePenaltyWeights (used during initialization)

Optionally it is possible to (approximately) project each sample point to the

feasible region by using the procedure GMP::Instance::FindApproximatelyFeas-

ibleSolution.

Chapter 17. Advanced Methods for Nonlinear Programs 293

Modifying the

algorithm

Because the multistart algorithm is written in the Aimms language, you have

complete freedom to modify the algorithm in order to tune it for your nonlin-

ear programs.

17.3 Control parameters that influence the multistart algorithm

Control

parameters

The multistart module defines several parameters that influence the multi-

start algorithm. These parameters have a similar functionality as options of a

solver, e.g., Cplex. The most important parameters, with their default setting,

are shown in Table 17.2. The parameters that are not self-explanatory are ex-

Parameter Default Range Subsection

IterationLimit 5 {1,maxint} 17.3.1

TimeLimit 0 {0,maxint} 17.3.2

TimeLimitSingleSolve 0 {0,maxint} 17.3.2

ThreadLimit 0 {0,maxint} 17.3.3

UseOpportunisticAlgorithm 0 {0,1} 17.3.4

NumberOfBestSolutions 1 {1,1000} 17.3.5

ShrinkFactor 0.95 [0,1] 17.3.6

UsePresolver 1 {0,1} 17.3.7

UseInitialPoint 1 {0,1} 17.3.8

UseConstraintConsensusMethod 0 {-1,1} 17.3.9

MaximalVariableBound 1000 [0,inf) 17.3.10

ShowSolverProgress 0 {0,1} 17.3.11

Table 17.2: Control parameters in the multistart module

plained in this section; the last column in the table refers to the subsection

that discusses the corresponding parameter.

17.3.1 Specifying an iteration limit

Parameter

IterationLimit

The parameter IterationLimit can be used to set a limit on the number of iter-

ations used by the multistart algorithm. This limit is use in the basic algorithm

and in the first phase of the dynamic algorithm.

17.3.2 Specifying a time limit

Parameter

TimeLimit

The parameter TimeLimit can be used to set a limit on the total elapsed time (in

seconds) used by the multistart algorithm. The default value of 0 has a special

meaning; in that case there is no time limit.

Chapter 17. Advanced Methods for Nonlinear Programs 294

Parameter

TimeLimit-

SingleSolve

It is also possible to set a time limit for every single solve started by the multi-

start algorithm by using the parameter TimeLimitSingleSolve. Also the default

value of 0 of this parameter has a special meaning; in that case there is no time

limit.

17.3.3 Using multiple threads

Parameter

ThreadLimit

The parameter ThreadLimit controls the number of threads that should be used

by the multistart algorithm. Each thread will be used to solve one NLP using

an asynchronous solver session. At its default setting of 0, the algorithm will

automatically use the maximum number of threads, which is limited by the

number of cores on the machine and the amount of solver sessions allowed by

the Aimms license.

17.3.4 Deterministic versus opportunistic

Parameter

UseOpportunis-

ticAlgorithm

By default the multistart algorithm runs in deterministic mode. Determinis-

tic means that multiple runs with the same model using the same parameter

settings and the same solver on the same computer will reproduce the same

results. The number of NLP problems solved by the multistart algorithm will

then also be the same. In contrast, opportunistic implies that the results, and

the number of NLP problems solved, might be different. Usually the oppor-

tunistic mode provides better performance. The parameter UseOpportunistic-

Algorithm can be used to switch to the opportunistic mode. Note that if the

multistart algorithm uses only one thread then the algorithm will always be

deterministic.

17.3.5 Getting multiple solutions

Parameter

NumberOfBest-

Solutions

By default the multistart algorithm will return one solution, namely the best

solution that the algorithm finds. By setting the parameter NumberOfBestSolu-

tions to a value higher than 1, the multistart algorithm will store the best n

solutions found in the solution repository (see Section 16.4). Here n denotes

the value of this parameter.

17.3.6 Shrinking the clusters

Parameter

ShrinkFactor

The clusters created by the multistart algorithm would normally grow as more

and more points are assigned to the clusters. As a side effect, a new sample

point is then more likely to be directly assigned to a cluster, in which case

no NLP is solved for that sample point, thereby increasing the chance that

it ends up in the wrong cluster. To overcome this problem, the multistart

Chapter 17. Advanced Methods for Nonlinear Programs 295

algorithm automatically shrinks all clusters after each iteration by a constant

factor which is specified by the parameter ShrinkFactor.

17.3.7 Combining multistart and presolver

Parameter

UsePresolver

By default the multistart algorithm starts by applying the Aimms Presolver to

the NLP problem. By preprocessing the problem, the ranges of the variables

might become smaller which has a positive effect on the multistart algorithm

as then the randomly generated sample points are more likely to be good start-

ing points. The parameter UsePresolver can be used to switch off the prepro-

cessing step.

17.3.8 Using a starting point

Parameter

UseInitialPoint

Sometimes the level values, assigned to the variables before solving the NLP

problem, provide a good starting point. By default the multistart algorithm

will use this initial point as the first sample point but only in the first iteration.

This behavior is controlled by the parameter UseInitialPoint.

17.3.9 Improving the sample points

Parameter

UseConstraint-

ConsensusMethod

The sample points are randomly generated by using the intervals defined by

the lower and upper bounds of the variables. Such a sample point is very

likely to be infeasible with respect to the constraints. The constraint con-

sensus method, which is described in [Ch04], tries to find an approximately

feasible point for a sample point. Using this method might slow down the

multistart algorithm but the chance of generating (almost) feasible sample

points increases. The constraint consensus method can be activated by us-

ing the parameter UseConstraintConsensusMethod. If this parameter is set to 1

then the constraint consensus method will be used whenever possible, and if

it is set to -1 then it will never be used. At its default value of 0, the algorithm

automatically decides when to use the constraint consensus method.

17.3.10 Unbounded variables

Parameter

Maximal-

VariableBound

A multistart algorithm requires that all variable bounds are finite. Therefore

the multistart algorithm in Aimms will use a fixed value for all infinite upper

and lower variable bounds. This fixed value is specified by the parameter Maxi-

malVariableBound. The value of this parameter might be updated automatically

in case the dynamic algorithm is used.

Chapter 17. Advanced Methods for Nonlinear Programs 296

17.3.11 Solver progress

Parameter Show-

SolverProgress

By default the progress window will only show general progress information

for the multistart algorithm, including the objective value, the number of it-

erations, the elapsed time, etc. By switching on the parameter ShowSolverPro-

gress also progress information by the NLP solver will be displayed. If multiple

solver sessions are (asynchronous) executing at the same time then only the

progress information of one of them will be shown.

Chapter 18

Aimms Outer Approximation Algorithm for

MINLP

Open solver

approach

Outer approximation (see [Du86]) is a basic approach for solving Mixed-Integer

NonLinear Programming (MINLP) models. The underlying algorithm is an in-

terplay between two solvers, one for solving mixed-integer linear models and

one for solving nonlinear models. Even though the standard outer approxima-

tion algorithm is provided with Aimms, you as an algorithmic developer may

want to customize the individual steps in order to obtain better performance

and/or a better solution for your particular model.

The Aimms

Outer Approx-

imation

algorithm

The outer approximation algorithm in Aimms is, therefore, provided as a cus-

tomizable procedure written in the Aimms language itself using functions and

procedures provided by the gmp library (a white box solver), whereas most

other outer approximation solvers are provided as a closed implementation

(a black box solver). The outer approximation algorithm in Aimms is imple-

mented as a system module with the name GMP Outer Approximation. You can

install this module using the Install System Module command in the Aimms

Settings menu. In the remainder of this chapter, we will refer to the outer

approximation algorithm as Aimms Outer Approximation (aoa).

Convex

algorithm

Besides the basic algorithm, the aoa module also implements the Quesada-

Grossmann algorithm (see [Qu92]) which is designed to solve convex MINLP

models. The basic algorithm can also be used to solve convex models but the

Quesada-Grossmann algorithm is often more efficient.

This chapterIn this chapter you find the description of, and the motivation behind, the

open approach to solving MINLP models based on outer approximation. We

continue with a brief introduction to the problem statement and the basic

algorithm. Next we explain how the aoa algorithm can be setup, followed

by a detailed explanation of the parameters inside the aoa module that can

be used to control the outer approximation algorithm. We then describe the

Quesada-Grossmann algorithm for convex MINLP models. Next we describe

an initial implementation of the basic solution algorithm using procedures in

the Aimms language is described. These procedures use functions that are es-

pecially designed to support the open approach. The chapter concludes with

Chapter 18. Aimms Outer Approximation Algorithm for MINLP 298

suggestions on additional ways to vary the individual steps of the overall al-

gorithm in order to obtain customized versions of the outer approximation

algorithm.

18.1 Problem statement

MINLPThe mixed-integer nonlinear programming models to be solved can be ex-

pressed as follows.

Minimize:

f(x,y)

Subject to:

h(x,y) = 0

g(x,y) ≤ 0

Cy +Dx ≤ d

x ∈ X = {x ∈ Rn|xL ≤ x ≤ xU}
y ∈ Y = Zm

Usual

assumption

The usual assumption is that the nonlinear subproblem (i.e. the model in

which all integer variables are fixed) is convex. This assumption is to guar-

antee that each locally optimal solution of the nonlinear subproblem is also a

globally optimal solution. In practice this assumption does not always hold,

but the algorithm can still be applied. Convergence to a global optimum of the

MINLP using the outer approximation algorithm is then no longer guaranteed.

18.2 Basic algorithm

Algorithm in

words

The algorithm solves an alternating sequence of mixed-integer linear models

and nonlinear models.

1. First, the entire model is solved as a nonlinear program with all the inte-

ger variables relaxed as continuous variables between their bounds.

2. Then a linearization is carried out around the optimal solution, and the

resulting constraints are added to the linear constraints that are already

present. This new linear model is referred to as the master MIP model.

3. The master MIP problem is solved as an mixed-integer linear program.

4. The integer part of the resulting optimal solution is then temporarily

fixed, and the original MINLP model with fixed integer variables is solved

as a nonlinear subproblem.

5. Again, a linearization around the optimal solution is constructed and the

new linear constraints are added to the master MIP problem. To prevent

Chapter 18. Aimms Outer Approximation Algorithm for MINLP 299

cycling, one or more constraints are added to cut off the previously-

found integer solution of the master problem.

6. Steps 3–5 are repeated until one of the termination criteria is satisfied.

A more detailed description of the general Outer Approximation algorithm can

be found in [Du86].

Convexity and

convergence

As linearizations are added to the master MIP problem, the model becomes an

improved approximation of the original MINLP model. Using the usual convex-

ity assumption regarding the nonlinear subproblem, convergence to a global

optimum occurs when the objective function value of the master MIP problem

is worse than the value associated with the NLP subproblem.

Termination . . .Several termination criteria are used in practice. These criteria can be used in

isolation or in some logical combination. Three of them are discussed in the

following paragraphs.

. . . iteration

limit

Perhaps the most frequently-used criterion is the iteration limit. One reason is

that a good solution is usually found during the first few iterations. Another

reason for using an iteration limit is that the size of the underlying master

MIP problem tends to grow significantly each time linearization constraints

are added, causing an increase in computation time.

. . . objective

worsening

A second criterion is the worsening of the objective function value of two suc-

cessive nonlinear subproblems. This worsening occurs quite frequently, even

if the NLP subproblem is convex. The underlying reason is that the master

MIP problem will not always select binary solutions that lead to successively

improving NLPs. This criterion seems appropriate when the worsening is per-

sistent over several iterations.

. . . crossoverA third termination criterion is insufficient improvement in the objective func-

tion value of the master MIP problem in relation to the objective function value

of the previously solved NLP subproblem. The difference between these two

values represents the optimality gap, since the master MIP problem represents

an outer approximation (thus a relaxation) of the original MINLP model. When

the gap is closed at crossover, the optimal solution has been found provided

the NLP subproblem is convex.

Final solutionUpon termination of the algorithm, the known best solution (also referred to

as the incumbent solution) is declared as the final solution. In many practical

applications, this solution is not necessarily optimal due to termination based

on an iteration limit. In addition, it is often not possible to verify that the NLP

subproblem is convex.

Chapter 18. Aimms Outer Approximation Algorithm for MINLP 300

Figure 18.1: Effect of loosening a linearization

LinearizationsThe term ‘outer approximation’ refers to the linear approximation of the con-

vex nonlinear constraints at selected points along the boundary of the convex

solution region. The accumulation of such inequality constraints forms an

outer approximation of the solution region, and this approximation can be

used in the optimization rather than the nonlinear constraints from which it

was derived. The formula for the linearization of a scalar nonlinear inequality

g(x,y) ≤ 0 around the point (x,y) = (x0, y0) is as follows.

g(x0, y0)+▽g(x0, y0)T
[
x − x0

y −y0

]
≤ 0

The nonconvex

case

The linear approximation ceases to be an outer approximation if the solution

region is not convex. In this situation there is the possibility that portions of

the solution region are cut off as illustrated in Figure 18.1.

Loosening

inequalities

In practical implementations of the outer approximation algorithm, the lin-

earizations are allowed to move away from the feasible region. Such heuristic

flexibility allows solutions to be found that would otherwise have been cut off.

The implementation allows deviations through the use of artificial nonnegative

variables and then penalizing them while solving the master problem.

Open solver

approach

The basic outer approximation algorithm that is part of the aoa module has

been completely implemented using functionality provided by the gmp library.

� From the math program instance representing the original MINLP model,

a new math program instance representing the initial master MIP prob-

lem can be created using the function GMP::Instance::CreateMasterMIP.

� The functions from the GMP::Linearization namespace can be used to

add linearizations of the nonlinear constraints of the original MINLP

model to the master MIP, in a customizable manner.

Chapter 18. Aimms Outer Approximation Algorithm for MINLP 301

� Using the GMP::Instance::FixColumns procedure, the integer columns of

the nonlinear subproblem can fixed to the current integer solution of the

master MIP.

� Using the GMP::Instance::AddIntegerEliminationRows procedure, prior in-

teger solutions of the master MIP are excluded from subsequent solves.

18.3 Using the AOA algorithm

aoa module . . .The basis gmp implementation of the Aimms Outer Approximation (aoa) algo-

rithm can be found in a single Aimms module, called GMP Outer Approximation,

that is provided as part of the Aimms system. You can install this module

using the Install System Module command in the Aimms Settings menu.

Basic algorithmThe procedure DoOuterApproximation inside the module implements the basic

algorithm from the previous section. The procedure DoOuterApproximation has

one input argument, namely:

� MyGMP, an element parameter with range AllGeneratedMathematicalPro-

grams.

This procedure is called as follows:

generatedMP := GMP::Instance::Generate(SymbolicMP);

GMPOuterApprox::DoOuterApproximation(generatedMP);

Here SymbolicMP is the symbolic mathematical program containing the MINLP

model, and generatedMP is an element parameter in the predefined set All-

GeneratedMathematicalPrograms. GMPOuterApprox is the prefix of the aoa mod-

ule. The implementation of this procedure will be discussed in Section 18.6.

Modifying the

algorithm

Because the Aimms Outer Approximation algorithm is completely implemented

using functionality provided the gmp library, you have the complete free-

dom to modify the math program instances generated by the basic aoa algo-

rithm using the matrix manipulation routines discussed in Section 16.3. Such

problem-specific modifications to the basic algorithm may help you to find a

better overall solution to your MINLP model, or to find a good solution faster.

18.4 Control parameters that influence the AOA algorithm

Control

parameters

The multistart module defines several parameters that influence the outer

approximation algorithm. These parameters have a similar functionality as

options of a solver, e.g., Cplex. The most important parameters, with their

default setting, are shown in Table 18.1. The parameters that are not self-

explanatory are explained in this section; the last column in the table refers to

the subsection that discusses the corresponding parameter.

Chapter 18. Aimms Outer Approximation Algorithm for MINLP 302

Parameter Default Range Subsection

IterationMax 20 {0,maxint}
TimeLimit 0 {0,maxint} 18.4.1

CreateStatusFile 0 {0,1}
UsePresolver 1 {0,1} 18.4.2

UseMultistart 0 {0,1} 18.4.3

TerminateAfterFirstNLPIsInteger 1 {0,1} 18.4.4

IsConvex 0 {0,1} 18.4.5

RelativeOptimalityTolerance 1e-5 {0,1} 18.4.5

NLPUseInitialValues 1 {0,1} 18.4.6

Table 18.1: Control parameters in the outer approximation module

18.4.1 Specifying a time limit

Parameter

TimeLimit

The parameter TimeLimit can be used to set a limit on the total elapsed time

(in seconds) used by the outer approximation algorithm. The default value of

0 has a special meaning; in that case there is no time limit.

18.4.2 Using the AIMMS Presolver

Parameter

UsePresolver

By default the outer approximation algorithm starts by applying the Aimms

Presolver to the MINLP model. By preprocessing the MINLP model, the model

might become smaller and easier to solve. The parameter UsePresolver can be

used to switch off the preprocessing step.

18.4.3 Combining outer approximation with multistart

Parameter

UseMultistart

If the parameter UseMultistart is switched on then the outer approximation

algorithm will use the multistart algorithm to solve the nonlinear subprob-

lems. For non-convex models this can have a positive effect on the quality

of the solution that is returned by the outer approximation algorithm. The

multistart algorithm is described in section 17.2. The parameters Multistart-

NumberOfSamplePoints and MultistartNumberOfSelectedSamplePoints can be used

to specify the number of sample and selected sample points, respecively, as

used by the multistart algorithm.

Multistart

module

To use the multistart algorithm, the system module Multi Start should be

added to your project. You can install this module using the Install System

Module command in the Aimms Settings menu.

Chapter 18. Aimms Outer Approximation Algorithm for MINLP 303

18.4.4 Terminate if solution of relaxed model is integer

Parameter

TerminateAfter-

FirstNLPIs-

Integer

By default the outer approximation algorithm will terminate if it finds an in-

teger solution for the initial NLP problem, which is obtained from the MINLP

model by relaxing the integer variables. By switching off the parameter Termin-

ateAfterFirstNLPIsInteger you can enforce the algorithm to continue.

18.4.5 Solving a convex model

Parameter

IsConvex

The parameter IsConvex can be used to indicate that the model is convex. In

that case the outer approximation algorithm will no longer stop after the it-

eration limit is hit, as specified by the parameter IterationMax. Instead, the

algorithm will stop if the gap between the objective values of the master MIP

problem and the nonlinear subproblem is sufficiently small, as controlled by

the parameter RelativeOptimalityTolerance. Note that Aimms cannot identify

whether a model is convex or not.

18.4.6 Starting point strategy for NLP subproblems

Parameter

NLPUseInitial-

Values

The parameter NLPUseInitialValues specifies the starting point strategy used

for solving the NLP subproblems. For nonconvex nonlinear problems the start-

ing point often has a big influence on the solution that the NLP solver will find.

By default the aoa algorithm will use the initial values as provided by the

user for all NLP subproblems that are solved. By setting this parameter to 0,

the algorithm will use the solution of the previous master MIP problem as the

starting point for the next NLP subproblem (and for the initial NLP it will use

the initial values provided by the user). Note: if one of the parameters Use-

Multistart or IsConvex equals 1 then NLPUseInitialValues is automatically set

to 0.

18.5 The Quesada-Grossmann algorithm

One MIP

problem

Quesada and Grossmann ([Qu92]) noticed that the classic outer approximation

algorithm often spends a large amount of time in solving the MIP problems in

which a significant amount of rework is done. They proposed an algorithm in

which only one MIP problem is solved. The algorithm implemented in Aimms

uses a callback procedure for lazy constraints which is supported by modern

MIP solvers like Cplex and Gurobi.

Chapter 18. Aimms Outer Approximation Algorithm for MINLP 304

Convex modelsThe Quesada-Grossmann algorithm is designed to solve convex MINLP mod-

els. The basic outer approximation algorithm can also be used to solve convex

models by using the parameter IsConvex, but the Quesada-Grossmann algo-

rithm is often more efficient. The Quesada-Grossmann algorithm is also avail-

able in the GMP Outer Approximation module.

Calling

procedure

The procedure DoConvexOuterApproximation inside the module implements the

Quesada-Grossmann algorithm. This procedure is called in the same way as

the DoOuterApproximation procedure of Section 18.3, which implements the ba-

sic algorithm. The following control parameters in Table 18.1 can be used

to influence the Quesada-Grossmann algorithm: TimeLimit, CreateStatusFile,

UsePresolver and RelativeOptimalityTolerance.

18.6 A first and basic implementation

Calling the aoa

algorithm

To call the aoa algorithm, the gmp library is used to generate a number of

math program instances, and associated solver sessions, where SymbolicMP is

the symbolic mathematical program containing the MINLP model.

! Generate the MINLP model.

GMINLP := GMP::Instance::Generate(SymbolicMP, FormatString("%e", SymbolicMP)) ;

! Create NLP subproblem.

GNLP := GMP::Instance::Copy(GMINLP, ’OA_NLP’) ;

GMP::Instance::SetMathematicalProgrammingType(GNLP, ’RMINLP’) ;

ssNLP := GMP::Instance::CreateSolverSession(GNLP) ;

! Create Master MIP problem.

GMIP := GMP::Instance::CreateMasterMip(GMINLP, ’OA_MasterMIP’) ;

ssMIP := GMP::Instance::CreateSolverSession(GMIP) ;

BasicAlgorithm;

The basic algorithm outlined above is available in the gmp Outer Approxima-

tion module as the procedure DoOuterApproximation.

The basic

algorithm

The basic algorithm is straightforward, and makes a call to five other pro-

cedures that execute the various algorithm steps. The naming convention is

self-explanatory, and the following lines make up this first example of a main

procedure. For the sake of brevity and clarity, the parts of the code used to

create a status file and to customize the contents of the progress window have

been left out. They can be found in the basic implementation of the aoa algo-

rithm in the aoa module.

InitializeAlgorithm;

SolveRelaxedMINLP;

while (not MINLPAlgorithmHasFinished) do

AddLinearizationsAndSolveMasterMIP;

FixIntegerVariablesAndSolveNLP;

Chapter 18. Aimms Outer Approximation Algorithm for MINLP 305

TerminateOrPrepareForNextIteration;

endwhile;

Note that the scalar parameter MINLPAlgorithmHasFinished must be initially set

to zero, and should only get a nonzero value when the algorithm is ready to

terminate.

Initialize-

Algorithm

The following procedure is used to set all algorithmic parameters and options,

and to prepare the status file and progress window output.

IterationCount := 0 ;

LinearizationCount := 1 ;

EliminationCount := 1 ;

IncumbentSolutionHasBeenFound := 0 ;

MINLPAlgorithmHasFinished := 0 ;

if (NLPUseInitialValues) then

GMP::Solution::RetrieveFromModel(GNLP, SolNumbInitialValues) ;

endif;

if (GMP::Instance::GetDirection(GMINLP) = ’maximize’) then

MINLPOptimizationDirection := 1;

else

MINLPOptimizationDirection := -1;

endif;

GMP::Solution::SetProgramStatus(GMINLP, SolNumb, ’ProgramNotSolved’) ;

GMP::Solution::SetSolverStatus(GMINLP, SolNumb, ’Unknown’) ;

! The marginals of the NLP solver are needed.

option always_store_marginals := ’On’;

The algorithmic parameters are initially set such that the aoa algorithm will

always select the original initial values (i.e. the values of the variables prior

to starting the aoa algorithm) as the starting values for each NLP subproblem

to be solved. This setting has found to work quite well in extensive tests

performed using this algorithm.

MINLPTerminateThe following termination procedure is used in several of the procedures that

are described later.

if (IncumbentSolutionHasBeenFound) then

GMP::Solution::SetProgramStatus(GMINLP, SolNumb, ’LocallyOptimal’) ;

GMP::Solution::SetSolverStatus(GMINLP, SolNumb, ’NormalCompletion’) ;

else

GMP::Solution::SetProgramStatus(GMINLP, SolNumb, ’LocallyInfeasible’) ;

GMP::Solution::SetSolverStatus(GMINLP, SolNumb, ’NormalCompletion’) ;

endif;

GMP::Solution::SendToModel(GMINLP, SolNumb) ;

MINLPAlgorithmHasFinished := 1 ;

The parameter IncumbentSolutionHasBeenFound contains a value of one or zero

depending on whether the aoa algorithm has received an incumbent solution

to the original MINLP model. Such a solution may be found when solving the

Chapter 18. Aimms Outer Approximation Algorithm for MINLP 306

NLP subproblem, and this must then be communicated to the aoa algorithm.

Note that you also need to set the program status and indicate when the MINLP

algorithm has finished.

SolveRelaxed-

MINLP

The first model that is solved during the algorithm is the relaxed MINLP model.

All integer variables are relaxed to continuous variables. The following proce-

dure implements this first solution step of the outer approximation algorithm.

SolveNLPSubProblem(1);

ProgramStatus := GMP::Solution::GetProgramStatus(GNLP, SolNumb) ;

if (ProgramStatus in NLPOptimalityStatus) then

! Save NLP solution as MINLP solution if an integer solution has been found.

if (GMP::Solution::IsInteger(GNLP, SolNumb)) then

! Set incumbent solution for MINLP.

GMP::Solution::RetrieveFromModel(GMINLP, SolNumb) ;

IncumbentSolutionHasBeenFound := 1 ;

if (TerminateAfterFirstNLPIsInteger) then

! Terminate if an integer solution has been found.

MINLPTerminate;

endif;

endif;

else

! Terminate if no linearization point has been found.

SolverStatus := GMP::Solution::GetSolverStatus(GNLP, SolNumb) ;

if not (SolverStatus in NLPContinuationStatus) then

MINLPTerminate;

endif;

endif ;

IterationCount += 1 ;

GMP::Solution::SetIterationCount(GMINLP, SolNumb, IterationCount) ;

When the procedure SolveNLPSubProblem has terminated, the aoa algorithm has

typically found a point for the linearization step. The exception being when

the NLP solver does not produce a solution at all (either feasible or infeasible).

In such a situation the outer approximating algorithm should be terminated.

Note that in the special event that the solution is feasible and has integer

values for the integer variables, a locally optimal solution has been found and

the aoa algorithm is instructed accordingly. Otherwise, the next step of the

outer approximation algorithm can be executed.

Add-

Linearizations-

AndSolve-

MasterMIP

If a termination flag has not been set, the following procedure adds lineariza-

tions to the master MIP problem prior to solving it. If this model becomes

infeasible, the outer approximation algorithm will be terminated.

return when (MINLPAlgorithmHasFinished);

Chapter 18. Aimms Outer Approximation Algorithm for MINLP 307

GMP::Linearization::Add(GMIP, GNLP, SolNumb, AllNonLinearConstraints,

DeviationsPermitted, PenaltyMultiplier,

LinearizationCount, JacobianTolerance) ;

LinearizationCount += 1 ;

GMP::SolverSession::Execute(ssMIP) ;

GMP::Solution::RetrieveFromSolverSession(ssMIP, SolNumb) ;

GMP::Solution::SendToModel(GMIP, SolNumb) ;

ProgramStatus := GMP::Solution::GetProgramStatus(GMIP, SolNumb) ;

if not (ProgramStatus in MIPOptimalityStatus) then

MINLPTerminate;

endif ;

The Aimms parameters DeviationsPermitted and PenaltyMultiplier are part of

the aoa module. By default, deviations are allowed and are penalized with the

value 1000 in the objective function of the master MIP.

FixInteger-

VariablesAnd-

SolveNLP

The following procedure implements the next major step of the outer approx-

imation algorithm. First, the NLP subproblem is solved after fixing all the

integer variables in the MINLP model using the values found from solving the

previous master MIP problem. Then, if the combination of integer values and

feasible NLP solution values improves the current MINLP incumbent solution, a

new incumbent solution is set. When the NLP subproblem does not produce a

solution (either feasible or infeasible), the outer approximation algorithm will

be terminated.

return when (MINLPAlgorithmHasFinished);

SolveNLPSubProblem(0);

ProgramStatus := GMP::Solution::GetProgramStatus(GNLP, SolNumb) ;

if (ProgramStatus in NLPOptimalityStatus) then

! Save NLP solution as MINLP solution if no incumbent solution

! has been found yet, or if the NLP solution is better than

! the current incumbent.

if (not IncumbentSolutionHasBeenFound) then

! Set incumbent solution for MINLP.

GMP::Solution::RetrieveFromModel(GMINLP, SolNumb) ;

IncumbentSolutionHasBeenFound := 1 ;

else

NLPobjectiveValue := GMP::Solution::GetObjective(GNLP , SolNumb) ;

MINLPIncumbentValue := GMP::Solution::GetObjective(GMINLP, SolNumb) ;

if (MINLPSolutionImprovement(NLPobjectiveValue, MINLPIncumbentValue)) then

! Set incumbent solution for MINLP.

GMP::Solution::RetrieveFromModel(GMINLP, SolNumb) ;

IncumbentSolutionHasBeenFound := 1 ;

endif;

endif ;

Chapter 18. Aimms Outer Approximation Algorithm for MINLP 308

else

! Terminate if no linearization point has been found.

SolverStatus := GMP::Solution::GetSolverStatus(GNLP, SolNumb) ;

if not (SolverStatus in NLPContinuationStatus) then

MINLPTerminate;

endif;

endif ;

The aoa algorithm maintains the MINLP problem, the master MIP problem, the

NLP subproblem, and the incumbent solution of the MINLP. As a result, direct

access to the corresponding objective function values is available.

SolveNLPSub-

Problem

The procedure SolveNLPSubProblem solves the NLP subproblem using various

routines from the gmp library. The procedure has a single argument initial-

Solve which indicates whether this is the solve of the initial relaxed MINLP

problem. In that case some steps in the procedure are not necessary.

if (NLPUseInitialValues) then

GMP::Solution::SendToModel(GNLP, SolNumbInitialValues) ;

elseif (not initialSolve) then

GMP::Solution::SendToModel(GMIP, SolNumb) ;

endif;

GMP::Solution::RetrieveFromModel(GNLP, SolNumb) ;

GMP::Solution::SendToSolverSession(ssNLP, SolNumb) ;

if (not initialSolve) then

GMP::Instance::FixColumns(GNLP, GMIP, SolNumb, AllIntegerVariables) ;

endif;

GMP::SolverSession::Execute(ssNLP) ;

GMP::Solution::RetrieveFromSolverSession(ssNLP, SolNumb) ;

GMP::Solution::SendToModel(GNLP, SolNumb) ;

TerminateOr-

PrepareForNext-

Iteration

The following procedure implements the final major step of the outer approx-

imation algorithm. If a termination flag has not been set previously, and the

maximum number of iterations has not yet been reached, then the previously

found integer solution of the master MIP problem will be eliminated by adding

the appropriate cuts. This will ensure that the next master MIP will have a new

integer solution (or none at all).

return when (MINLPAlgorithmHasFinished);

if (IterationCount = IterationMax) then

MINLPTerminate;

else

! Prepare for next iteration

IterationCount += 1 ;

GMP::Solution::SetIterationCount(GMINLP, SolNumb, IterationCount) ;

GMP::Instance::AddIntegerEliminationRows(GMIP, SolNumb, EliminationCount) ;

EliminationCount += 1 ;

endif ;

Chapter 18. Aimms Outer Approximation Algorithm for MINLP 309

Note that you are responsible for determining the appropriate iteration count

for the overall outer approximation algorithm. As you are free to develop a

solution algorithm in any way you desire, it is not always possible for the aoa

algorithm to determine the correct setting of the MINLP iteration count.

18.7 Alternative uses of the open approach

Customize

algorithm

Using the open outer approximation approach for solving MINLP models it is

possible to add to the existing procedures or write alternative procedures to

meet the needs of the final user. For instance, a user evaluating the perfor-

mance of the algorithm may want to add certain performance measurements

and print statements to the existing code. Some less trivial examples of modi-

fications are provided in the next few paragraphs.

Solve more NLPsPractical experience has shown that it is sometimes difficult to get a feasible

solution to the initial relaxed NLP model. Based on the particular application,

the user may specify how multiple starting values can be found, and then

modify the algorithm to solve multiple NLPs to get a feasible and/or a bet-

ter solution. While doing so, it is also possible to specify how the algorithm

should switch between different solvers (using the predefined Aimms identi-

fier CurrentSolver). Such extensions could then also be applied to the NLP

subproblem inside the While statement.

Retain integer

solutions

It is possible to activate a MIP callback procedure whenever the MIP solver finds

an integer solution. Even though these intermediate solutions are not optimal,

the user may want to save the integer portion of these solutions for later evalu-

ation. Once the main algorithm has terminated, all these integer solutions can

be retrieved and evaluated by solving the corresponding nonlinear subprob-

lem. In some instances, one of these extra solutions may be a better solution

to the original MINLP model than the one produced by the main algorithm.

Adjust penaltiesSetting the penalties for the deviations of the linear approximation constraints

in the master MIP subproblem is a delicate manner, and has an effect on the

solution quality when the nonlinear subproblems are nonconvex. The user can

consider several problem-dependent strategies to adjust the penalty values,

and implement them inside the basic aoa algorithm.

Example of

modified

procedure

The following procedure is a variant of the termination procedure provided

in the previous section. Assuming that the two parameters that refer to the

previous and current NLP objective function values have been properly set

in the procedure that solves the NLP subproblem, then termination is invoked

whenever there is insufficient progress between two subsequent NLP solutions,

or between the objective values of the master MIP problem and the current

Chapter 18. Aimms Outer Approximation Algorithm for MINLP 310

NLP subproblem. The third termination criterion is the number of iterations

reaching its maximum.

return when (MINLPAlgorithmHasFinished);

if (not MINLPSolutionImprovement(NLPCurrentObjectiveValue,

NLPPreviousObjectiveValue))

or (not MINLPSolutionImprovement(GMP::Solution::GetObjective(GMINLP, SolNumb),

NLPCurrentObjectiveValue))

or (IterationCounter = IterationMax) then

MINLPTerminate;

else

! Prepare for next iteration

IterationCount += 1 ;

GMP::Solution::SetIterationCount(GMINLP, SolNumb, IterationCount) ;

GMP::Instance::AddIntegerEliminationRows(GMIP, SolNumb, EliminationCount) ;

EliminationCount += 1 ;

endif ;

ConclusionThe above paragraphs indicate just a few of the ways in which you can alter

the basic implementation of the outer approximation algorithm in Aimms. Of

course, it is not necessary to develop your own variant. Whenever you need to

solve a MINLP model using the aoa algorithm, you can simply call the basic

implementation described in the previous section. As soon as you can see

improved ways to solve a particular model, you can apply your own ideas by

modifying the procedures as you see fit.

Chapter 19

Stochastic Programming

Deterministic

vs. stochastic

models

The mathematical programming types discussed so far have a common as-

sumption that all the input data used in the formulation of the mathematical

program is known with certainty. This is known as “decision making under cer-

tainty,” and the corresponding models are called deterministic models. Models

that account for uncertainty in the input data are called stochastic models, and

the theory and techniques used to solve stochastic models is commonly re-

ferred to as stochastic programming. You can find an introduction to stochas-

tic programming in Chapters 16 and 17 of the Aimms Optimization Modeling

Guide. A more in-depth discussion of stochastic programming and its solution

methods can be found, for instance, in [Bi97] and [Ka05].

Stochastic

programming

in Aimms

In this chapter, you will find a description of the facilities built into Aimms

for creating and solving stochastic models. From any existing deterministic

linear (LP) or mixed-integer (MIP) model, Aimms is able to automatically create

a stochastic model as well, without the need for you to reformulate any of the

constraint definitions. The only steps necessary to create a stochastic model

are

� to indicate which parameters and variables in your deterministic model

are to become stochastic in a declarative manner, and

� to provide the scenario tree and the stochastic input data.

Single

formulation

Being able to generate both a deterministic and stochastic model from an iden-

tical symbolic formulation allows for any changes you make in the determin-

istic formulation to automatically propagate to the stochastic model. This

significantly reduces the effort involved with maintaining a stochastic model

associated with a given deterministic model.

This chapterSection 19.1 discusses a number of basic concepts in stochastic programming.

These provide a common understanding necessary for the introduction of the

stochastic programming facilities of Aimms discussed in Section 19.2. Sec-

tion 19.3 describes the facilities available in Aimms for the generation of a sce-

nario tree, while Section 19.4 discusses the steps necessary to solve a stochas-

tic model in Aimms.

Chapter 19. Stochastic Programming 312

19.1 Basic concepts

Basic conceptsIn this section you will find a number of basic concepts that are commonly

used in stochastic programming. They will help you to unambiguously under-

stand the stochastic programming facilities in Aimms.

StagesIn stochastic programming stages define a collection of consecutive periods of

time. Stages are usually identified through positive integers 1,2, . . . , and are

characterized as follows:

� during each stage one or more stochastic (i.e. uncertain) events take

place, and

� at the end of a stage decisions are taken, taking into account the specific

outcomes of the stochastic events of this and previous stages.

Stochastic events may be such quantities as the demand realized during a

period. They are usually represented as input data used in the deterministic

model. Any variables in the deterministic model that are modeled conceptually

to take their value at the beginning of a period (for instance, the stock at the

beginning of a period), should be considered as decisions taken at the end of

the previous period/stage within the stage concept.

Stages versus

model periods

If the deterministic model already contains a Horizon (see Section 33.3) or any

other set of time periods, the stages of the stochastic model may naturally

coincide with the time periods from the deterministic model, but this certainly

needs not be the case. A single period model, possibly even without an explicit

period set, but with variables representing decisions taken at the beginning

and at the end of the period, may still constitute a two-stage stochastic model.

For a multi-period model, a single stage in the stochastic model may consist

of multiple time periods from the deterministic model, and hence one can

always construct a mapping from the deterministic period set to stages in the

stochastic model.

Variables and

stages

Every individual stochastic variable in a stochastic model should be uniquely

associated with a single stage. This stage represents the period at the end of

which the variable conceptually takes it value

� taking into consideration the specific outcomes of stochastic events tak-

ing place during the stage at hand and during prior stages,

� but only taking into account the distribution of possible outcomes of the

stochastic events taking place in any further stage.

Even if model periods of the deterministic model and the stages of the stochas-

tic model coincide, variables with an index into the period set do not have to

be associated with the stage corresponding to the value of that index. As dis-

cussed above, variables that conceptually take their value at the beginning of a

Chapter 19. Stochastic Programming 313

period, provide a first example of this behavior as they must be associated with

the stage corresponding to the previous period within the stochastic model.

ExamplesOther examples may arise, for instance, when the monthly productions of Jan-

uary, February and March should be decided upon prior to the beginning of

January, regardless of the specific outcomes for the demands during these

months. Conversely, if market research has delivered good estimates for the

demand in January, February and March, the decisions for the production in

these months should take into consideration the demand estimates of all three

months. Hence the production variables for January, February and March

should be part of the stage associated with March.

ScenariosA scenario for a stochastic model is a collection of outcomes for all the stochas-

tic events taking place in the model, along with the associated probability of

the scenario to occur. For the event values associated with each scenario, one

could solve a deterministic model, which would yield the optimal decisions

for that particular scenario. For different scenarios, however, the decisions

resulting from solving such deterministic models individually are, in general,

completely unrelated, even if the event outcomes of the scenarios are exactly

the same up to a certain stage. To address this problem, the scenarios of a

stochastic model must be organized into a scenario tree.

Scenario treesA single scenario can be graphically represented as a simple tree illustrated in

Figure 19.1.

stage 1 2 n− 1 n
sc1

Figure 19.1: A tree representing a single scenario sc1

For multiple scenarios, the specific outcomes of the stochastic events up to

a certain stage usually coincide for a subset of the scenarios. This gives rise

to a scenario tree as illustrated in Figure 19.2. In such a scenario tree, the

path from the root node of the tree to each of its leaf nodes corresponds to

a single scenario, and the event outcomes for scenarios that pass through the

same intermediate node are identical for all stages up to that node. If a stage

consists of multiple time periods in the deterministic model, this means that

the stochastic events taking place during all periods associated with the stage

should coincide. The solution process of a stochastic model will make sure

that the decisions that are to be taken at the end of these stages are identical

for all the scenarios passing through the node, as one would intuitively expect.

Chapter 19. Stochastic Programming 314

stage 1 2 3 4

sc8

sc7

sc6

sc5

sc4

sc3

sc2

sc1

Figure 19.2: A scenario tree with 8 scenarios

Scenario

generation

The scenarios and the scenario tree used in a stochastic model are usually

generated by using one of the following two techniques

� generate scenarios by incrementally creating a scenario tree according to

a given distribution for each stochastic event, or

� given an externally created set of scenarios, create a scenario tree by

grouping identical or similar scenarios at every level of the tree.

Distribution-

based scenario

generation

Given a leaf node in an intermediate scenario tree, for every stochastic event

that occurs during the stage directly following that node, a fixed number of val-

ues is computed according to a given distribution (each with its own relative

probability of taking place). For each of these values a new branch is added to

the node. The process starts by adding branches to the root node of the tree

and ends when a tree is generated for all stages. The total number of scenar-

ios generated by the process is the final number of leaf nodes generated. The

probability of a scenario is the multiplication of the relative probabilities as-

sociated with each branch along the path from root to leaf node. The scenario

tree in Figure 19.2 could be generated in this way, for example, by choosing, at

every intermediate node, a high or a low level for the demand during the stage

following that particular node.

Scenario-based

tree generation

Another approach is to start from a given collection of scenarios with proba-

bilities adding up to 1. Such a collection of scenarios can either be randomly

generated or be the result of some external process. As a tree, they can be

represented as a trivial scenario tree, as illustrated in Figure 19.3. This tree

can be transformed into a scenario tree by bundling together identical or sim-

ilar scenarios into a fixed or dynamic number of branches. The group of sce-

narios passing through a particular intermediate node in the scenario tree is

analyzed and grouped into subgroups of scenarios with similar or identical

outcomes of the stochastic events during the stage following that node. For

every subgroup, the existing branches are bundled into a single branch, and

Chapter 19. Stochastic Programming 315

stage 1 2 n− 1 n

sc1

sc2

scm−1

scm

Figure 19.3: An initial disconnected scenario tree

the stochastic event outcomes are made identical for all scenarios in the sub-

group. The process starts by analyzing all scenarios at the root node of the

tree, and ends when every scenario is associated with a single leaf node.

Basic procedure

for solving

stochastic

models

The implementation of stochastic programming in Aimms closely follows the

concepts described in this section. The basic procedure to create and solve a

stochastic model in Aimms is as follows:

� indicate in your model which parameters and variables are to become

stochastic,

� for every stochastic variable in your model specify during which stage of

the stochastic model the decision is to be taken,

� generate scenarios, their stochastic data, and a scenario tree, using one

of the techniques described above, and

� generate and solve the stochastic model using the special methods avail-

able for this purpose in Aimms.

Each of these steps is explained in more detail in the sections to follow. Note

that changing parameters and variables in your model into stochastic parame-

ters and variables, does in no way influence the possibility to solve the under-

lying deterministic model in its original form. Thus, the stochastic program-

ming facilities in Aimms always form a true extension of the functionality of

the existing Aimms application.

Chapter 19. Stochastic Programming 316

19.2 Stochastic parameters and variables

The set All-

Stochastic-

Scenarios

To allow the storage of scenario-dependent parameter and variable data for

multiple scenarios in a stochastic model, all such scenarios should be added

to the predefined set AllStochasticScenarios. If your application contains mul-

tiple stochastic models—each with different scenario sets—the set AllStoch-

asticScenarios should be the union of all these scenario sets. For each stochas-

tic model you can then define an associated subset of AllStochasticScenarios

to use with that particular stochastic model.

Stochastic

parameters

Stochastic events are modeled in Aimms as numeric Parameters for which the

Stochastic property has been set (see also Section 4.1). For stochastic param-

eters Aimms provides an additional .Stochastic suffix, which you can use to

store scenario-dependent stochastic event outcomes. The data stored in the

suffix is used by Aimms when generating the stochastic model. The index do-

main of the .Stochastic suffix is, therefore, the set AllStochasticScenarios plus

the original domain of the parameter.

ExampleConsider the following declarations

Set MyScenarios {

SubsetOf : AllStochasticScenarios;

Index : sc;

}

Parameter Demand {

IndexDomain : (c,t);

Property : Stochastic;

}

These declarations will cause Aimms to create a .Stochastic suffix for the pa-

rameter Demand(c,t). To use, or assign values to, Demand.Stochastic, you must

use an additional index into (a subset of) AllStochasticScenarios. The follow-

ing statement provides an example of such a statement.

Demand.Stochastic(sc,c,t) := Uniform(10,20);

If a constraint contains a reference to the parameter Demand, Aimms will use the

data in Demand.Stochastic to generate the appropriate demand constraint for

every scenario.

Stochastic

variables

By setting the Stochastic property for a Variable in your model, you indicate

to Aimms that this variable may have multiple, scenario-dependent, solutions

when used in a stochastic model. Consequently, when generating a matrix for

the stochastic model, a column will be generated conceptually for every single

scenario.

Chapter 19. Stochastic Programming 317

The Stage

attribute

For stochastic variables you must also specify the mandatory Stage attribute.

Through the Stage attribute you specify the stage at the end of which the de-

cision corresponding to the stochastic variable is to be taken. The value of

the Stage attribute must be an explicit positive integer value, or a parameter

reference involving some or all of the indices on the index list of the declared

variable.

Non-anti-

cipativity

constraints. . .

As discussed in the previous section, for every scenario s0, a stochastic vari-

able x gets its value xs0 at the end of stage n as specified in the Stage at-

tribute of the variable. In addition, its value is based on the specific outcomes

of the stochastic events for that scenario taking place during stages 1, . . . , n,

but only on the distribution of the stochastic event outcomes for any further

stages. Therefore, the value xs must be equal to xs0 for every other scenario

s that passes through the same node in the scenario tree at the end of stage

n as s0. The constraints enforcing this equality are called non-anticipativity

constraints—they do not allow the solution to anticipate on stochastic out-

comes that lie beyond the stage as specified by the Stage suffix.

. . . enforced

explicitly or

implicitly

When generating a stochastic model, Aimms will automatically enforce the non-

anticipativity constraints, either by explicitly adding them to the generated

matrix, or implicitly by substituting a single representative xs0 for every other

variable xs . While enforcing non-anticipativity in an implicit manner will dras-

tically reduce the matrix size, an explicit representation may be helpful for

solvers able to decompose the generated matrix.

Non-stochastic

variables

If a variable in a stochastic model has not been declared stochastic, it is deter-

ministic in the sense that it assumes the same value for every scenario, as is

the case with first stage variables.

The .Stochastic

suffix for

variables

Variables can also have a .Stochastic suffix in Aimms. It follows the same rules

for its index domain as the .Stochastic suffix of parameters. Aimms uses the

.Stochastic suffix of variables to store the solution data of a stochastic model

after solving it. However, contrary to stochastic parameters, Aimms will not

only create the .Stochastic suffix for stochastic variables, but for all variables

that are involved in a stochastic model.

Contents of

.Stochastic

suffix

The values stored in the .Stochastic suffix after solving a stochastic model for

each type of variable are as follows:

� for stochastic variables, the .Stochastic suffix will contain the solution

of the variable for each scenario,

� for the objective variable, the .Stochastic suffix will contain the contri-

bution to the objective of each scenario, as well as the weighted objective

value of the stochastic model itself,

Chapter 19. Stochastic Programming 318

� for any other non-stochastic variable, the .Stochastic suffix will contain

the deterministic solution of that variable for the stochastic model.

As the solution of a stochastic model is entirely stored in the .Stochastic suf-

fix, the solution of the underlying deterministic model remains completely in-

tact after solving the stochastic model. This makes it easy to visually, and/or

programmatically, compare the solutions of the deterministic and stochastic

model.

Non-stochastic

solution data

As the objective value and solution of the non-stochastic variables of the

stochastic model cannot be coupled directly with one specific scenario in the

scenario set, Aimms creates an extra element in the set AllStochasticScenarios

for this purpose. You must specify the name of this element when solving the

stochastic model (see also Section 19.4).

19.3 Scenario generation

Scenario

generation

To support you in creating scenarios and a scenario tree, Aimms provides a sys-

tem module which provides a customizable scenario generation framework.

For each of the two basic methods for scenario generation discussed in Sec-

tion 19.1, the module contains a generic procedure to implement that method.

To use these scenario generation procedures to generate scenarios and/or a

scenario tree, you only have to implement some callback procedures to supply

the necessary data for your specific stochastic model.

Importing the

system module

To import the generation module into your model, select Install System Mod-

ule. . . from the Settings menu, and select the Scenario Generation Module

from the dialog box that appears. The module will be added at the end of

the model tree of your model. By default, the module prefix of the Scenario

Generation Module is ScenGen.

19.3.1 Distribution-based scenario generation

Distribution-

based scenario

generation

The basic procedure in the scenario generation module for distribution-based

scenario generation is

� CreateScenarioTree(Stages, Scenarios, ScenarioProbability,

ScenarioTreeMapping).

Input

arguments

The procedure has a single input argument:

� the set of Stages in your stochastic model. This set must be a subset of

the predefined set Integers.

Chapter 19. Stochastic Programming 319

Output

arguments

The outputs of this procedure are:

� the set of Scenarios (which must be a subset of AllStochasticScenarios)

generated by the procedure,

� the ScenarioProbability, a one-dimensional parameter indexed over the

set Scenarios, and

� the ScenarioTreeMapping, a two-dimensional element parameter defined

over Scenarios×Stages to Scenarios, providing a mapping from every sce-

nario during every stage to a single representative scenario for the sce-

nario bundle in which the given scenario is contained during this stage.

Distribution-

based callback

functions

The contents of the outputs of the procedure CreateScenarioTree is completely

based on the results of the problem-specific callbacks that you have to supply.

The following callbacks are expected by CreateScenarioTree:

� InitializeNewScenarioCallback(CurrentStage, Scenario,

RepresentativeScenario),

� InitializeStochasticDataCallback(CurrentStage, Scenario,

ChildBranch, ChildBranchName), and

� InitializeChildBranchesCallback(CurrentStage, Scenario,

ChildBranches, ChildBranchNames).

Initializing a

new scenario

When building up the scenario tree, Aimms creates new scenarios on the fly.

In order for you to refer to data from previous stages for this scenario, Aimms

will call the callback InitializeNewScenarioCallback for every Stage prior to the

current stage, and supply the RepresentativeScenario from the scenario bundle

for CurrentStage which also contains the newly created Scenario. By copying

the stochastic data for this stage from this representative scenario, you make

it available both to you and Aimms. To properly generate the stochastic model,

Aimms needs the stochastic parameter values for every stage and every sce-

nario.

Supplying

stochastic event

data

In the procedure InitializeStochasticDataCallback you can provide values to

all stochastic parameter values for the ChildBranch during CurrentStage for

the Scenario. Because Aimms has called the InitializeNewScenarioCallback

prior to calling InitializeStochasticDataCallback you also have access to the

stochastic parameter values of this scenario prior to the current stage. Based

on the value of ChildBranch and the prior stochastic parameter values, you

should have sufficient information to generate new stochastic parameter val-

ues for the current stage. You should pass the relative weight of this branch

compared to the other child branches through the return value of the call-

back. Note that the relative weights you return may, but need not, add up to

one. After creating scenarios for all branches, Aimms will scale the sum of the

returned relative weights of all branches to one.

Chapter 19. Stochastic Programming 320

Generating new

child branches

Finally, to extend the scenario tree to a next stage, Aimms calls the callback

InitializeChildBranchesCallback. In this callback, you should fill the Integer

subset ChildBranches with integers 1,2, . . . for every child branch that you

want to add to Scenario at CurrentStage. Through the element parameter

ChildBranchNames you should provide a short representative name for ev-

ery child branch (for instance, "H" and "L" when child branches represent high

and low demand). From the branch names you supply, Aimms will generate

the full names of the final element names of the scenarios generated by the

scenario generation procedure (for instance ’[H,L,H,H,L]’ for a scenario with

high, low, high, high, and low demand values during the successive stages of

the scenario).

Setting the

callbacks

The scenario generation module contains templates for each of the callbacks

described above. Rather than changing these template callbacks in the mod-

ule, you are advised to copy the template callbacks to your core model, and

change the bodies of the copied callbacks. Finally, you should notify Aimms

of the names of your callback functions by, prior to calling the procedure

CreateScenarioTree, assigning the names of your callback procedures to the

element parameters

� ScenGen::InitializeNewScenarioCallbackFunction,

� ScenGen::InitializeStochasticDataCallbackFunction, and

� ScenGen::InitializeChildBranchesCallbackFunction.

ExampleThe following callbacks will cause the procedure CreateScenarioTree to gen-

erate a tree with 2 branches "H" and "L" (for high and low demand) at every

intermediate node, and initialize Demand.Stochastic for every period. The ex-

ample assumes the existence of a mapping PeriodToStage(st,t).

Initializing a

new scenario

To initialize a new scenario, we have to copy the stochastic demand data for

the newly created Scenario during Stage from the scenario RepresentativeSce-

nario. Thus, the body of the InitializeNewScenarioCallback would read

for (t | PeriodToStage(CurrentStage,t)) do

Demand.Stochastic(Scenario,t) := Demand.Stochastic(RepresentativeScenario,t);

endfor;

Generating new

child branches

To generate two child branches to any intermediate node in the scenario tree

representing high ("H") and low ("L") demand, the implementation of the Init-

ializeChildBackBranchesCallback should be

ChildBranches := { 1, 2 };

ChildBranchNames(’1’) := "H";

ChildBranchNames(’2’) := "L";

Chapter 19. Stochastic Programming 321

Initializing

stochastic

demand

For each newly added child branches, the following implementation of Initial-

izeStochasticDataCallback assigns a high (20) or low (10) stochastic demand

value to the Scenario during the CurrentStage

for (t | PeriodToStage(CurrentStage,t)) do

Demand.Stochastic(Scenario,t) := if (ChildBranch = 1) then 20 else 10 endif;

endfor;

return 1;

By returning 1 for all branches, we just indicate that every branch has equal

relative weight. For two branches, this will result in a relative probability for

each branch of 0.5.

19.3.2 Scenario-based tree generation

Scenario-based

tree generation

The basic procedure in the scenario generation module for scenario-based tree

generation is

� CreateScenarioData(Stages, Scenarios, ScenarioProbability,

ScenarioTreeMapping).

Input

arguments

The procedure has a single input argument:

� the set of Stages in your stochastic model. This set must be a subset of

the predefined set Integers.

Output

arguments

The outputs of the procedure are:

� the set of Scenarios for which you have provided stochastic parameter

values,

� the ScenarioProbability, a one-dimensional parameter indexed over the

set Scenarios, and

� the ScenarioTreeMapping, a two-dimensional element parameter defined

over Scenarios×Stages to Scenarios, providing a mapping from every sce-

nario during every stage to a single representative scenario for the sce-

nario bundle in which the given scenario is contained during this stage.

Algorithm

outline

The procedure CreateScenarioData will help you construct a scenario tree as

follows:

� initially, Aimms will request you to generate a set of scenarios with their

relative weights,

� next, Aimms will ask you, to divide a given group of scenarios at the

current stage into a number of subgroups of equal or similar scenarios

at the next stage,

Chapter 19. Stochastic Programming 322

� Aimms will request you to reassign a single unique value to each stochas-

tic event parameter for all scenarios in a scenario group (e.g. the mean

over all scenarios in the group), and

� finally, Aimms will remove scenarios which you identify as identical.

Scenario-based

callbacks

For each of the steps outlined in the previous paragraph, you must supply a

callback procedure:

� InitializeStochasticScenarioDataCallback(Scenario, Scenarios),

� DetermineScenarioGroupsCallback(CurrentStage, ScenarioGroup,

ScenarioGroupOrder),

� AssignStochasticDataForScenarioGroupCallback(CurrentStage,

ScenarioGroup), and

� CompareScenariosCallback(Scenario1, Scenario2, Stages,

FirstDifferentStage)

Initializing

scenarios

Through the InitializeStochasticScenarioDataCallback you must supply the

stochastic event data during all stages for a Scenario generated by Aimms. The

function should return the relative weight of the scenario compared to all other

scenarios you supply. If you are done adding scenarios, the callback should

return the value 0.

Dealing with

existing

scenario data

If you have already read scenario data from a database, for instance, you can

overwrite the generated value of Scenario argument with an existing scenario

name read from the database. In that case, if you have read the stochastic data

directly into the .Stochastic suffix of the stochastic parameters in your model,

you only have to return the relative weight.

Supplying new

scenario data

If you do not have existing scenario data, you should generate stochastic data

for the Scenario element generated by Aimms for all stochastic parameters in

your model. If you want to change the name of the generated Scenario, you

can do so using the function SetElementRename.

Creating

scenario

subgroups

In the DetermineScenarioGroupsCallback, you must divide the scenarios in Sce-

narioGroup created during a previous stage (or the group of all scenarios to

start with during the first stage) into subgroups, based on the equality or sim-

ilarity of the stochastic event values associated with the scenarios during Cur-

rentStage. You must specify the subgroups by assigning a ScenarioGroupOrder

to every scenario in the ScenarioGroup, where scenarios with the same as-

signed order form a subgroup during the current stage.

Chapter 19. Stochastic Programming 323

Assigning

stochastic event

values

If the stochastic event parameters in ScenarioGroup during CurrentStage are

similar, but not equal, you must make sure to assign identical event parameter

values to every scenario when Aimms calls the AssignStochasticDataForSce-

narioGroupCallback. Failure to do so may result in infeasible stochastic models

generated by Aimms.

Removing

identical

scenarios

Finally, Aimms will probe for identical scenarios through the CompareScenario-

Callback, remove duplicate scenarios when encountered, and adjust the sce-

nario probabilities accordingly. When the stochastic event values of Scenario1

and Scenario2 are identical during Stages, the callback should return 0. If the

scenarios are not identical the callback should have a nonzero return value,

and set the output argument FirstDifferentStage equal to the first stage during

which the event parameters differ for both scenarios.

Setting the

callbacks

The scenario generation module contains templates for each of the callbacks

described above. Rather than changing these template callbacks in the mod-

ule, you are advised to copy the template callbacks to your core model, and

change the bodies of the copied callbacks. Finally, you should notify Aimms

of the names of your callback functions by, prior to calling the procedure

CreateScenarioData, assigning the names of your callback procedures to the

element parameters

� ScenGen::InitializeStochasticScenarioDataCallbackFunction,

� ScenGen::DetermineScenarioGroupsCallbackFunction,

� ScenGen::AssignStochasticDataForScenarioGroupCallbackFunction, and

� ScenGen::CompareScenariosCallbackFunction.

ExampleThe callbacks for scenario-based tree generation, are usually more problem-

specific, and hence less instructive, than the callbacks for the tree-based sce-

nario generation scheme. Therefore, rather than including a lengthy example

here, we refer to the example models for stochastic programming that come

with your Aimms system.

Scenario

generation can

be modified

The scenario generation module is completely implemented in the Aimms lan-

guage itself, and contains basic implementations of both scenario generation

methods, which will provide a good starting point for most stochastic models.

If neither of these implementations fits your needs, you can copy the module

to your project directory, replace the system module with the copy, and make

the algorithms in the copied module more advanced to better fit the needs of

your stochastic model.

Chapter 19. Stochastic Programming 324

19.4 Solving stochastic models

Solving

stochastic

models

After generating stochastic event data and a scenario tree, you can generate

and solve the stochastic model by using methods from the GMP library dis-

cussed in Chapter 16. Aimms supports two methods for solving a stochastic

model:

� by solving its deterministic equivalent, or

� for purely linear mathematical programs only, through the stochastic

Benders algorithm, or

� using the Benders decomposition algorithm in Cplex 12.7 or higher.

Both Benders algorithms will decompose the stochastic model into multiple

smaller models, and thus is better suited to solve stochastic models where

the deterministic equivalent, either by the size of the deterministic model or

because of a huge number of scenarios, becomes too big or time-consuming to

solve at once. The Benders decomposition algorithm in Cplex can be used to

solve stochastic models with integer variables, as long as all integer variables

are assigned to the first stage. For more information see the Cplex option

Benders strategy.

19.4.1 Generating and solving the deterministic equivalent

Generating a

stochastic model

The method for generating a stochastic model for a MathematicalProgram MP is

� GMP::Instance::GenerateStochasticProgram(

MP, StochasticParameters, StochasticVariables,

Scenarios, ScenarioProbability, ScenarioTreeMap,

DeterministicScenarioName[, GenerationMode][, Name])

The function returns an element into the set AllGeneratedMathematicalPro-

grams. This generated math program instance contains a memory-efficient rep-

resentation of the technology matrix of the stochastic model and the stochas-

tic event data, and can be used to create a deterministic equivalent of the

stochastic model, as well as the submodels necessary for a stochastic Benders

approach.

Specifying

stochastic

identifiers

Through the arguments StochasticParameters and StochasticVariables you indi-

cate to Aimms which stochastic parameters and variables you want to take into

consideration when generating this stochastic model. These arguments must

be subsets of the predefined sets AllStochasticParameters and AllStochastic-

Variables, respectively. You may want to use real subsets, for instance, when

your Aimms project contains multiple stochastic models, each referring only

to a subset of the stochastic parameters and variables.

Chapter 19. Stochastic Programming 325

Specifying

scenarios

Through the Scenarios, ScenarioProbability and ScenarioTreeMap arguments

you specify the set of scenarios, their probabilities and the mapping defin-

ing the scenario tree for which you want to generate the stochastic model to

Aimms. Through the string argument DeterministicScenarioName, you supply

the name of the artificial element that Aimms will add to the predefined set

AllStochasticScenarios (if not created already), and use to store the solution

of non-stochastic variables in their respective .Stochastic suffices as explained

in Section 19.2.

Enforcing non-

anticipativity

constraints

Using the GenerationMode argument you can specify whether you want Aimms

to explicitly add the non-anticipativity constraints to your stochastic model,

or whether you want non-anticipativity to be enforced implicitly by substitut-

ing the representative scenario for every non-representative scenario at ev-

ery stage. GenerationMode is an element parameter into the predefined set

AllStochasticGenerationModes, with possible values

� ’CreateNonAnticipativityConstraints’, and

� ’SubstituteStochasticVariables’ (the default value).

Name argumentWith the optional Name argument you can explicitly specify a name for the

generated mathematical program. If you do not choose a name, Aimms will use

the name of the underlying MathematicalProgram as the name of the generated

mathematical program as well. Please note, that Aimms will also use this name

as the default name for solving the deterministic model. Therefore, if you do

not want the generated mathematical program of the deterministic model to

be deleted, then you have to choose a non-default name.

Solving the

deterministic

equivalent of a

stochastic model

You can solve a stochastic model by using the regular gmp procedure

� GMP::Instance::Solve(gmp)

By applying this function to a generated mathematical program associated

with a stochastic model, Aimms will create the deterministic equivalent and

pass it to the appropriate LP/MIP solver. The GMP::Instance::Solve method is

discussed in full detail in Section 16.2.

Changing the

model input

Note that, when you adjust the scenario tree map, the stochastic data, the

scenario probabilities, or the value of the Stage attribute of some variables

after you generated the stochastic model, you should regenerate the stochastic

model again to reflect these changes.

ExampleConsider the following call to GMP::Instance::GenerateStochasticProgram

GMP::Instance::GenerateStochasticProgram(

TransportModel, AllStochasticParameters, AllStochasticVariables,

MyScenarios, MyScenarioProbability, MyScenarioTreeMap,

"TransportModel", ’SubstituteStochasticVariables’, "StochasticTransportModel");

Chapter 19. Stochastic Programming 326

After solving the generated stochastic model, its solution will be stored as

follows, where sc is an index into MyScenarios

� the per-scenario solution of a stochastic variable Transport(i,j) will be

stored in Transport.Stochastic(sc,i,j),

� the deterministic solution of a non-stochastic variable InitialStock(i)

will be stored in InitialStock.Stochastic(’TransportModel’,i),

� the weighted objective value for the objective variable TotalCost will be

stored in TotalObjective.Stochastic(’TransportModel’), while the contri-

bution by every scenario is available through TotalCost.Stochastic(sc).

19.4.2 Using the stochastic Benders algorithm

Using the

stochastic

Benders

algorithm

Instead of solving the deterministic equivalent of a stochastic model, Aimms

also allows you to solve linear stochastic models using a stochastic Benders

algorithm. The stochastic Benders algorithm is based on a reformulation of

the original model as a sequence of models outlined below. The solution of the

original model can be achieved by solving the sequence of models iteratively

until a terminating condition is reached. A more detailed discussion of the

stochastic Benders algorithm can be found in [De98] or [Al03].

DefinitionsAll nodes in the scenario tree are numbered starting at 1 (the root node).

Indices:

i index for the set of nodes N

t index for the set of stages T

Parameters:

qi probability belonging to node i

pi parent of node i

Sets:

Ii set with children of node i

Nt set of nodes belonging to stage t

ConventionIn the algorithmic outline below we identify the problem names with their

associated solutions. That is, if a problem is, for instance, identified as Fi(xpi),

we will also use this name to denote its solution in other sub- problems.

The original

model

The nested Benders algorithm can be used for problems of the form

Minimize: ∑

t∈T

∑

i∈Nt
qic

T
i xi

Subject to:
W1x1 = h1

Aixpi +Wixi = hi ∀i ∈ Nt , t ∈ T\{1}
xi ≥ 0 ∀i ∈ Nt , t ∈ T

Chapter 19. Stochastic Programming 327

A reformulation

as a sequence of

models

This problem corresponds to the following sequence of problems. For node

i = 1, the problem F1 is defined as

Minimize:
cT1 x1 +

∑

j∈I1
qiFj(x1)

Subject to:
W1x1 = h1

x1 ≥ 0

For all other nodes i ∈ Nt in stage t ∈ T\{1}, the problem Fi(xpi) is defined

as follows (note that
∑
j∈Ii qj = qi)

Minimize:
cTi xi +

∑

j∈Ii

qj

qi
Fj(xi)

Subject to:
Wixi = hi −Aixpi
xi ≥ 0

For the leaf nodes in the scenario tree, the term
∑
j∈Ii

qj
qi
Fj(xi) is omitted.

Formulated

differently

If we now introduce an upper bound θi to replace the term
∑
j∈Ii

qj
qi
Fj(xi), we

can rewrite the subproblem Fi(xpi) as

Minimize:
cTi xi + θi

Subject to:
Wixi = hi −Aixpi
θi ≥

∑

j∈Ii

qj

qi
Fj(xi)

xi ≥ 0

Because of the linear nature of the original problem, the terms
∑
j∈Ii

qj
qi
Fj(xi)

are piecewise linear and convex. Therefore there exists an (a priori unknown)

set of equations

Dlixi = dli
that describes such a term and for which

Dlixi + θi ≥ dli.

Moreover, we are only interested in those xi such that Fj(xi) are feasible for

all j ∈ Ii. This requirement can be enforced by an (a priori unknown) set of

constraints

Elixi ≥ eli.
By substituting these constraints we obtain the following reformulation of

problem Fi(xpi)

Chapter 19. Stochastic Programming 328

Minimize:

cTi xi + θi

Subject to:

Wixi = hi −Aixpi
Dlixi + θi ≥ dli ∀l ∈ 1, . . . , Ri

Elixi ≥ eli ∀l ∈ 1, . . . , Si

xi ≥ 0

The relaxed

master problem

The actual problem that is solved at node i is the following relaxed master

problem Ñi(xpi) defined as follows:

Minimize:

cTi xi + θi

Subject to:

Wixi = hi −Aixpi
Dlixi + θi ≥ dli ∀l ∈ 1, . . . , ri

Elixi ≥ eli ∀l ∈ 1, . . . , si

xi ≥ 0

At the start of the Benders algorithm ri and si will be 0 for all i ∈ N. The

constraints Dlixi+θi ≥ dli are optimality cuts obtained from the children. That

is, if Ñj(xi) is feasible for all j ∈ Ii (but not optimal) then an optimality cut

is added to Ñi(xpi). The optimality cut is constructed by using a combination

of the dual solutions of Ñj(xi) for all j ∈ Ii. Adding an optimality cut does

not make a feasible relaxed master problem infeasible. The Benders algorithm

fails if one of the subproblems is unbounded. This can be avoided by giving

all variables, except the objective variable, finite bounds.

Adding

feasibility cuts

The constraints Elixi ≥ eli are feasibility cuts obtained from a child. If some

child problem Ñj(xi) is not feasible then the following problem Ẽj(xi) is

solved

Minimize:

wj = eTu+j + eTu−j

Subject to:

Wjxj + Iu+j − Iu−j = hj −Ajxi
Eljxj ≥ elj ∀l ∈ 1, . . . , sj

xj ≥ 0

u+j ≥ 0

u−j ≥ 0

Chapter 19. Stochastic Programming 329

This feasibility problem can only be formulated for linear problems, is always

feasible, and bounded from below by 0. Its dual solution is used to construct a

new feasibility constraint for Ñi(xpi). Note that node j in its turn obtains op-

timality and/or feasibility cuts from its children for Ñj(xi) and Ẽj(xi), unless

j refers to a leaf node.

Terminating

condition

If (xi, θi) is an optimal solution of Ñi(xpi) and

θi ≥ Ñi(xpi)

then (xi, θi) is an optimal solution of Fi(xpi). If this holds for all non-leaf

nodes then we have found an optimal solution of our original problem. For

the leaf nodes, xi only needs to be an optimal solution of Ñi(xpi).

Implementation

in Aimms

The stochastic Benders algorithm outlined above is implemented in Aimms as

a system module that you can include into your model, together with a number

of supporting functions in the gmp library to perform a number of algorithmic

steps that cannot be performed in the Aimms language itself, for instance, to

actually generate the stochastic sub-problems, and to generate feasibility and

optimality cuts.

Adding the

module

You can add the system module implementing the stochastic Benders algo-

rithm to your model through the Settings-Install System Module. . . menu. By

selecting the Stochastic Decomposition Module in the Install System Module

dialog box, Aimms will add this system module to your model.

Using the

stochastic

Benders module

The main procedure for using the stochastic Benders algorithm is DoStochas-

ticDecomposition. Its inputs are:

� a stochastic gmp,

� the set of stages to consider, and

� the set of scenarios to consider.

The procedure implements the algorithm outlined above. The supporting gmp

functions for the stochastic Benders algorithm are described in Section 16.8.

Modifying the

algorithm

Because the stochastic Benders algorithm is written in the Aimms language,

you have complete freedom to modify the algorithm in order to tune it for

your stochastic programs. Also, the basic algorithm solves all sub-problems

sequentially. If your Aimms license permits parallel solver sessions, you can

also speed up the algorithm by solving multiple sub-problems in parallel using

the gmp function GMP::SolverSession::AsynchronousExecute.

Chapter 20

Robust Optimization

IntroductionRobust optimization is a rather new modeling methodology for decision mak-

ing under uncertainty. Robust optimization is designed to meet some major

challenges associated with uncertainty-affected optimization problems:

� to operate under lack of full information on the nature of uncertainty,

� to model the problem in a form that can be solved efficiently, and

� to provide guarantees about the performance of the solution.

Robustness of decisions is defined in terms of the best performance in the

worst case possible state-of-the-world (min-max optimization). A more in-

depth discussion of robust optimization can be found, for instance, in [BT09].

Robust opti-

mization in

Aimms

In this chapter, you will find a description of the facilities built into Aimms

for creating and solving robust optimization models. From any existing deter-

ministic linear program (LP) or mixed-integer program (MIP), Aimms is able to

automatically create a robust optimization model as well, without the need for

you to reformulate any of the constraint definitions. The only steps necessary

to create a robust optimization model are

� to indicate which parameters in your deterministic model are to become

uncertain in a declarative manner,

� to indicate which variables in your deterministic model are to become

adjustable to the uncertain parameters (if any), and

� to specify possible realizations of the uncertain parameters.

Single

formulation

Being able to generate both a deterministic and robust optimization model

from an identical symbolic formulation allows for any changes you make in the

deterministic formulation to automatically propagate to the robust optimiza-

tion model. This significantly reduces the effort involved with maintaining a

robust optimization model associated with a given deterministic model.

Robust Opti-

mization

Add-On

required

To be able to run an robust optimization model, you need to make sure you

have the Robust Optimization Add-On licensed. Without the RO Add-On, you

can still define your robust optimization models, but will be unable to solve

them (an execution error will occur).

Chapter 20. Robust Optimization 331

Acknowledge-

ments

The Robust Optimization Add-On in Aimms has been developed in close co-

operation with Professor Aharon Ben-Tal and Boris Bachelis of the Technion,

Israel Institute of Technology. We would like to express our gratitude for our

partnership in developing the Robust Optimization Add-On in Aimms and for

their continuous support to get the details right, which allowed us to make

Robust Optimization a natural and intuitive extension to our existing func-

tionality.

This chapterSection 20.1 discusses a number of basic concepts in robust optimization.

These provide a common understanding necessary for the introduction of the

robust optimization features of Aimms discussed in the sections to follow. Sec-

tion 20.2 describes the facilities available in Aimms for specifying uncertain

parameters, while Section 20.3 discusses chance constraints as another means

to introduce uncertainty into your robust optimization model. Section 20.4

discusses the facilities available to declare variables to be adjustable to uncer-

tain parameters. Section 20.5, finally, describes the steps how to actually solve

a robust optimization model.

20.1 Basic concepts

Basic conceptsIn this section you will find a number of basic concepts that are commonly

used in robust optimization. They will help you to unambiguously understand

the robust optimization facilities in Aimms.

Robust

counterpart

In robust optimization the model with uncertain data is translated into the so-

called robust counterpart. Consider the following linear programming prob-

lem:

max{cTx : ATx ≤ b} (P)

in which c ∈ Rm, b ∈ Rn and A ∈ Rm×n. Suppose that the actual technology

matrix A is in fact uncertain and it is only known to belong to a bounded

uncertainty set UA ⊂ Rm×n. Similarly assume that right hand side b belongs to

an uncertainty set Ub ⊂ Rn, and the objective coefficients c to an uncertainty

set Uc ⊂ Rm. The robust counterpart (RC) for the nominal problem (P) is then

defined as follows:

max{cTx : ATx ≤ b, ∀A ∈ UA, c ∈ Uc , b ∈ Ub}. (RC)

Uncertainty setThe sets UA, Uc and Ub specify all possible realizations of the uncertain data

and are collectively called the uncertainty set. The main questions associated

with the uncertainty set are:

� When and how can the robust counterpart of an uncertain problem be

reformulated as a computationally tractable optimization problem?

Chapter 20. Robust Optimization 332

� How to specify a reasonable uncertainty set, i.e., meaningful for a partic-

ular application and yielding a tractable robust counterpart?

It can be shown that when the uncertainty set is a multi-dimensional interval

or described by linear constraints, then the robust counterpart can be refor-

mulated as a linear problem. Furthermore, when the uncertainty set is an

ellipsoid, then the robust counterpart is still tractable, i.e., it can be reformu-

lated as a second-order cone program (SOCP), for which efficient (polynomial

time) solution methods exist. The reformulation of the robust counterpart

is an automated process performed by Aimms during the generation of your

mathematical program.

Integer

programming

If the uncertainty set is a multi-dimensional interval or described by linear con-

straints, then the robust counterpart of a mixed-integer robust optimization

problem can also be reformulated as a mixed-integer optimization problem.

If the uncertainty set is described by ellipsoidal constraints then the robust

counterpart becomes a mixed-integer second-order cone program. This class

of problems is more difficult to solve than mixed-integer optimization prob-

lems.

ScenariosA special situation to consider is when the uncertainty set consists of a finite

number of points representing a collection of scenarios. This discrete case

resembles the situation in multi-stage stochastic programming with discrete

data realizations. More precisely, in this case hard constraints are imposed for

every scenario s, while the objective is to optimize a worst-case performance

measure with respect to the set of scenarios. This performance measure can

be, for example, the objective value of the original (deterministic) model as-

sociated with an uncertain scenario. Another possibility is to define this per-

formance measure as a deviation of the objective for a decision with respect

to the absolutely optimal objective for each scenario. In the latter case, the

optimal robust solution will be the one with the minimum maximum deviation

across scenarios.

Chance

constraints

Another manner to account for uncertainty into your model is by specifying

so-called chance constraints. In order to introduce chance constraints, you

have to declare some of the parameters in your model to take random values

from a distribution with given characteristics. Subsequently, you can specify

that some of the constraints in your model be satisfied with a given probabil-

ity with respect to the specified data distributions. For example, if a chance

constraint has a probability of 95%, this means that the constraint should be

satisified for (at least) 95% of the realizations drawn from specified distribu-

tions of the random parameters contained in it. Compared to using uncertain

parameters, specifying random parameters with the same range and formulat-

ing the existing constraints as chance constraints may lead to solutions that

put less emphasis on worst-case scenarios that only occur occasionally.

Chapter 20. Robust Optimization 333

Multistage

optimization

All decision variables in problem (P) represent “here and now” decisions; they

get specific numerical values as a result of solving the problem before the

actual data “reveals itself” and as such are independent of the actual values

of the data. There are situations where this is too restrictive, since “in reality”

some of the decision variables can adjust themselves, to some extent, to the

true values of the uncertain data.

Adjustable

variables

For that reason, it is possible to specify both non-adjustable and adjustable

variables in Aimms, similar to first-stage and second-stage (or multi-stage) de-

cisions in stochastic programming, where the solution of a variable in stage

n depends on the specific solution of variables in stage n − 1 in a scenario-

dependent manner. Please note that, while non-adjustable variables can be

integer, adjustable variables must be continuous.

Basic procedure

for solving

robust opti-

mization models

The implementation of robust optimization in Aimms closely follows the con-

cepts described in this section. The basic procedure to create and solve a

robust optimization model in Aimms is as follows:

� indicate in your model which parameters are to become uncertain or

random,

� for every constraint in your model that you want to become a chance

constraint, specify the probability with which it must hold,

� for every adjustable variable in your model specify on which uncertain

parameters it depends, and

� specify possible realizations of the uncertain parameters in terms of pre-

defined regions or using specialized uncertainty constraints.

Each of these steps is explained in more detail in the sections to follow. Note

that changing parameters, variables and constraints in your model into uncer-

tain or random parameters, adjustable variables and chance constraints does

in no way influence the possibility to solve the underlying deterministic model

in its original form. Thus, the robust optimization facilities in Aimms always

form a true extension of the functionality of the existing Aimms application. It

is even possible to extend an existing deterministic model to both a stochastic

model and a robust optimization model, all of which can be solved indepen-

dently.

20.2 Uncertain parameters and uncertainty constraints

Uncertain

parameters

Uncertain parameters are modeled in Aimms as numeric Parameters for which

the Uncertain property has been set (see also Section 4.1). When a parameter

has been declared Uncertain Aimms will create two new attributes Region and

Uncertainty.

Chapter 20. Robust Optimization 334

The Region

attribute

The Region attribute of an uncertain parameter offers an easy way to define the

uncertainty set without the need to introduce additional uncertain parameters.

Aimms supports a number of predefined regions which you can enter here:

� Box(l,u),

� Ellipsoid(c, r), and

� ConvexHull(s, v(s)).

Box exampleIf we want to specify that parameter A is uncertain and constrained as follows:

l(i, j) ≤ A(i, j) ≤ u(i, j)

then it suffices to specify the uncertainty set of A using its Region attribute as

follows

Parameter A {

IndexDomain : (i,j);

Property : Uncertain;

Region : Box(l(i,j), u(i,j));

}

where l(i,j) and u(i,j) are ordinary parameters in your model.

Ellipsoid

example

It is also possible to specify the region using an Ellipsoid region

Parameter A {

IndexDomain : (i,j);

Property : Uncertain;

Region : Ellipsoid(A.level(i,j), r(i,j));

}

which leads to an uncertainty set for A defined as an ellipsoid around the nom-

inal value of A as follows:

∑

i,j

(
A(i, j)−A.level(i, j)

r(i, j)

)2

≤ 1.

ConvexHull

example

The region can also be defined as a ConvexHull region

Parameter A {

IndexDomain : (i,j);

Property : Uncertain;

Region : ConvexHull(s, A_s(s,i,j));

}

which says that the uncertain parameter A belongs to an uncertainty set that

is described by the convex hull of the values of a collection of values A_s for a

given set of scenarios, i.e.,

A(i, j) =
∑

s

λsAs(s, i, j)

1 =
∑

s

λs , λs ≥ 0.

Chapter 20. Robust Optimization 335

DependenciesIf there are two parameters A and B that both depend on scenario-dependent

data, then those scenarios can either be dependent or independent. To differ-

entiate between these two possibilities, Aimms uses the name of the binding

index used in the ConvexHull operator. If the names of the binding indices are

identical, then Aimms assumes that the scenarios are dependent. If the index

names are different, even if they refer to the same scenario set, Aimms assumes

the scenarios to be independent.

Dependent

scenarios

example

Consider the following two declarations of uncertain parameters

Parameter A {

IndexDomain : (i,j);

Property : Uncertain;

Region : ConvexHull(s, A_s(s,i,j));

}

Parameter B {

IndexDomain : (i,j);

Property : Uncertain;

Region : ConvexHull(s, B_s(s,i,j));

}

Based on these declarations Aimms will generate a single convex hull as follows

[
A(i, j)

B(i, j)

]
=
∑

s

λs

[
As(s, i, j)

Bs(s, i, j)

]

∑

s

λs =1, λs ≥ 0.

If A and B consist of a single value each, and there are two scenarios for s, then

the combined convex hull for A and B is depicted in Figure 20.1.

A

B

Figure 20.1: Combined convex hull for dependent scenarios

Chapter 20. Robust Optimization 336

Independent

scenarios

example

If, on the other hand, both declarations are given as

Parameter A {

IndexDomain : (i,j);

Property : Uncertain;

Region : ConvexHull(s, A_s(s,i,j));

}

Parameter B {

IndexDomain : (i,j);

Property : Uncertain;

Region : ConvexHull(t, B_t(t,i,j));

}

then Aimms will generate two separate convex hulls as follows

[
A(i, j)

B(i, j)

]
=
[∑

s λsAs(s, i, j)∑
t µtBt(t, i, j)

]

∑

s

λs =
∑

t

µt = 1, λs ≥ 0, µt ≥ 0.

If A and B consist of a single value each, and there are two scenarios for s and

t each, then the combined convex hull for A and B is depicted in Figure 20.2.

A

B

Figure 20.2: Combined convex hull for independent scenarios

ConvexHullExThe ConvexHull operator Aimms can be used to express that an uncertain pa-

rameter is defined as the convex combination of a certain parameter on some

set of scenarios. The ConvexHullEx operator is an extension for which the user

explicitly has to define the “lambda” parameter as an uncertain parameter. For

example:

Parameter A {

IndexDomain : (i,j);

Property : Uncertain;

Region : ConvexHullEx(s, A_s(s,i,j), L(s,i));

}

which says that the uncertain parameter A belongs to an uncertainty set that

is described by the convex hull of the values of a collection of values A_s for a

Chapter 20. Robust Optimization 337

given set of scenarios using the uncertain parameter L, i.e.,

A(i, j) =
∑

s

Ls(i)As(s, i, j)

1 =
∑

s

Ls(i), Ls(i) ≥ 0.

More flexibilityThe ConvexHullEx operator offers more flexibility as demonstrated by the above

example in which the lambda parameter L depends on the indices s and i while

the implicitly generated lambda parameter in case of the ConvexHull operator

only depends on the index s. Moreover, the lambda parameter can be used in

the Dependency attribute of an adjustable variable (see Section 20.4). The same

lambda parameter can be used in ConvexHullEx in regions of different uncertain

parameters to define a dependency between the uncertain parameters. As the

lambda parameter is not an ordinary uncertainty parameter, it cannot be used

in uncertainty constraints.

The Uncertainty

attribute

Through the Uncertainty attribute of an uncertain parameter you can define

a relation in term of other ordinary and uncertain parameters in your model

which must hold for the uncertain value of that parameter.

ExampleConsider the following declaration

Parameter Demand {

IndexDomain : (c,t);

Property : Uncertain;

Uncertainty : Demand.level(c,t) + Sum[k, D(c,t,k) * xi(k)];

}

where D(c,t,k) is an ordinary parameter and xi an uncertain parameter. The

reference to Demand.level in the Uncertainty attribute refers to the determinis-

tic (or nominal) value of Demand. The uncertain value of Demand is defined as its

nominal value plus a linear combination of some other uncertain parameter

xi(k).

Non-exclusive

attributes

Note that the Region and Uncertainty attributes are non-exclusive, i.e., you can

use them in conjuction to each other. In such a case, Aimms will make sure

that the solution is robust with respect to both relations.

Uncertainty

constraints

The Region and the Uncertainty attribute of a uncertain parameter can be used

to specify possible realizations of the uncertain parameters. In some cases,

however, more flexibility is needed in specifying special relations for one or

more uncertain parameters. For this purpose Aimms allows you to specify

UncertaintyConstraints. An UncertaintyConstraint is a constraint that speci-

fies the relation between uncertain parameters. It is similar to an ordinary

constraint in which the uncertain parameters play the role for variables; the

Chapter 20. Robust Optimization 338

definition of an UncertaintyConstraint may only refer to normal and uncertain

parameters, and not to variables.

ExampleThe following example specifies a condition on an uncertain parameter that

cannot be expressed through its Region or Uncertainty attributes.

Parameter A {

IndexDomain : (i,j);

Property : Uncertain;

}

UncertaintyConstraint ConditionOnA {

IndexDomain : i;

Definition : Sum(j, A(i,j)) <= 1;

}

The Constraints

attribute

Through the Constraint attribute of an UncertaintyConstraint you can specify

to which (normal) constraints the UncertaintyConstraint should apply. In this

way it is possible to use different uncertainty sets for different constraints. If

the Constraints attribute is empty then the UncertaintyConstraint will be active

for all constraints.

ExampleConsider the following declarations

UncertaintyConstraint ConditionOnA {

IndexDomain : i;

Constraints : CapacityRestriction(j) : UncertaintyDependency(i,j);

Definition : Sum(j, A(i,j)) <= 1;

}

Constraint CapacityRestriction {

IndexDomain : j;

Definition : Sum(i, A(i,j) * Transport(i,j)) <= Capacity(j);

}

Parameter UncertaintyDependency {

IndexDomain : (i,j);

Definition : 1 $ (i = j);

}

These declarations yield that the uncertainty constraint ConditionOnA(i) is only

active for constraint CapacityRestriction(j) for all elements j equal to i.

Generalized

ellipsoid

Besides linear uncertainty constraints, Aimms also allows you to formulate the

following uncertainty set for a uncertain parameter ξ, that generalizes the

ellipsoidal uncertainty sets that can be defined by using the Ellipsoid region:

ξTQ0ξ +
M∑

m=1

√
ξTQmξ ≤ b,

where Q0 and Qm should be positive semidefinite matrices. If your model

contains an ellipsoidal uncertainty constraint then the robust counterpart will

become a second-order cone program, except if the ellipsoidal uncertainty con-

straints are of the form ∑

i

√
ξ2
i ≤ b,

Chapter 20. Robust Optimization 339

in which case the robust counterpart will be a linear program.

20.3 Chance constraints

Chance

constraints

In the previous sections we assumed that each constraint with uncertain data

was satisfied with probability 1. In many situations, however, such a require-

ment may lead to solutions that over-emphasize the worst-case. In such cases,

it is more natural to require that a candidate solution has to satisfy a con-

straint with uncertain data for “nearly all” realizations of the uncertain data.

More specifically, in this approach one requires that the robust solution has

to satisfy the constraint with probability at least 1 − ǫ, where ǫ ∈ [0,1] is a

pre-specified small tolerance. Instead of the deterministic constraint

aTx ≤ b

we now require that the chance constraint

Prob
(
x : a(ξ)Tx ≤ b

)
≥ 1− ǫ

be satisfied, where the probability is associated with the specific distribution

of the uncertain parameter(s) ξ.

ApproximationIn general, (linear) problems with chance constraints are very hard to solve

even if the probability distribution of the uncertain data is completely known.

It is, however, possible to construct safe tractable approximations of chance

constraints using robust optimization (see, for instance, Chapter 2 of [BT09]).

The way a chance constraint is approximated depends merely on the general

characteristics of the data distribution, rather than on precise specification of

the distribution. If more information is available about the distribution, this

will generally result in a tighter approximation. A tighter approximation, how-

ever, could result in a more difficult solution process (for instance, requiring

second-order cone programming instead of just linear programming).

Chance

constraints in

Aimms

The procedure to introduce chance constraints into your robust optimization

model is as follows:

� indicate which parameters in your model should become random, and

specify the properties of their distributions, and

� specify which constraints should be considered chance constraints, and

specify their probability and method of approximation.

Chapter 20. Robust Optimization 340

Random

parameters

A probability distribution is modeled in Aimms as a numeric Parameter for

which the Random property has been set (see also Section 4.1). If the property

Random is set, Aimms will create the mandatory Distribution attribute for this

parameter which must be used to specify the characteristics of the distribution

to be used for that parameter. All random parameters for which a distribution

has been specified are considered to be independent.

ExampleConsider the following declaration

Parameter Demand {

IndexDomain : i;

Property : Random;

Distribution : Bounded(Demand(i).level,0.1);

}

This declaration states that parameter Demand corresponds to a bounded prob-

ability distribution with a mean equal to the nominal value of Demand and a

support of 0.1.

Supported

distributions

Aimms supports the distribution types listed in Table 20.1 All distributions

Distribution Meaning

Bounded(m, s) mean m with range [m− s,m+ s]
Bounded(m, l,u) range [l,u] and mean m not in the center of

the range

Bounded(ml,mu, l, u) range [l,u] and mean in interval [ml,mu]

Bounded(ml,mu, l, u, v) range [l,u] and mean in interval [ml,mu],

and variance bounded by v

Unimodal(c, s) unimodal around c with range [c − s, c + s]
Symmetric(c, s) symmetric around c with range [c − s, c + s]
Symmetric(c, s, v) symmetric around c with range [c − s, c + s],

and variance bounded by v

Support(l,u) range [l,u] (and no information about the

mean)

Gaussian(ml,mu, v) Gaussian with mean in interval [ml,mu] and

variance bounded by v

Table 20.1: Supported distribution types for robust optimization

in this table are bounded except the Gaussian distribution. The distribu-

tions Bounded(ml,mu, l, u), Bounded(ml,mu, l, u, v) and Symmetric(c, s, v)

are currently not implemented.

Chapter 20. Robust Optimization 341

Symmetric

unimodal

distribution

A distribution is called unimodal if its density function is monotonically in-

creasing up to a certain point c and monotonically decreasing afterwards. For

symmetric distribution Aimms offers the possibility to mark it as unimodal by

using the unimodal keyword:

Parameter Demand {

IndexDomain : i;

Property : Random;

Distribution : Symmetric(Demand(i).level,0.1), unimodal;

}

The unimodal keyword can only be used in combination with a symmetric dis-

tribution.

Linear relationIn addition to specifying a random parameter using an independent distribu-

tion, Aimms also allows you to define a random parameter as a linear com-

bination of other random parameters (but not as combination of uncertain

parameters). For example,

Parameter Demand {

Property : Random;

Distribution : Sum(i, xi(i));

}

where xi is an random parameter. To avoid cyclic definitions, Aimms requires

that the distributions of random parameters cannot be specified as an expres-

sion of other random parameters which are themselves defined as an expres-

sion of random parameters.

Chance

constraints

A constraint in your mathematical program becomes a chance constraint in the

context of robust optimization by setting its Chance property. The definition

of a chance constraint may only contain random parameters, normal param-

eters and variables. Uncertain parameters are not allowed inside a chance

constraint. When setting the Chance property for a constraint, you must spec-

ify two new attributes for the constraint, the Probability attribute and the

Approximation attribute. It is allowed to use chance constraints in a mixed-

integer program.

The Probability

attribute

The Probability attribute specifies the probability with which the chance con-

straint should be satisfied when solving a robust optimization model. The

value of the Probability attribute should be a numerical expression in the

range [0,1]. If the probability is 0, then Aimms will not generate the chance

constraint. If the probability is 1, then Aimms will generate an uncertainty

constraint.

Chapter 20. Robust Optimization 342

The

Approximation

attribute

The Approximation attribute is used to define the approximation that should

be used to approximate the chance constraint. Its value should be an element

expression into the predefined set AllChanceApproximationTypes.

Supported

approximation

types

The approximations supported by Aimms are:

� Ball,

� Box,

� Ball-box,

� Budgeted, and

� Automatic.

A detailed mathematical definition of these approximation types can be found

in Chapter 2 of [BT09]. Whether or not a particular approximation type is

possible, depends on the characteristics of the distributions used in the chance

constraint, as explained below. By specifying approximation type Automatic

the most accurate approximation possible will be used. In some cases it might

be beneficial to use a less tight approximation because it leads to a robust

counterpart that is easier to solve.

ExampleConsider the declaration

Constraint ChanceConstraint {

IndexDomain : i;

Property : Chance;

Definition : Demand(i) * X(i) <= 10;

Probability : prob(i);

Approximation : ’Ball’;

}

This declaration states that ChanceConstraint is a chance constraint with prob-

ability prob(i), and that approximation type Ball is used to approximate the

chance constraint.

Possible

approximations

per distribution

Table 20.2 shows for each (supported) distribution which approximation types

are possible. It also shows whether the approximation will result in a linear

or a second-order cone robust counterpart. For the Bounded(m, s) distribu-

Distribution Automatic Ball Box Ball-box Budgeted

Bounded(m, s) linear conic linear conic linear

Bounded(m, l,u) conic linear

Unimodal(c, s) conic linear

Symmetric(c, s) (unimodal) conic conic linear conic linear

Support(l,u) linear linear

Gaussian(ml,mu, v) conic

Table 20.2: Allowed approximations and their resulting problem type

Chapter 20. Robust Optimization 343

tion the automatic approximation equals the Budgeted approximation, and the

automatic approximation of the Support(l,u) distribution equals the Box ap-

proximation. The non-unimodal Symmetric(c, s) distribution is treated as a

Bounded(m, s) distribution.

Combining

distributions

A chance constraint cannot contain both bounded random parameters and

Gaussian random parameters. Different types of bounded random parameters

can be combined, in which case only a part of the available information will be

used. The possible combinations of bounded random parameters are given in

Table 20.3.

Distribution 1 2 3 4 5

1 Bounded(m, s) 1 2 – 1 5

2 Bounded(m, l,u) 2 2 – 2 5

3 Unimodal(c, s) – – 3 3 5

4 Symmetric(c, s) (unimodal) 1 2 3 4 5

5 Support(l,u) 5 5 5 5 5

Table 20.3: Resulting distribution type when combining distributions

ExplanationIf a random parameter with a Bounded(m, l,u) distribution and a random pa-

rameter with a Support(l,u) distribution are used in a single chance con-

straint, then Table 20.3 states that the Bounded(m, l,u)) distribution of the

first random parameter will be treated as a Support(l,u) distribution. Uni-

modal distributions can only be mixed with unimodal Symmetric(c, s) and

Support(l,u) distributions.

20.4 Adjustable variables

Adjustable

variables

An adjustable variable reflects a decision made after uncertain data has been

revealed. In robust optimization this is interpreted as the adjustable variable

taking some (explicit or implicit) functional form in terms of the uncertain data

on which it depends. In Aimms, you indicate that a Variable should be treated

as adjustable by setting its Adjustable property.

The Dependency

attribute

For any adjustable variable, Aimms will create a Dependency attribute which you

can use to specify on which uncertain parameters the variable depends. The

attribute value must be a comma-separated list of mappings from an uncertain

parameter to a binary parameter, indicating for which combination of indices

a dependency exists on that uncertain parameter.

Chapter 20. Robust Optimization 344

Linear decision

rule only

Aimms currently only supports the linear decision rule, which means any ad-

justable variable will be expressed as an affine relation in terms of the uncer-

tain parameters which it depends on. More explicitly, if an adjustable variable

x(t) depends on uncertain parameters dr , then, under the linear decision rule,

Aimms assumes that x(t) takes the form

x(t) = X0(t)+
∑

r

Xr (t)dr

where X0(t) and Xr (t) are newly introduced intermediate variables, the value

of which is determined by solving the robust counterpart. As such, the value

of an adjustable variable is not fully determined by the solver. It can be com-

puted afterwards for a given realization of the uncertain parameters. Aimms

will automatically generate the affine relation based on the dependencies you

indicated in the Dependency attribute, without the need for you to introduce the

appropriate intermediate variables.

Requirements

for adjustable

variables

In order for Aimms to be able to generate the robust counterpart of a robust

optimization model, the model must satisfy the fixed recourse condition, i.e.,

the coefficients of any adjustable variables in your model must not depend on

uncertain parameters. In addition, for Aimms to be able to generate the robust

counterpart, adjustable variables may not occur in chance constraints. Also,

adjustable variables cannot be integer.

The .Adjustable

suffix for

variables

The collection of intermediate variables introduced during this process, auto-

matically becomes available through the .Adjustable attribute of the adjustable

variable at hand, followed by the name of the uncertain parameter involved.

That is, if an adjustable variable x(i) depends on an uncertain parameter a(j),

then the corresponding intermediate variable is available as the expression

x.Adjustable.a(i,j). In addition, a variable x.Adjustable.Constant(i) will be

created to account for the constant part of the affine relation. If necessary,

you can bound these variables through the .Lower and .Upper suffices, or you

can formulate additional constraints on these variables.

ExampleConsider the following declarations

Variable Stock {

IndexDomain : t;

Property : Adjustable;

Dependency : Demand(t2) : StockDemandDependency(t,t2);

}

Parameter Demand {

IndexDomain : t;

Property : Uncertain;

}

Parameter StockDemandDependency {

IndexDomain : (t,t2);

Definition : 1 $ (t2 < t);

}

Chapter 20. Robust Optimization 345

These declarations yield that the adjustable variable Stock(t) depends on the

uncertain parameter Demand(t2) for all elements t2 smaller than t. Given these

declarations, Aimms will generate the following definition for Stock(t)

Stock(t) = Stock.Adjustable.Constant(t) +

sum(t2 | StockDemandDependency(t,t2), Stock.Adjustable.Demand(t,t2)*Demand(t2))

If the data for Demand(t) becomes available, you can use the computed values

of Stock.Adjustable.Demand(t,t2) and Stock.Adjustable.Constant to compute

the value of Stock(t).

Warning: using

same indices

You should be aware that using the same indices in the Dependency attribute

and the index domain of the adjustable variable will restrict the dependencies

that are generated. For example, assume we have the following declarations

Variable Stock {

IndexDomain : t;

Property : Adjustable;

Dependency : Demand(t);

}

Parameter Demand {

IndexDomain : t;

Property : Uncertain;

}

Given these declarations, Aimms will generate the following definition for Stock(t)

Stock(t) = Stock.Adjustable.Constant(t) + Stock.Adjustable.Demand(t)*Demand(t)

If you want Stock(t) to depend on all possible Demand then you should use a

different index in the Dependency attribute, e.g.,

Variable Stock {

IndexDomain : t;

Property : Adjustable;

Dependency : Demand(t2);

}

Evaluating

adjustable

variables

To compute the values of an adjustable variable for a given realization of the

uncertain parameters of the robust optimization model, you do not have to

explicitly add the appropriate definitions to your model. Aimms offers the

function GMP::Robust::EvaluateAdjustableVariables, discussed in Section 16.9,

to automatically compute these values for you.

20.5 Solving robust optimization models

Solving robust

optimization

models

After you have specified all uncertain parameters, random parameters, chance

constraints and adjustable variables that specify your robust optimization

model, your original mathematical program can now be solved as a robust

optimization model. It is also still possible to solve it as a deterministic model

by just calling the SOLVE statement (see also Section 15.3).

Chapter 20. Robust Optimization 346

Generate robust

counterpart

To solve a robust optimization model for a MathematicalProgram MP, the first

step is to generate its robust counterpart. This can be accomplished by calling

the gmp function

� GenerateRobustCounterpart(MP,UncertainParameters,

UncertaintyConstraints[,Name])

The function returns an element into the set AllGeneratedMathematicalPro-

grams, i.e., the generated mathematical program representing the robust coun-

terpart of the given robust optimization model.

Specifying

uncertain data

Through the UncertainParameters and UncertaintyConstraints arguments you

can specify the collection of uncertain and random parameters, as well as the

uncertainty constraints that you want to take into account when generating the

robust counterpart. Together, these completely determine the uncertain data

which Aimms will use to translate the uncertain matrix coefficients, chance

constraints and adjustable variables into the generated mathematical program

representing the robust counterpart.

Name argumentWith the optional Name argument you can explicitly specify a name for the

generated mathematical program. If you do not choose a name, Aimms will use

the name of the underlying MathematicalProgram as the name of the generated

mathematical program as well. Please note, that Aimms will also use this name

as the default name for solving the deterministic model. Therefore, if you do

not want the generated mathematical program of the deterministic model to

be deleted, then you have to choose a non-default name.

Solving the

robust

counterpart

You can solve the generated mathematical program gmp representing the ro-

bust counterpart by calling the regular gmp procedure

� GMP::Instance::Solve(gmp)

The GMP::Instance::Solve method is discussed in full detail in Section 16.2.

Alternatively, you can use any of the other available functions available to

solve generated mathematical programs discussed in Chapter 16. Note that

Aimms will not allow you to use the gmp modification functions on any gmp

generated by GenerateRobustCounterpart.

The resulting

solution

The solution resulting from solving the robust counterpart will satisfy all non-

chance constraints in your model for all realizations of the uncertain parame-

ters that you passed to the GenerateRobustCounterPart function, and will satisfy

all chance constraints with the given probabilities and approximations, given

the random parameters taken into account.

Chapter 21

Automatic Benders’ Decomposition

Important noteThe solver Cplex has its own implementation of the Benders’ decomposition

algorithm. An important difference is that the algorithm in Cplex supports

multiple subproblems. Cplex allows you to specify the decomposition by as-

signing the variables to the master problem or a subproblem by using the pro-

cedure GMP::Column::SetDecomposition. For more information see the Cplex

option Benders strategy.

IntroductionBenders’ decomposition, introduced by Jacques F. Benders in 1962 ([Be62]), is

an algorithm that decomposes a problem into two simpler parts. The first part

is called the master problem and solves a relaxed version of the problem to

obtain values for a subset of the variables. The second part is often called the

subproblem (or slave problem or auxiliary problem) and finds values for the

remaining variables fixing the variables of the master problem. If the prob-

lem contains integer variables then typically they become part of the master

problem while the continuous variables become part of the subproblem.

CutsThe solution of the subproblem is used to cut off the solution of the master

problem by adding one or more constraints (“cuts”) to the master problem.

This process of iteratively solving master problems and subproblems is re-

peated until no more cuts can be generated. The combination of the variables

found in the last master problem and subproblem iteration forms the solution

to the original problem.

Reduced

solution times

possible

For particular optimization problems, Benders’ decomposition may lead to

a good, or even the optimal, solution in relatively few iterations. In such

cases, employing Benders’ decomposition results in drastically reduced so-

lution times compared to solving the original problem. For other problems,

however, the progress per iteration is so small that there is no positive, or

even an adversary, effect by applying Benders’ decomposition. Upfront, it is

hard predict whether or not there will be positive effects for your particular

model.

Chapter 21. Automatic Benders’ Decomposition 348

Hard to

implement

manually

Implementing Benders’ decomposition from scratch for a particular problem is

a non-trivial and error-prone task. Because duality theory plays an important

role, the process often involves explicitly working out the dual formulation

of the subproblem—and keeping it up-to-date when you make changes to the

original problem. Given the uncertainty whether Benders’ decomposition will

lead to an improvement in solution times at all, a manual implementation may

not be a prospect to look forward to.

Automatic

Benders’

decomposition

in Aimms

For Aimms, on the other hand, generating the master and slave problems in an

automated fashion is a fairly straightforward task, given a generated mathe-

matical program and the collection of variables that should go into the master

problem. With such an automated scheme, verifying whether your particular

model will benefit from Benders’ decomposition becomes completely trivial.

With just a few lines of code, and simply re-solving your model you will get

immediate insight into the benefits of Benders’ decomposition for your model.

Classical versus

modern

The Benders’ decomposition module in Aimms implements both the classical

Benders’ decomposition algorithm and a modern version. By the classical ap-

proach we mean the algorithm described above that solves an alternating se-

quence of master problems and subproblems, and that, in principle, will work

for any problem type. The modern approach will only work for problems con-

taining integer variables. In the modern approach, the algorithm will solve

only a single master MIP problem, where subproblems are solved whenever the

MIP solver finds a solution for the master problem, using callbacks provided

by modern MIP solvers.

Several

algorithms

Besides the classical and the modern algorithm, the Benders’ decomposition

module in Aimms also implements a two phase algorithm that solves a relaxed

problem in the first phase and the original problem in the second phase. In

addition, the module offers you the flexibility to solve the subproblem as a

primal or dual problem, to normalize the subproblem to get better feasibility

cuts, and so on.

Limitations of

current

implementation

Benders’ decomposition in Aimms can be used for solving Mixed-Integer Pro-

gramming (MIP) problems and Linear Programming (LP) problems. Currently

it cannot be used to solve nonlinear problems. Also, the current implementa-

tion does not support multiple subproblems which could be efficient in case

the subproblem has a block diagonal structure. This implies that the current

implementation cannot be used to solve (two stage) stochastic programming

problems with a subproblem for each scenario.

Chapter 21. Automatic Benders’ Decomposition 349

Open algorithmBenders’ decomposition in Aimms is implemented as a system module with

the name GMP Benders Decomposition. You can install this module using the

Install System Module command in the Aimms Settings menu. The Benders’

decomposition algorithms are implemented in the Aimms language. Some sup-

porting functions that are computationally difficult, or hard to express in the

Aimms language, have been added to the gmp library in support of the Ben-

ders’ decomposition algorithm. Besides this small number of fixed subtasks,

the implementation is an open algorithm; you as an algorithmic developer may

want to customize the individual steps in order to obtain better performance

and/or a better solution for your particular problem.

This chapterThis chapter starts with a quick start for using Benders’ decomposition in

Aimms for those already familiar with Benders’ decomposition. Following a

brief introduction to the problem statement, we discuss the Benders’ decompo-

sition algorithm as it can be found in several textbooks. Next we describe the

implementation of the classic Benders’ decomposition algorithm using proce-

dures in the Aimms language that are especially designed to support the open

approach. This section is important for users that want to modify the algo-

rithm. Next, we discuss in detail the parameters inside the Benders’ module

that can be used to control the Benders’ decomposition algorithm. We con-

tinue by describing the implementation of a modern Benders’ decomposition

algorithm. The chapter ends by introducing a two phase algorithm that solves

a problem by using information gathered while solving a relaxed version of the

problem, and we also describe its implementation.

21.1 Quick start to using Benders’ decomposition

System moduleThe system module with the name GMP Benders Decomposition implements the

Benders’ decomposition algorithm. You can add this module to your project

using the Install System Module command in the Aimms Settings menu. This

module contains three procedures that can be called, each implementing a

different algorithm.

Classic

algorithm

The procedure DoBendersDecompositionClassic inside this module implements

the classic version of the Benders’ decomposition algorithm, in which the mas-

ter problem and the subproblem are solved in an alternating sequence.

Modern

algorithm

The procedure DoBendersDecompositionSingleMIP inside the module implements

the modern approach for MIP problems which solves only a single MIP prob-

lem; the subproblem is solved whenever the MIP solver finds a solution for the

master problem (using callbacks).

Chapter 21. Automatic Benders’ Decomposition 350

Two phase

algorithm

The procedure DoBendersDecompositionTwoPhase inside the module implements

a two phase algorithm for MIP problems. In the first phase it solves the relaxed

problem (in which the integer variables become continuous) using the classic

Benders decomposition algorithm. The Benders’ cuts found in the first phase

are then added to the master problem in the second phase after which the MIP

problem is solved using either the classic or modern approach of the Benders

decomposition algorithm.

The procedure

DoBenders-

Decomposition-

Classic

The procedure DoBendersDecompositionClassic has two input arguments:

1. MyGMP, an element parameter with range AllGeneratedMathematicalPro-

grams, and

2. MyMasterVariables, a subset of the predefined set AllVariables defining

the variables in the master problem.

For a MIP problem, the integer variables typically become the variables of the

master problem, although it is possible to also include continuous variables

in the set of master problem variables. The DoBendersDecompositionClassic

procedure is called as follows:

generatedMP := GMP::Instance::Generate(SymbolicMP);

GMPBenders::DoBendersDecompositionClassic(generatedMP, AllIntegerVariables);

Here SymbolicMP is the symbolic mathematical program containing the MIP

model, and generatedMP is an element parameter in the predefined set All-

GeneratedMathematicalPrograms. GMPBenders is the prefix of the Benders’ mod-

ule. The implementation of this procedure will be discussed in Section 21.3.

The procedure

DoBenders-

Decomposition-

SingleMIP

The procedure DoBendersDecompositionSingleMIP has the same input arguments

as the procedure DoBendersDecompositionClassic. The DoBendersDecomposition-

SingleMIP procedure is called as follows:

generatedMP := GMP::Instance::Generate(SymbolicMP);

GMPBenders::DoBendersDecompositionSingleMIP(generatedMP, AllIntegerVariables);

This procedure can only be used if the original problem contains some in-

teger variables. The implementation of this procedure will be discussed in

Section 21.6.

The procedure

DoBenders-

Decomposition-

TwoPhase

The procedure DoBendersDecompositionTwoPhase has one additional argument

compared to the procedure DoBendersDecompositionClassic. Namely, the third

argument UseSingleMIP is used to indicate whether the second phase should

use the classic algorithm (value 0) or the modern algorithm (value 1). The

procedure is called as follows if the modern algorithm should be used:

generatedMP := GMP::Instance::Generate(SymbolicMP);

GMPBenders::DoBendersDecompositionTwoPhase(generatedMP, AllIntegerVariables, 1);

Chapter 21. Automatic Benders’ Decomposition 351

This procedure should only be used if the original problem contains some

integer variables. The implementation of this procedure will be discussed in

Section 21.7.

Combining

procedure

To make it easier for you to switch between the three algorithms, the module

also implements the procedure DoBendersDecomposition that calls one of the

three procedures above based on the Benders’ mode. The first two arguments

of this procedure are the same as before, namely MyGMP and MyMasterVariables.

The third argument, BendersMode, is an element parameter that defines the Ben-

ders’ mode and can take value ’Classic’, ’Modern’, ’TwoPhaseClassic’ or ’Two-

PhaseModern’. The procedure is called as follows if the two phase algorithm

should be used with the modern algorithm for the second phase:

generatedMP := GMP::Instance::Generate(SymbolicMP);

GMPBenders::DoBendersDecomposition(generatedMP, AllIntegerVariables,

’TwoPhaseModern’);

If the problem contains no integer variables then only mode ’Classic’ can be

used.

Control

parameters

The Benders’ module defines several parameters that influence the Benders’

decomposition algorithm. These parameters have a similar functionality as

options of a solver, e.g., Cplex. The most important parameters, with their

default setting, are shown in Table 21.1. The parameters that are not self-

Parameter Default Range Subsection

BendersOptimalityTolerance 1e-6 [0,1]

IterationLimit 1e7 {1,maxint}
TimeLimit 1e9 [0,inf)

CreateStatusFile 0 {0,1}
UseDual 0 {0,1} 21.5.1

FeasibilityOnly 1 {0,1} 21.5.2

NormalizationType 1 {0,1} 21.5.3

UseMinMaxForFeasibilityProblem 1 {0,1} 21.5.4

AddTighteningConstraints 1 {0,1} 21.5.5

UseStartingPointForMaster 0 {0,1} 21.5.6

UsePresolver 0 {0,1} 21.5.7

Table 21.1: Control parameters in the Benders’ module

explanatory are explained in Section 21.5; the last column in the table refers

to the subsection that discusses the corresponding parameter.

Chapter 21. Automatic Benders’ Decomposition 352

Optimality

tolerance

The optimality tolerance, as controlled by the parameter BendersOptimality-

Tolerance, guarantees that a solution returned by the Benders’ decomposition

algorithm lies within a certain percentage of the optimal solution.

Solver optionsThe parameters BendersOptimalityTolerance, IterationLimit and TimeLimit are

used by the classic algorithm (and the first phase of the two phase algo-

rithm). For the modern algorithm, the corresponding general solver options,

MIP relative optimality tolerance, iteration limit and time limit respective-

ly, are used.

21.2 Problem statement

MIPWe consider the following generic mixed-integer programming model to ex-

plain Benders’ Decomposition. (The notation used is similar to [Fi10].)

Minimize:
cTx + dTy

Subject to:
Ax ≤ b

Tx +Qy ≤ r
x ∈ Zn+
y ∈ Rm+

The variable x is integer and the variable y is continuous. The matrix T may

contain empty constraints but we assume that the matrix Q does not contain

any empty constraint. So, the model can have constraints that only contain

continuous variables.

LimitationBenders’ Decomposition cannot be used if the model contains only integer vari-

ables. If the number of continuous variable is small compared to the number

of integer variables then Benders’ Decomposition will very likely be inefficient.

21.3 Benders’ decomposition - Textbook algorithm

Master problemThe basic Benders’ decomposition algorithm as explained in several textbooks

(e.g., [Ne88], [Ma99]) works as follows. After introducing an artificial variable

η = dTy , the master problem relaxation becomes:

Minimize:
cTx + η

Subject to:
Ax ≤ b
η ≥ η
x ∈ Zn+

Chapter 21. Automatic Benders’ Decomposition 353

Here η is a lower bound on the variable η that Aimms will automatically de-

rive. For example, if the vector d is nonnegative then we know that 0 is a

lower bound on dTy since we assumed that the variable y is nonnegative, and

therefore we can take η = 0. We assume that the master problem is bounded.

SubproblemAfter solving the master problem we obtain an optimal solution, denoted by

(x∗, η∗) with x∗ integer. This solution is fixed in the subproblem which we

denote by PS(x∗):

Minimize:
dTy

Subject to:
Qy ≤ r − Tx∗

y ∈ Rm+

Note that this subproblem is a linear programming problem in which the con-

tinuous variable y is the only variable.

Dual

subproblem

Textbooks that explain Benders’ decomposition often use the dual of this sub-

problem because duality theory plays an important role, and the Benders’ op-

timality and feasibility cuts can be expressed using the variables of the dual

problem. The dual of the subproblem PS(x∗) is given by:

Maximize:
r −πT (Tx∗)

Subject to:
πTQ ≥ dT

π ≥ 0

We denote this problem by DS(x∗).

Optimality cutIf this subproblem is feasible, let z∗ denote the optimal objective value and π

an optimal solution of DS(x∗). If z∗ ≤ η∗ then the current solution (x∗, η∗)
is a feasible and optimal solution of our original problem, and the Benders’

decomposition algorithm only needs to solve PS(x∗) to obtain optimal values

for variable y . If z∗ > η∗ then the Benders’ optimality cut η ≥ πT (r − Tx)
is added to the master problem and the algorithm continues by solving the

master problem again.

Feasibility cutIf the dual subproblem is unbounded, implying that the primal subproblem

is infeasible, then an unbounded extreme ray π is selected and the Benders’

feasibility cut πT (r −Tx) ≤ 0 is added to the master problem. Modern solvers

like Cplex and Gurobi can provide an unbounded extreme ray in case a LP

problem is unbounded. After adding the feasibility cut the Benders’ decompo-

sition algorithm continues by solving the master problem.

Chapter 21. Automatic Benders’ Decomposition 354

21.4 Implementation of the classic algorithm

The procedure

DoBenders-

Decomposition

In this section we show the implementation of the classic Benders’ decompo-

sition algorithm. It follows the classic approach of solving the master problem

and the subproblem in an alternating sequence. The procedure DoBenders-

Decomposition, introduced in Section 21.1, implements the classic algorithm.

Focus on

textbook

algorithm

The Benders’ cuts can be generated in several ways; in this section we focus

on the approach used in the textbook algorithm of the previous section (Sec-

tion 21.3). The textbook algorithm uses the dual formulation of the subprob-

lem and can add both Benders’ optimality and feasibility cuts.

Calling

DoBendersDecom-

positionClassic

We have to change some of the control parameters of Table 21.1 to let the

DoBendersDecomposition procedure execute the textbook algorithm. The rele-

vant changes are listed below.

generatedMP := GMP::Instance::Generate(SymbolicMP);

! Settings needed to run textbook algorithm:

GMPBenders::FeasibilityOnly := 0;

GMPBenders::AddTighteningConstraints := 0;

GMPBenders::UseDual := 1;

GMPBenders::NormalizationType := 0;

GMPBenders::DoBendersDecompositionClassic(generatedMP, AllIntegerVariables);

Implementation

of

DoBendersDecom-

positionClassic

The DoBendersDecompositionClassic procedure starts by making copies of its in-

put arguments. Next the master problem and the subproblem are created. For

the subproblem we also create a solver session which gives us more flexibility

passing and retrieving subproblem related information. The parameters for

the number of optimality and feasibility cuts are reset. Finally, the procedure

calls another procedure, namely BendersAlgorithm, and finishes by deleting the

master problem and the subproblem. For the sake of brevity and clarity, we

leave out parts of the code that handle details like creating a status file; this

will also be the case for the other pieces of code shown in this chapter.

OriginalGMP := MyGMP ;

VariablesMasterProblem := MyMasterVariables ;

! Create (Relaxed) Master problem.

gmpM := GMP::Benders::CreateMasterProblem(OriginalGMP, VariablesMasterProblem,

’BendersMasterProblem’,

feasibilityOnly : FeasibilityOnly,

addConstraints : AddTighteningConstraints) ;

! Create Subproblem.

gmpS := GMP::Benders::CreateSubProblem(OriginalGMP, gmpM, ’BendersSubProblem’,

useDual : UseDual,

normalizationType : NormalizationType);

Chapter 21. Automatic Benders’ Decomposition 355

solsesS := GMP::Instance::CreateSolverSession(gmpS) ;

NumberOfOptimalityCuts := 0;

NumberOfFeasibilityCuts := 0;

! Start the actual Benders’ decomposition algorithm.

BendersAlgorithm;

GMP::Instance::Delete(gmpM);

GMP::Instance::Delete(gmpS);

The procedure

Benders-

Algorithm

The BendersAlgorithm procedure implements the actual Benders’ decomposi-

tion algorithm. It initializes the algorithm by resetting the parameters for the

number of iterations, etc. Next the master problem is solved. The separation

step solves the subproblem and checks whether the current solution is opti-

mal. If it is not optimal then the algorithm creates a constraint (“cut”) that

separates the current solution from the set of feasible solutions. This con-

straint is added to the master problem enforcing that the current solution of

the master problem will not be found again if we solve the master problem

once again. This alternating sequence of solving master problems and sub-

problems is repeated until a stopping criterion is met.

InitializeAlgorithm;

while (not BendersAlgorithmFinished) do

NumberOfIterations += 1;

SolveMasterProblem;

if (UseDual) then

if (FeasibilityOnly) then

SeparationFeasibilityOnlyDual;

else

SeparationOptimalityAndFeasibilityDual;

endif;

else

if (FeasibilityOnly) then

SeparationFeasibilityOnly;

else

SeparationOptimalityAndFeasibility;

endif;

endif;

endwhile;

SeparationThe code above shows four possible ways of performing the separation step.

The textbook algorithm uses the procedure SeparationOptimalityAndFeasibi-

lityDual which we will discuss below. The other three separation procedures

are discussed in Appendix B.

Chapter 21. Automatic Benders’ Decomposition 356

The procedure

SolveMaster-

Problem

The implementation of the SolveMasterProblem procedure is straightforward.

This procedure solves the Benders’ master problem and retrieves its objective

value after checking the program status. If the program status is infeasible or

unbounded then the algorithm terminates.

GMP::Instance::Solve(gmpM);

ProgramStatus := GMP::Solution::GetProgramStatus(gmpM, 1) ;

if (ProgramStatus = ’Infeasible’) then

return AlgorithmTerminate(’Infeasible’);

elseif (ProgramStatus = ’Unbounded’) then

return AlgorithmTerminate(’ProgramNotSolved’);

endif;

ObjectiveMaster := GMP::Instance::GetObjective(gmpM);

The procedure

Separation-

OptimalityAnd-

FeasibilityDual

The procedure SeparationOptimalityAndFeasibilityDual is called by the Ben-

ders’ decomposition algorithm in case the dual of the Benders’ subproblem is

used and if both optimality and feasibility cuts can be generated by the algo-

rithm (we will discuss in Section 21.5 the case in which only feasibility cuts

are generated). This procedure updates the dual subproblem and solves it. If

the dual subproblem is unbounded then a feasibility cut is added to the master

problem (using an unbounded extreme ray; see the next paragraph). If the sub-

problem is bounded and optimal then the objective value of the subproblem is

compared to the objective value of the master problem to check whether the

algorithm has found an optimal solution for the original problem. If the solu-

tion is not optimal yet then an optimality cut is added to the master problem,

using the level values of the variables in the solution of the dual subproblem.

return when (BendersAlgorithmFinished);

GMP::Benders::UpdateSubProblem(gmpS, gmpM, 1, round : 1);

GMP::SolverSession::Execute(solsesS) ;

GMP::Solution::RetrieveFromSolverSession(solsesS, 1) ;

ProgramStatus := GMP::Solution::GetProgramStatus(gmpS, 1) ;

if (ProgramStatus = ’Unbounded’) then

! Add feasibility cut to the Master problem.

NumberOfFeasibilityCuts += 1;

GMP::Benders::AddFeasibilityCut(gmpM, gmpS, 1, NumberOfFeasibilityCuts);

else

! Check whether optimality condition is satisfied.

ObjectiveSubProblem := GMP::SolverSession::GetObjective(solsesS);

if (SolutionImprovement(ObjectiveSubProblem, BestObjective)) then

BestObjective := ObjectiveSubProblem;

endif;

Chapter 21. Automatic Benders’ Decomposition 357

if (SolutionIsOptimal(ObjectiveSubProblem, ObjectiveMaster)) then

return AlgorithmTerminate(’Optimal’);

endif;

! Add optimality cut to the Master problem.

NumberOfOptimalityCuts += 1;

GMP::Benders::AddOptimalityCut(gmpM, gmpS, 1, NumberOfOptimalityCuts);

endif;

Unbounded

extreme ray

In textbooks, if the dual subproblem is unbounded then an unbounded ex-

treme ray is chosen and used to generate a feasibility cut. Choosing such an

unbounded extreme ray is not trivial but luckily modern solvers like Cplex and

Gurobi can compute an unbounded extreme ray upon request. It is stored

in the .Level suffix of the variables. The downside is that preprocessing by

Cplex or Gurobi has to be switched off which can have a negative impact on

the performance. So, if the textbook algorithm is selected in which the dual

subproblem is used and both optimality and feasibility cuts can be generated

by the algorithm, the solver options for switching on the calculation of un-

bounded extreme ray and for switching off the preprocessor are set during the

initialization of the Benders’ decomposition algorithm:

if (UseDual and (not FeasibilityOnly)) then

rval := GMP::SolverSession::SetOptionValue(solsesS, ’unbounded ray’, 1);

if (rval = 0) then

halt with "Solver must support unbounded extreme rays.";

return;

endif;

rval := GMP::SolverSession::SetOptionValue(solsesS, ’presolve’, 0);

if (rval = 0) then

halt with "Switching off the solver option ’presolve’ failed.";

return;

endif;

endif;

If the solver does not support unbounded extreme rays then the textbook al-

gorithm cannot be used.

The procedure

Algorithm-

Terminate

The procedure AlgorithmTerminate is called whenever the Benders’ decomposi-

tion algorithm is finished. Appropriate values are assigned to the program and

solver status of the original problem. If the algorithm has found an optimal

solution then the solutions of the last master problem and last subproblem

are combined into an optimal solution for the original problem. In the code

below, the uncommon situation in which the algorithm terminates after hitting

the iteration limit has been omitted.

Chapter 21. Automatic Benders’ Decomposition 358

BendersAlgorithmFinished := 1;

if (ProgrStatus = ’Optimal’) then

GMP::Solution::SetProgramStatus(OriginalGMP, 1, ’Optimal’) ;

GMP::Solution::SetSolverStatus(OriginalGMP, 1, ’NormalCompletion’) ;

GMP::Solution::SendToModel(gmpS, 1) ;

GMP::Solution::SendToModelSelection(gmpM, 1, VariablesMasterProblem,

AllSuffixNames);

GMP::Solution::RetrieveFromModel(OriginalGMP, 1);

GMP::Solution::SetObjective(OriginalGMP, 1, BestObjective);

GMP::Solution::SendToModel(OriginalGMP, 1);

elseif (ProgrStatus = ’Infeasible’) then

GMP::Solution::SetProgramStatus(OriginalGMP, 1, ’Infeasible’) ;

GMP::Solution::SetSolverStatus(OriginalGMP, 1, ’NormalCompletion’) ;

elseif (ProgrStatus = ’Unbounded’) then

GMP::Solution::SetProgramStatus(OriginalGMP, 1, ’Unbounded’) ;

GMP::Solution::SetSolverStatus(OriginalGMP, 1, ’NormalCompletion’) ;

else

GMP::Solution::SetProgramStatus(OriginalGMP, 1, ’ProgramNotSolved’) ;

GMP::Solution::SetSolverStatus(OriginalGMP, 1, ’SetupFailure’) ;

endif;

21.5 Control parameters that influence the algorithm

This sectionSome of the control parameters of Table 21.1 can be used to influence the be-

havior of the Benders’ decomposition algorithm. We discuss these parameters

in this section.

21.5.1 Primal versus dual subproblem

Parameter

UseDual

In the textbook algorithm the dual of the subproblem is used. It is also pos-

sible to use the primal of the subproblem instead. This is controlled by the

parameter UseDual. By default the Benders’ decomposition algorithm uses the

primal subproblem.

Dual solutionIf the primal subproblem is solved and it appears to be feasible then the dual

solution is used to construct an optimality cut. By the dual solution we mean

the shadow prices of the constraints and the reduced costs of the variables in

the primal subproblem.

Feasibility

problem

If the primal subproblem is infeasible then another problem is solved to find

a solution of minimum infeasibility (according to some measurement). The

feasibility problem of PS(x∗) (see Section 21.3) is denoted by PFS(x∗) and

defined by:

Chapter 21. Automatic Benders’ Decomposition 359

Minimize:

z

Subject to:

Qy − z ≤ r − Tx∗

y ∈ Rm+
z ∈ R

Here z is a scalar variable. The dual solution of this feasibility problem is used

to create a feasibility cut which is added to the master problem.

Alternative

feasibility

problem

The feasibility problem above minimizes the maximum infeasibility among all

constraints. It is also possible to minimize the sum of infeasibilities over

all constraints; this is controlled by the parameter UseMinMaxForFeasibility-

Problem which we discuss in Subsection 21.5.4. Also the parameter Normali-

zationType influences the formulation of the feasibility problem; see Subsec-

tion 21.5.3. Note that the feasibility problem is always feasible and bounded.

Note further that if the optimal objective value of the feasibility problem is 0

or negative then the corresponding subproblem is feasible.

Relationship

with parameter

FeasibilityOnly

In the next subsection we discuss the parameter FeasibilityOnly. This param-

eter has a big influence on how the subproblem is created, for both the primal

and dual subproblem. In some cases the subproblem can become a pure feasi-

bility problem.

21.5.2 Subproblem as pure feasibility problem

Until nowBy so far we assumed that the Benders’ decomposition algorithm first tries

to solve the subproblem to optimality to either conclude that the combined

solution of the master problem and subproblem forms an optimal solution

for the original problem, or to create an optimality cut that is added to the

master problem. If the primal or dual subproblem appears to be infeasible or

unbounded respectively, then a feasibility problem is solved (if we used the

primal subproblem) or an unbounded extreme ray is calculated (if we used the

dual subproblem) to create a feasibility cut.

Benders’

subproblem

always

infeasible

For some problems the Benders’ subproblem will (almost) always be infeasible

unless an optimal solution of the original problem is found. For example, as-

sume that the variables that become part of the subproblem have no objective

coefficients. (In the MIP problem of Section 21.2 this is equivalent to the vector

d being equal to 0.) In that case the Benders’ decomposition algorithm tries to

find a solution for the master problem that remains feasible if we also consider

the part of the model that became the subproblem. The algorithm is finished

if such a solution is found. Until then all subproblems will be infeasible. In

Chapter 21. Automatic Benders’ Decomposition 360

that case it is useless to try to solve the subproblem to optimality (which will

always fail) but instead directly solve a feasibility problem for the subproblem.

ReformulationIt is possible to let the Aimms automatically reformulate the original problem

such that the variables that become part of the subproblem have no longer ob-

jective coefficients. (This reformulation exists only temporary while the func-

tion GMP::Benders::CreateMasterProblem is executed; the user will not notice

anything inside his project.) For the MIP problem of Section 21.2 the reformu-

lated problem becomes:

Minimize:
cTx + η

Subject to:
dTy − η ≤ 0

Ax ≤ b
Tx +Qy ≤ r

x ∈ Zn+
y ∈ Rm+
η ∈ R

If we assign the new continuous variable η, together with the integer variable

x, to the master problem then the subproblem variables no longer have objec-

tive coefficients. As a consequence, the subproblem will always be infeasible

(unless an optimal solution is found).

Parameter

FeasibilityOnly

The parameter FeasibilityOnly can be used to control whether Aimms should

reformulate the original problem as explained above. Aimms will do so if the

value of this parameter equals 1, which is the default value. Also, if param-

eter FeasibilityOnly equals 1 then the Benders’ decomposition algorithm will

no longer solve the primal subproblem before solving the feasibility problem.

Instead it will directly solve the feasibility problem.

Primal

subproblem

After reformulating the original problem, the primal of the subproblem will be

different from PS(x∗) of Section 21.3, namely:

Minimize:
0

Subject to:
dTy ≤ η∗

Qy ≤ r − Tx∗

y ∈ Rm+

We denote this primal subproblem by PS′(x∗, η∗). The feasibility problem will

also become slightly different, as compared to PFS(x∗) of Subsection 21.5.1,

namely:

Chapter 21. Automatic Benders’ Decomposition 361

Minimize:

z

Subject to:

dTy − z ≤ η∗

Qy − z ≤ r − Tx∗

y ∈ Rm+
z ∈ R

We denote this feasibility problem by PFS′(x∗, η∗). If the optimal objective

value of this feasibility problem is 0 or negative then we have found an optimal

solution for the original problem, and the Benders’ decomposition algorithm

terminates. Otherwise the dual solution of the feasibility problem is used to

add a feasibility cut to the master problem, and the algorithm continues by

solving the master problem.

Dual

subproblem

We have seen before that if we use the dual of the subproblem and parame-

ter FeasibilityOnly equals 0 then the Benders’ decomposition algorithm will

first solve the dual subproblem and, if that subproblem is infeasible, use an

unbounded extreme ray to create a feasibility cut. If parameter Feasibility-

Only equals 1 then the algorithm follows a different route. Consider the dual

formulation of the above problem, the feasibility problem for PS′(x∗, η∗):

Maximize:

πT (r − Tx∗)+π0η
∗

Subject to:

πTQ+π0d
T ≥ 0

1Tπ +π0 = 1

π,π0 ≥ 0

Here 1T denotes a vector of all 1’s. We denote this problem by DS′(x∗, η∗).
This problem is always feasible and bounded. The Benders’ decomposition

algorithm uses this problem as the (dual) subproblem if the parameters Feasi-

bilityOnly and UseDual equal 1. If the optimal objective value of this problem is

0 or negative then we have found an optimal solution for the original problem,

and the Benders’ decomposition algorithm terminates. Otherwise the solution

of this problem is used to add a feasibility cut to the master problem, and the

algorithm continues by solving the master problem.

DisadvantageA serious disadvantage of reformulating the problem, as done in this section,

is that a first feasible solution (which will be optimal) for the original problem

will be found just before the Benders’ decomposition algorithm terminates.

This means that the “gap” between the lower and upper bound on the objec-

tive value is meaningless, and therefore this measurement of progress toward

finding and proving optimality by the algorithm is not available. However, this

Chapter 21. Automatic Benders’ Decomposition 362

disadvantage only occurs when using the classic Benders’ decomposition algo-

rithm. For the modern approach in which only a single MIP problem is solved,

see Section 21.6, the algorithm finds feasible solutions for the original problem

during the solution process and therefore the “gap” exists.

21.5.3 Normalization of feasibility problem

NormalizationIn the previous subsection we introduced the dual subproblem DS′(x∗, η∗)
which contains the normalization condition

1Tπ +π0 = 1. (NC1)

In order to obtain better feasibility cuts, Fischetti et al. (in [Fi10]) proposed

another normalization condition. The matrix T often contains null constraints

which correspond to constraints that do not depend on x. These are “static”

conditions in the subproblem that are always active. According to Fischetti et

al. there is no reason to penalize the corresponding dual multiplier πi. The

new normalization condition then becomes

∑

i∈I(T)
πi +π0 = 1 (NC2)

where I(T) indexes the nonzero constraints of matrix T .

Parameter

Normalization-

Type

The parameter NormalizationType controls which normalization condition is

used. If it equals 0 then normalization condition (NC1) is used, else (NC2). The

Benders’ decomposition algorithm uses (NC2) by default because various com-

putational experiments showed a better performance with this normalization

condition.

Translation to

primal

subproblem

We can apply the normalization rule of Fischetti et al. also if we use the pri-

mal subproblem. In the corresponding feasibility problem, we then only add

variable z for the nonzero rows of T . The relevant constraints in PFS′(x∗, η∗)
then become:

(Qy)i − zi ≤ ri − (Tx∗)i i ∈ I(T)
(Qy)i ≤ ri i ∉ I(T)

The feasibility problem can be normalized in this way regardless of the setting

of parameter FeasibilityOnly.

ExceptionIn case the parameter UseDual equals 1 and the parameter FeasibilityOnly

equals 0 then no feasibility problem is solved to derive a feasibility cut. In-

stead an unbounded extreme ray for the unbounded dual subproblem is used.

Therefore, in that case the parameter NormalizationType is ignored.

Chapter 21. Automatic Benders’ Decomposition 363

21.5.4 Feasibility problem mode

Parameter

UseMinMaxFor-

Feasibility-

Problem

The parameter UseMinMaxForFeasibilityProblem determines what kind of infea-

sibility is minimized: the maximum infeasibility among all constraints (value

1, the default) or the sum of infeasibilities over all constraints (value 0). If

the sum of the infeasibilities over all constraints is used then also the nor-

malization rule of Fischetti et al. can be used, as controlled by the parameter

NormalizationType. This parameter is ignored if the parameter UseDual equals

1.

21.5.5 Tightening constraints

Illustrative

example

If the Benders’ master problem is created, using the function GMP::Benders::

CreateMasterProblem, then Aimms can try to automatically add valid constraints

to the master problem that will cut off some infeasible solutions. This is best

illustrated by the following MIP example.

Minimize: ∑

i

xi

Subject to:

yi ≤ uixi ∀i
∑

i

yi ≥ b

x ∈ {0,1}
y ≥ 0

We assume that u and b are strictly positive parameters. The binary variable

x is assigned to the master problem and the continuous variable y to the

subproblem. For this example, the initial master problem has no constraints

(besides the integrality restriction on x) and therefore x = 0 is the optimal

solution of the initial master problem. Clearly, for x = 0 our MIP example has

no solution. Adding the constraint

∑

i

uixi ≥ b

to the master problem cuts off the x = 0 solution. Note that this constraint

is redundant in the original MIP example. By adding these kind of master-

problem-tightening constraints we hope that the Benders’ decomposition al-

gorithm requires less iterations to find an optimal solution.

Chapter 21. Automatic Benders’ Decomposition 364

Parameter

AddTightening-

Constraints

Adding tightening constraints to the master problem is controlled by the pa-

rameter AddTighteningConstraints. If this parameter equals 1, its default, then

Aimms will try to find and add tightening constraints. Computational experi-

ments indicate that in general the Benders’ decomposition algorithm benefits

from adding these tightening constraints.

21.5.6 Using a starting point

Parameter

UseStarting-

PointForMaster

The parameter UseStartingPointForMaster can be used to let the classic Ben-

ders’ decomposition algorithm start from a ”good” solution. This solution can

be obtained from a heuristic and must be a feasible solution for the master

problem. The solution should be copied into the level suffix of the problem

variables before the Benders’ decomposition algorithm is called. If this pa-

rameter is set to 1 then the algorithm will skip the solve of the first master

problem. Instead, the master problem variable x∗ will be fixed in the subprob-

lem PS(x∗) according to the starting point, and the algorithm will continue by

solving the subproblem.

21.5.7 Using the AIMMS Presolver

Parameter

UsePresolver

The Benders’ decomposition algorithm can use the Aimms Presolver at the

start. In that case the algorithm will use the preprocessed model instead of

the original model. By preprocessing the model it might become smaller and

easier to solve. The parameter UsePresolver can be used to switch on the pre-

processing step.

21.6 Implementation of the modern algorithm

Single MIPWhen solving a MIP problem, the classic Benders’ decomposition algorithm

often spends a large amount of time in solving the master MIP problems in

which a significant amount of rework is done. In the modern approach only

one single master MIP problem is solved. Whenever the solver finds a feasible

integer solution for the master problem, the subproblem PS(x∗) is solved

after fixing the master problem variable x∗ according to this integer solution.

CallbacksModern MIP solvers like Cplex and Gurobi allow the user control over the

solution process by so-called callbacks. Callbacks allow user code in Aimms to

be executed regularly during an optimization process. If the solver finds a new

candidate integer solution then the user has the possibility to let the solver

call one or more callback procedures. One of these callbacks is the callback for

lazy constraints; that callback is used in the modern Benders’ decomposition

algorithm.

Chapter 21. Automatic Benders’ Decomposition 365

Feasible

solutions

If no violated Benders’ cut can be generated, after solving the subproblem, then

we have found a feasible solution for the original problem and we can accept

the current feasible integer solution as a ”correct” solution for the master MIP

problem. In the classic algorithm we would now be finished because we would

know that no better solution of the original problem exists. In the modern

algorithm we have to continue solving the master MIP problem because there

might still exist a solution to the master MIP problem that results in a better

solution for the original problem.

Lazy constraintsIf a Benders’ optimality or feasibility cut is found then this will be added as

a so-called lazy constraint to the master MIP problem. Lazy constraints are

constraints that represent one part of the model; without them the model

would be incomplete. In this case the actual model that we want to solve is

the original problem but we are solving the master MIP problem instead. The

Benders’ cuts represent the subproblem part of the model and we add them

whenever we find one that is violated.

Implementation

of DoBenders-

Decomposition-

SingleMIP

In the remainder of this section we show the implementation of the mod-

ern Benders’ decomposition algorithm as implemented by the procedure Do-

BendersDecompositionSingleMIP which was introduced in Section 21.1. Similar

to the procedure DoBendersDecompositionClassic, the procedure DoBendersDe-

compositionSingleMIP starts by making copies of its input arguments. Next

the master problem and the subproblem are created. The parameters for the

number of optimality and feasibility cuts are reset. Finally, the procedure calls

another procedure, namely BendersAlgorithmSingleMIP, and finishes by delet-

ing the master problem and the subproblem. As before we leave out parts of

the code that handle details like creating a status file, for the sake of brevity

and clarity.

OriginalGMP := MyGMP ;

VariablesMasterProblem := MyMasterVariables ;

! Create (Relaxed) Master problem.

gmpM := GMP::Benders::CreateMasterProblem(OriginalGMP, VariablesMasterProblem,

’BendersMasterProblem’,

feasibilityOnly : FeasibilityOnly,

addConstraints : AddTighteningConstraints) ;

! Create Subproblem.

gmpS := GMP::Benders::CreateSubProblem(OriginalGMP, gmpM, ’BendersSubProblem’,

useDual : UseDual,

normalizationType : NormalizationType);

solsesS := GMP::Instance::CreateSolverSession(gmpS) ;

NumberOfOptimalityCuts := 0;

NumberOfFeasibilityCuts := 0;

! Start the actual Benders’ decomposition algorithm.

BendersAlgorithmSingleMIP;

Chapter 21. Automatic Benders’ Decomposition 366

GMP::Instance::Delete(gmpM);

GMP::Instance::Delete(gmpS);

The procedure

Benders-

Algorithm-

SingleMIP

The BendersAlgorithmSingleMIP procedure initializes the algorithm by resetting

the parameters for the number of iterations, etc. Then it calls the procedure

SolveMasterMIP which does the actual work.

InitializeAlgorithmSingleMIP;

SolveMasterMIP;

The procedure

SolveMasterMIP

The SolveMasterMIP procedure implements the actual Benders’ decomposition

algorithm using the modern approach. It first installs a lazy constraint callback

for which the module implements four different versions. We assume that

the control parameters have their default settings (see Table 21.1) in which

case the procedure BendersCallbackLazyFeasOnlySingleMIP is installed. Next the

master problem is solved and if a feasible solution is found, the subproblem

is solved one last time to obtain a combined optimal solution for the original

problem. Finally the algorithm terminates.

if (UseDual) then

if (FeasibilityOnly) then

GMP::Instance::SetCallbackAddLazyConstraint(gmpM,

’GMPBenders::BendersCallbackLazyFeasOnlyDualSingleMIP’);

else

GMP::Instance::SetCallbackAddLazyConstraint(gmpM,

’GMPBenders::BendersCallbackLazyOptAndFeasDualSingleMIP’);

endif;

else

if (FeasibilityOnly) then

GMP::Instance::SetCallbackAddLazyConstraint(gmpM,

’GMPBenders::BendersCallbackLazyFeasOnlySingleMIP’);

else

GMP::Instance::SetCallbackAddLazyConstraint(gmpM,

’GMPBenders::BendersCallbackLazyOptAndFeasSingleMIP’);

endif;

endif;

GMP::Instance::Solve(gmpM);

ProgramStatus := GMP::Solution::GetProgramStatus(gmpM, 1) ;

if (ProgramStatus = ’Infeasible’) then

AlgorithmTerminateSingleMIP(’Infeasible’);

else

if (FeasibilityOnly and not UseDual) then

! Solve feasibility problem fixing the optimal solution of the

! Master problem.

GMP::Solution::SendToModel(gmpM, 1);

! Update feasibility problem and solve it.

GMP::Benders::UpdateSubProblem(gmpF, gmpM, 1, round : 1);

GMP::Instance::Solve(gmpF);

Chapter 21. Automatic Benders’ Decomposition 367

else

! Solve Subproblem fixing the optimal solution of the Master problem.

GMP::Solution::SendToModel(gmpM, 1);

! Update Subproblem and solve it.

GMP::Benders::UpdateSubProblem(gmpS, gmpM, 1, round : 1);

GMP::Instance::Solve(gmpS);

endif;

AlgorithmTerminateSingleMIP(’Optimal’);

endif;

The procedure

Benders-

CallbackLazy-

FeasOnlySingle-

MIP

The callback procedure BendersCallbackLazyFeasOnlySingleMIP is called by the

MIP solver whenever it finds a candidate integer solution for the master prob-

lem. This procedure retrieves the candidate integer solution from the MIP

solver. Then it creates the feasibility problem for the (primal) subproblem if it

does not exist yet. The feasibility problem is updated and solved. If its opti-

mal objective value is larger than 0, indicating that the subproblem would have

been infeasible, we add a feasibility cut as a lazy constraint to the master MIP.

The MIP solver will not treat this candidate integer solution as a real solution.

If the optimal objective value equals 0 (or is negative) then we do not add a

lazy constraint in which case the MIP solver accepts the candidate solution as

a real solution. Finally, the callback procedure returns 1 such that the solution

process of the master MIP problem continues.

! Get MIP incumbent solution.

GMP::Solution::RetrieveFromSolverSession(ThisSession, 1);

GMP::Solution::SendToModel(gmpM, 1);

! Create feasibility problem corresponding to Subproblem (if it does not exist yet).

if (not FeasibilityProblemCreated) then

gmpF := GMP::Instance::CreateFeasibility(gmpS, "FeasProb",

useMinMax : UseMinMaxForFeasibilityProblem);

solsesF := GMP::Instance::CreateSolverSession(gmpF) ;

FeasibilityProblemCreated := 1;

endif;

! Update feasibility problem corresponding to Subproblem and solve it.

GMP::Benders::UpdateSubProblem(gmpF, gmpM, 1, round : 1);

GMP::SolverSession::Execute(solsesF) ;

GMP::Solution::RetrieveFromSolverSession(solsesF, 1) ;

! Check whether objective is 0 in which case optimality condition is satisfied.

ObjectiveFeasProblem := GMP::SolverSession::GetObjective(solsesF);

if (ObjectiveFeasProblem <= BendersOptimalityTolerance) then

return 1;

endif;

! Add feasibility cut to the Master problem.

NumberOfFeasibilityCuts += 1;

GMP::SolverSession::AddBendersFeasibilityCut(ThisSession, gmpF, 1);

return 1;

Chapter 21. Automatic Benders’ Decomposition 368

The procedure

Algorithm-

Terminate-

SingleMIP

The procedure AlgorithmTerminateSingleMIP is called to finish the Benders’ de-

composition algorithm. This procedure is called directly after the master MIP

problem is solved. Its implementation is similar to that of the procedure

AlgorithmTerminate of Section 21.4 and therefore omitted.

21.7 Implementation of the two phase algorithm

First phaseThe Benders’ module also implements a two phase algorithm for MIP problems.

In the first phase it solves the relaxed problem in which the integer variables

become continuous. The resulting relaxed MIP problem is then solved using

the classic Benders’ decomposition algorithm in order to find Benders’ cuts.

Second phaseThe second phase solves the original MIP problem. The master problem cre-

ated in the first phase is also used in the second phase but without relaxing the

integer variables. The Benders’ cuts that were added during the first phase are

not removed; these cuts are still valid. In general the relaxed MIP problem can

be solved more efficiently than the MIP problem using Benders’ decomposition,

and the hope is that by adding the Benders’ cuts found during the first phase,

the Benders’ decomposition algorithm needs considerably less iterations in the

second phase to solve the original MIP problem.

Implementation

of DoBenders-

Decomposition-

TwoPhase

The procedure DoBendersDecompositionTwoPhase implements the two phase al-

gorithm. It starts by making copies of its first two input arguments. Next

the master problem and the subproblem are created. The parameters for the

number of optimality and feasibility cuts are reset. The problem type of the

master problem is changed from ’MIP’ to ’RMIP’ which basically changes the

integer variables into continuous variables. The procedure BendersAlgorithm

then solves the relaxed problem using the classic Benders’ decomposition al-

gorithm; see Section 21.4 for its implementation. After checking the program

status of the relaxed master problem the algorithm continues by switching the

problem type of the master problem back to ’MIP’. Next the original problem

is solved using either procedure BendersAlgorithmSingleMIP (Section 21.6) or

BendersAlgorithm (Section 21.4). The algorithm ends by deleting the master

problem and the subproblem. As before we leave out parts of the code that

handle details like creating a status file, for the sake of brevity and clarity.

OriginalGMP := MyGMP ;

VariablesMasterProblem := MyMasterVariables ;

! Create (Relaxed) Master problem.

gmpM := GMP::Benders::CreateMasterProblem(OriginalGMP, VariablesMasterProblem,

’BendersMasterProblem’,

feasibilityOnly : FeasibilityOnly,

addConstraints : AddTighteningConstraints) ;

! Create Subproblem.

gmpS := GMP::Benders::CreateSubProblem(OriginalGMP, gmpM, ’BendersSubProblem’,

Chapter 21. Automatic Benders’ Decomposition 369

useDual : UseDual,

normalizationType : NormalizationType);

solsesS := GMP::Instance::CreateSolverSession(gmpS) ;

NumberOfOptimalityCuts := 0;

NumberOfFeasibilityCuts := 0;

! Start the classic Benders’ decomposition algorithm for the relaxed Master

! MIP problem.

GMP::Instance::SetMathematicalProgrammingType(gmpM, ’RMIP’);

IterationLimit := IterationLimitPhaseSingle;

BendersAlgorithm;

ProgramStatus := GMP::Solution::GetProgramStatus(OriginalGMP, 1);

if (ProgramStatus = ’Infeasible’ or

ProgramStatus = ’Unbounded’) then

DoPhaseTwo := 0;

endif;

if (DoPhaseTwo) then

! Switch back math program type.

GMP::Instance::SetMathematicalProgrammingType(gmpM, ’MIP’);

if (UseSingleMIP) then

! Start the Single MIP Tree Benders’ decomposition algorithm.

BendersAlgorithmSingleMIP;

else

IterationLimit := IterationLimitPhaseTwo;

BendersAlgorithm;

endif;

endif;

GMP::Instance::Delete(gmpM);

GMP::Instance::Delete(gmpS);

Iteration and

time limit

The section in the Benders’ module for the two phase algorithm contains two

extra control parameters for setting the iteration and time limit used by the

classic Benders’ decomposition algorithm in the second phase. These param-

eters are IterationLimitPhaseTwo and TimeLimitPhaseTwo respectively. The pa-

rameters IterationLimit and TimeLimit are used in the first phase. In some

cases it might be a good strategy to limit the number of iterations (or the

running time) during the first phase. The two phase algorithm will then still

find a global optimal solution of the original problem as long as the second

phase terminates normally. If the modern approach (with a single MIP tree) is

used in the second phase then the general solver options iteration limit and

time limit are used for the second phase.

Chapter 22

Constraint Programming

IntroductionConstraint Programming is a relatively new paradigm used to model and solve

combinatorial optimization problems. It is most effective on highly combina-

torial problem domains such as timetabling, sequencing, and resource-con-

strained scheduling. Successful industrial applications utilizing constraint

programming technology include the gate allocation system at Hong Kong air-

port, the yard planning system at the port of Singapore, and the train timetable

generation of Dutch Railways.

Constraint

Programming

in Aimms

This chapter discusses the special identifier types and language constructs

that Aimms offers for formulating and solving constraint programming prob-

lems. We will see that constraint programming offers a much wider range of

modeling constructs than, for example, integer linear programming or non-

linear programming. Different variable types can be used, while restrictions

can be formed using arbitrary algebraic and logical expressions or by the use

of special constraint types, such as alldifferent. In addition, Aimms offers a

specific syntax to express scheduling problems in an intuitive way, taking ad-

vantage of the algorithmic power that underlies constraint-based scheduling.

This chapterIn this chapter, the basic constraint programming concepts are first presented,

including different variable types and restrictions in Section 22.1. Section 22.2

discusses the Aimms syntax for modeling constraint-based scheduling prob-

lems. The final section of this chapter discusses issues related to modeling

and solving constraint programs in Aimms.

LiteratureAn in-depth discussion on constraint programming is given in [Ro06] and more

details on constraint-based scheduling can be found in [Ba01].

Online

resources

First, the Association for Constraint Programming organizes an annual sum-

mer school, the material for which is posted online. This material can be ac-

cessed at http://4c.ucc.ie/a4cp/. The CPAIOR conference series organizes

tutorials alongside each event, the materials of which are posted online. The

CPAIOR 2009 tutorial provides an introduction to constraint programming and

hybrid methods, and available online at http://www.tepper.cmu.edu/cpaior09.

Chapter 22. Constraint Programming 371

22.1 Constraint Programming essentials

VariablesIn constraint programming, models are built using variables and constraints,

and as such is similar to integer programming. One fundamental difference

is that, in integer programming, the range of a variable is specified and main-

tained as an interval, while in constraint programming, the variable range is

maintained explicitly as a set of elements. Note that in the constraint pro-

gramming literature, the range of a variable is commonly referred to as its

domain.

ConstraintsAs a consequence of this explicit range representation, constraint program-

ming can offer a wide variety of constraint types. Most constraint program-

ming solvers allow constraints to be defined by arbitrary expressions that

combine algebraic or logical operators. Moreover, meta-constraints can be for-

mulated by interpreting the logical value of an expression as a boolean value

in a logical relation, or as a binary value in an algebraic relation. For example,

to express that every two distinct tasks i and j, from a set of tasks T with re-

spective starting times si, sj and durations di, dj , should not overlap in time,

we can use logical disjunctions:

(si + di ≤ sj)∨ (sj + dj ≤ si), ∀i, j ∈ T, i ≠ j. (22.1)

As another example, we can set a restriction such that no more than half the

variables from x1, . . . , xn are assigned to a specific value v as
∑n
i=1(xi = v) ≤

0.5n.

Global

constraints

In addition, constraint programming offers special symbolic constraints that

are called global constraints. These constraints can be defined over an arbitrary

set of variables, and encapsulate a combinatorial structure that is exploited

during the solving process. The constraint cp::AllDifferent(x1 . . . , xn) is

an example of such a global constraint. This global constraint requires the

variables x1 . . . , xn to take distinct values.

SolvingThe solving process underpinning constraint programming combines system-

atic search with inference techniques. The systematic search implicitly enu-

merates all possible variable-value combinations, thus defining a search tree

in which the root represents the original problem to be solved. At each node

in the search tree, an inference is made by means of domain filtering and con-

straint propagation. Each constraint in the model has an associated domain

filtering algorithm that removes provably inconsistent values from the vari-

able domains. Here, a domain value is inconsistent if it does not belong to any

solution of the constraint. The updated domains are then communicated to

the other constraints, whose domain filtering algorithms in turn become ac-

tive; this is the constraint propagation process. In practice, the most effective

filtering algorithms are those associated with global constraints. Therefore,

Chapter 22. Constraint Programming 372

most practical applications that are to be solved with constraint programming

are formulated using global constraints.

Application

domains

Constraint programming can be particularly effective with highly combinato-

rial problem domains, such as timetabling or resource-constrained schedul-

ing. For such problems an integer programming model may be non-intuitive

to express. Moreover, the associated continuous relaxation may be quite weak,

which makes it much harder to find a provably optimal solution. For example,

again consider two tasks A and B that must not overlap in time. In integer

programming one can introduce two binary variables, yAB and yBA, represent-

ing that task A must be processed either before or after, task B. The non-

overlapping constraint can then be expressed as yAB + yBA = 1, for which a

continuous linear relaxation may assign a solution yAB = yBA = 0.5, which

is not very informative. In contrast, the non-overlapping requirement can be

handled very effectively using a specific ‘sequential resource’ scheduling con-

straint in constraint programming that effectively groups together all pairwise

logical disjunctions in (22.1) above. Such a constraint is also referred to as a

disjunctive or unary constraint in the constraint programming literature.

Designing

models

The expressiveness of constraint programming offers a powerful modeling en-

vironment, albeit one that comes with a caveat. Namely, that different syn-

tactically equivalent formulations may yield quite different solving times. For

example, an alternative to the constraint cp::AllDifferent(x1, x2, . . . , xn) is

its decomposition into pairwise not-equal constraints xi ≠ xj for 1 ≤ i < j ≤
n. The domain filtering algorithm for cp::AllDifferent provably removes

more inconsistent domain values than the individual not-equal constraints,

which results in much smaller search trees and faster solution times. There-

fore, when designing a constraint programming model, one should be aware of

the effect that different formulations can have on the solving time. In most sit-

uations, it is advisable to apply global constraints to exploit their algorithmic

power.

22.1.1 Variables in constraint programming

Variables of a

constraint

program

A constraint programming problem is made up of discrete variables and con-

straints over these discrete variables. A discrete variable is a variable that

takes on a discrete value. Aimms supports two base types of discrete variables

for constraint programming. The first type of variable is the integer variable;

an ordinary variable with a range formulated such as {a..b} where a and b are

numbers or references to parameters (see Chapter 14). Such variables can also

be used in MIP problems. The second type of variable is the element variable,

which will be further detailed in this section. This type of variable can only be

used in a constraint programming problem. These two types of variable can be

combined in a third type, called an integer element variable, which supports

Chapter 22. Constraint Programming 373

the operations that are defined for both the integer variable and the element

variable.

22.1.1.1 ElementVariable declaration and attributes

An element variable is a variable that takes an element as its value. It can have

the attributes specified in Table 22.1. The attributes IndexDomain, Priority,

NonvarStatus, Text, Comment are the same as those for the variables introduced

in Chapter 14.

Attribute Value-type See also

page

IndexDomain index-domain 208

Range named set

Default constant-expression 44, 210

Priority expression 211

NonvarStatus expression 212

Property NoSave 34

Text string 19

Comment comment string 19

Definition expression 211

Table 22.1: ElementVariable attributes

The Range

attribute

The range of an element variable is a one-dimensional set, similar to the range

of an element parameter. This attribute must be a set identifier; and this

permits the compiler to verify the semantics when element variables are used

in expressions. This attribute is mandatory.

The Default

attribute

The attribute default of an element variable is a quoted element. This attribute

is not mandatory.

The Definition

attribute

The Definition attribute of an element variable is similar to the definition at-

tribute of a variable, see also page 211, except that its value is an element and

the resulting element must lie inside the range of the element variable. This

attribute is not mandatory.

The Property

attribute

The following properties are available to element variables:

� Nosave When set, this property indicates that the element variable is not

to be saved in cases.

� EmptyElementAllowed When set, this property indicates that in a feasi-

ble solution, the value of this variable can, but need not, be the empty

element ’’. When the range of the element variable is a subset of the set

Chapter 22. Constraint Programming 374

Integers, this property is not available. In the following example, for the

element variable eV, not selecting an element from S, is a valid choice,

but this choice forces the integer variable X to 0.

ElementVariable eV {

Range : S;

Property : EmptyElementAllowed;

}

Constraint Force_X_to_zero_when_no_choice_for_eV {

Definition : if eV = ’’ then X = 0 endif;

}

This attribute is not mandatory.

Element

translation

Constraint programming solvers only use integer variables, and Aimms trans-

lates an element variable, say eV with range the set S containing n elements into

a integer variable, say v, with range {0..n−1}. By design, this translation leaves

no room for the empty element ’’, and subsequently, in a feasible solution, the

empty element is no part of it. In order to permit the explicit consideration

of the empty element as part of a solution, the property EmptyElementAllowed

can be set for eV. In that case the range of v is {0..n} whereby the value 0

corresponds to the empty element.

22.1.1.2 Selecting a variable type

Choosing

variable type

When there are multiple types of objects, such as integer variables and element

variables in Aimms, the following two questions naturally arise:

1. How to choose between the various types?

2. Can these types be combined?

The answers to these questions are as follows:

1. You may want to base the choice of types of variables on the operations

that can be performed meaningfully on these types. Which operation is

appropriate for which variable type is described below.

2. An identifier can have both the ’integer variable’ and ’element variable’

types and is then called an ’integer element variable’. This is created as

an element variable with a named subset of the predeclared set Integers

as its range.

Operations on

variables

The operations on variables that are interesting in constraint programming

are:

� Numeric operations, such as multiplication, addition, and taking the ab-

solute value. These operations are applicable to integer variables and to

integer element variables.

� Index operations; selecting an element of an indexed parameter or vari-

able. An element variable eV can be an argument of a parameter P or

Chapter 22. Constraint Programming 375

a variable X in expressions such as P(eV) or X(eV). These operations are

applicable to all element variables. In the Constraint Programming lit-

erature, such operations are often implemented using so-called element

constraints.

� Compare, subtract, min and max operations. These operations are ap-

plicable to all discrete variables, including element variables. For element

variables, Aimms uses the ordering of sets, see Section 3.2.

All of the above operations are available with integer element variables.

Contiguous

range

In order to limit an element variable to a contiguous subset of its named range,

element valued suffixes .lower and .upper can be used. In the example be-

low, the assignment to eV.Lower restricts the variable eV to the contiguous set

{c..e}.

Set someLetters {

Definition : data { a, b, c, d, e };

}

ElementVariable eV {

Range : someLetters;

}

Procedure Restrict_eV {

Body : eV.lower := ’c’;

}

The specification of non-contiguous ranges, informally known as ranges with

holes, is detailed in the next subsection.

22.1.2 Constraints in constraint programming

IntroductionThe constraints in constraint programming allow a rich variety of restrictions

to be placed on the variables in a constraint program, ranging from direct

domain restrictions on the variables to global constraints that come with pow-

erful propagation algorithms.

Domain

restrictions

A domain restriction restricts the domain of a single variable, or of multiple

variables, and is specified using the IN operator. For example, we can restrict

the domain of an element variable eV as follows:

Constraint DomRestr1 {

Definition : eV in setA;

}

When we apply the IN operator to multiple variables, we can define a constraint

by explicitly listing all tuples that are allowed. For example:

Constraint DomRestr2 {

Definition : (eV1, eV2, eV3) in ThreeDimRelation;

Comment : "ThreeDimRelation contains all allowed tuples";

}

Chapter 22. Constraint Programming 376

Constraint DomRestr3 {

Definition : not((eV1, eV2, eV3) in ComplementRelation);

Comment : "ComplementRelation contains all forbidden tuples";

}

In constraint DomRestr2 above, the three element variables are restricted to

elements from the set of allowed tuples defined by ThreeDimRelation. Alterna-

tively, we can define such a restriction using the complement, i.e., a list of for-

bidden tuples, as with constraint DomRestr3. In constraint programming, these

constraints are also known as Table constraints; the data for these constraints

resemble tables in a relational database.

Algebraic

restrictions

The following operations are permitted on discrete variables, resulting in ex-

pressions that can be used in constraint programming constraints:

1. The binary min(a,b), max(a,b) and the iterative min(i,x(i)), max(i,x(i))

can both be used,

2. multiplication *, addition +, subtraction -, absolute value abs and square

sqr,

3. integer division div(a,b), integer modulo mod(a,b),

4. floating point division /, and

5. indexing: an element variable is used as an argument of another param-

eter or variable, P(eV), V(eV),

Note that the operation must be meaningful for the variable type, see page 374.

These expressions can be compared, using the operators <=, <, =, <>, >, and

>= to create algebraic restrictions. Simple examples of algebraic constraints,

taken from Einstein’s Logic Puzzle, are presented below.

Constraint Clue15 {

Definition : abs(Smoke(’Blends’) - Drink(’Water’)) = 1;

Comment : "The man who smokes Blends has a neighbor who drinks water.";

}

Constraint TheQuestion {

Definition : National(eV)=Pet(’Fish’);

Comment : "Who owns the pet fish? Result stored in element variable eV";

}

Combining

restrictions

The constraints above can be combined to create other constraints called meta-

constraints. Meta-constraints can be formed by using the scalar operators AND,

OR, XOR, NOT and IF-THEN-ELSE-ENDIF. For example:

Constraint OneTaskComesBeforeTheOther {

Definition : {

(StartA + DurA <= StartB) or

(StartB + DurB <= StartA)

}

}

In addition, restrictions can be combined into meta-constraints using the iter-

ative operators FORALL and EXISTS. Moreover, restrictions can be counted using

Chapter 22. Constraint Programming 377

the iterative operator SUM and the result compared with another value. Finally,

meta-constraints are restrictions themselves, they can be combined into even

more complex meta-constraints. The following example is a variable defini-

tion, in which the collection of constraints (Finish(i) > Deadline(i)) is used

to form a meta-constraint.

Variable TotalTardinessCost {

Definition : Sum(i, TardinessCost(i) | (Finish(i) > Deadline(i)));

}

In the following example, the binary variable y gets the value 1 if each X(i) is

greater than P(i).

Constraint Ydef {

Definition : y = FORALL(i, X(i) > P(i));

}

From the Steel Mill example, we can model that we do not want more than two

colors for each slab by the following nested usage of meta-constraints:

Constraint EnhancedColorCst {

IndexDomain : (sl);

Definition : sum(c, EXISTS (o in ColorOrders(c), SlabOfOrder(o)=sl)) <= 2;

}

Global

constraints

Aimms supports the global constraints presented in Table 22.2. These global

constraints come with powerful filtering techniques that may significantly re-

duce the search tree and thus the time needed to solve a problem.

The example below illustrates the use of the global constraint cp::AllDifferent

as used in the Latin square completion problem. A Latin square of order n is

an n×n matrix where the values are in the range {1..n} and distinct over each

row and column.

Constraint RowsAllDifferent {

IndexDomain : r;

Definition : cp::AllDifferent(c, Entry(r, c));

}

Constraint ColsAllDifferent {

IndexDomain : c;

Definition : cp::AllDifferent(r, Entry(r, c));

}

Additional examples of global constraints are present in the Aimms Func-

tion Reference. Unless stated otherwise in the function reference, global con-

straints can also be used outside of constraints definitions, for example in

assignments or parameter definitions.

Chapter 22. Constraint Programming 378

Global constraint Meaning

cp::AllDifferent(i,xi) The xi must have distinct values.

∀i, j|i ≠ j : xi ≠ xj
cp::Count(i,xi,c,⊗,y) The number of xi related to c is y .∑

i(xi = c)⊗y where

⊗ ∈ {≤,≥,=, >,<,≠}
cp::Cardinality(i,xi , The number of xi equal to cj is yj .

j,cj ,yj) ∀j :
∑
i(xi = cj) = yj

cp::Sequence(i,xi , The number of xi ∈ S for each

S,q,l,u) subsequence of length q is

between l and u.

∀i = 1..n− q + 1 :

l ≤
∑i+q−1
j=i (xj ∈ S) ≤ u

cp::Channel(i,xi , Channel variable xi → J to yj → I

j,yj) ∀i, j : xi = j⇔ yj = i
cp::Lexicographic(i,xi ,yi) x is lexicographically before y

∃i : ∀j < i : xj = yj ∧ xi < yi
cp::BinPacking(i,li , Assign object j of known size sj to

j,aj ,sj) bin aj → I. Size of bin i ∈ I is li.

∀i :
∑
j|aj=i sj ≤ li

Table 22.2: Global constraints

Global

constraint

vector

arguments

These global constraints have vectors as arguments. The size of a vector is

defined by a preceding index binding argument. Further information on index

binding can be found in the Chapter on Index Binding 9. Such a vector can be

a vector of elements, for example the fourth argument of cp::Cardinality. In

a vector of elements, the empty element ’’ is not allowed; comparison of an

element variable against the empty element is not supported.

Basic scheduling

constraints

Aimms offers support for both basic scheduling and advanced scheduling. Ad-

vanced scheduling will be detailed in the next section but, for basic scheduling,

Aimms offers the following two global constraints:

1. The global constraint cp::SequentialSchedule(j, sj , dj , ej) ensures that

two distinct jobs do not overlap where job j has start time sj , duration

dj and end time ej . This constraint is equivalent to:

� ∀i, j, i ≠ j : (si + di ≤ sj)∨ (sj + dj ≤ si).
� ∀j : sj + dj = ej

This and similar constraints are also known as unary or disjunctive con-

straints within the Constraint Programming literature.

2. The global constraint cp::ParallelSchedule(l, u, j, sj , dj , ej , hj) allows

a single resource to handle multiple jobs, within limits l and u, at the

same time. Here job j has start time sj , duration dj , end time ej and

Chapter 22. Constraint Programming 379

resource consumption (height) hj . This constraint is equivalent to:

� ∀t : l ≤
∑
j|sj≤t<ej hj ≤ u.

� ∀j : sj + dj = ej
This and similar constraints are also known as cumulative constraints

within the Constraint Programming literature.

22.2 Scheduling problems

IntroductionResource-constrained scheduling is a key application area of constraint pro-

gramming. Most constraint programming systems contain special syntactical

constructs to formulate such problems, allowing the use of specialized infer-

ence algorithms. In Section 22.1.2 we have already seen two examples of global

constraints for scheduling: cp::SequentialSchedule and cp::ParallelSchedule.

For more complex scheduling problems that contain, for example, sequence-

dependent setup times between activities, or specific precedence relations, the

use of more advanced scheduling algorithms is advisable. These algorithms

cannot be offered by the stand-alone global constraints cp::SequentialSchedule

and cp::ParallelSchedule, but can be accessed by formulating the problem us-

ing activities and resources in Aimms.

ActivitiesActivities correspond to the execution of objects in scheduling problems, e.g.,

processing an order, working a shift, or performing a loading operation. They

can be viewed as the variables of a scheduling problem, since we must de-

cide on their position in the schedule. Common attributes associated to an

activity are its begin, end, length, and size. Further, it is often convenient to

distinguish mandatory and optional activities, which allows to consider the

presence of an activity. In Aimms, the properties begin, end, length, size, and

presence of an activity can be used as variables in other parts of the model. It

is also possible to build models using nested activities, where meta-activities

group together a number of sub-activities, for example in the context of project

planning.

ResourcesResources correspond to the assets that are available to execute the activities,

e.g., the capacity of a machine, the volume of a truck, or the number of avail-

able employees. Resources can be viewed as the constraints of a scheduling

problem. The main attributes of a resource are its capacity, its activity level,

and the set of activities that require the resource in order to be executed. That

is, during the execution of the schedule, we must ensure that the resource ac-

tivity level is always within its capacity. Note that while a resource depends on

a set of activities, an activity can impact on one or more resources at the same

time.

Chapter 22. Constraint Programming 380

An activity

changes the

resource activity

level

A resource starts with a default activity level of 0, corresponding to full avail-

able capacity, or a user-specified initial value. During the execution of the

schedule, activities will influence the resource activity level. The viewpoint

chosen in Aimms is that an activity changes the activity level of a resource

when it begins, and/or when it ends. This enables one to model many common

situations. For example, when an activity corresponds to a loading operation,

and the resource corresponds to a truck load, the activity will change the ac-

tivity level of the resource with the volume of the load at its start, but there

is no change in the resource activity level when finishing this activity. For se-

quential resources the capacity is 1, and each activity will change the resource

activity level by +1 when it begins, and by −1 when it ends. For example, when

an activity corresponds to a visit operation, and the resource corresponds to a

truck, the activity level of the resource will be decreased by 1 at the beginning

of the visit, and increased by 1 at the end.

Schedule

domains

The timeline on which activities are scheduled, is the so-called schedule do-

main. A schedule domain is a finite set of timeslots. Each activity and resource

has its own schedule domain.

The problem

schedule

domain

The schedule domain of the entire problem, the problem schedule domain, is

a named superset of each of these schedule domains. Unless overridden, it is

based on the schedule domains of the activities and resources.

Handling

schedule

domains

An activity is only considered active during a timeslot t if t is in the schedule

domain of that activity, and it is in the schedule domain of each resource for

which it is scheduled. Thus, for each individual activity, Aimms passes the

intersection of these schedule domains to the constraint programming solver.

Additional

restrictions

Most scheduling problems contain several side constraints in addition to the

resource constraints. Examples include precedence relations between activi-

ties, release dates or deadlines, and sequence-dependent setup times. Such

constraints can be specified using global scheduling constraints or in the at-

tribute forms of activities and resources. Constraint programming solvers can

take an extra algorithmic advantage of such constraints when they are pre-

sented in this manner.

22.2.1 Activity

On the one hand, an activity can be seen as consisting of five variables that can

be accessed by the suffixes: .Begin, .End, .Length, .Size and .Present. These

variables represent the begin, end, length (difference between end and begin),

size (number of active slots) and presence of an activity. These variables can

be used inside constraints, for example myActivity.End <= myDeadLine+1. On

the other hand, an activity is defined using its attributes as presented in Ta-

Chapter 22. Constraint Programming 381

ble 22.3. We will first discuss the attributes of an activity, and then these

suffixes in more detail.

Attribute Value-type See also

page

IndexDomain index-domain 208

ScheduleDomain set range or expression

Property Optional, NoSave

Length expression

Size expression

Priority reference 211

Text string 19

Comment comment string 19

Table 22.3: Activity attributes

The

ScheduleDomain

attribute

The activity is scheduled in time slots in the ScheduleDomain. This is an ex-

pression resulting in a one-dimensional set, or a set-valued range. The result-

ing set need not be a subset of the predeclared set Integers; it can be any

one-dimensional set, for instance a Calendar, see Section 33.2. Consider the

following examples of the attribute schedule domain:

Activity a {

ScheduleDomain : yearCal;

Comment : {

"a can be scheduled during any period

in the calendar yearCal"

}

}

Activity b {

IndexDomain : i;

ScheduleDomain : possiblePeriods(i);

Comment : {

"b(i) can be scheduled only during the

periods possiblePeriods(i)"

}

}

Activity c {

IndexDomain : i;

ScheduleDomain : {

{ReleaseDate(i)..PastDeadline(i)}

}

Comment : {

"c(i) must start on or after ReleaseDate(i)

c(i) must finish before PastDeadline(i)"

}

}

The ScheduleDomain attribute is mandatory.

Chapter 22. Constraint Programming 382

Singleton

schedule

domain

An activity with a singleton schedule domain and a length of 1 can be used to

model an event. Such an activity is scheduled during the single element in the

schedule domain. Because the schedule domain is a single element, the value

of the suffixes .Begin and .End of the activity will be set to that single element

and the element thereafter respectively in a feasible solution. Note that this is

possible for all elements except for the last element in the problem schedule

domain; a nonzero length would then require the .End to be after the problem

schedule domain. Consider the following example:

Activity weekendActivities {

IndexDomain : {

d | (TimeslotCharacteristic(d, ’weekday’) = 6 or

TimeslotCharacteristic(d, ’weekday’) = 7) and

d <> last(dayCalendar)

}

ScheduleDomain : {

{ d .. d }

}

Length : 1;

Comment : "d is an index in a calendar";

}

Scheduling the activity weekendActivities in a sequential resource will block

other activities for that resource during the weekend.

The Property

attribute

An activity can have the properties Optional, Contiguous and NoSave.

� Optional When an activity has the property Optional, it may or may not

be scheduled. If the property Optional is not specified, then the activity

will always be scheduled.

� Contiguous When an activity has the property Contiguous, all elements

from .Begin up to but not including .End in the problem schedule domain

must be in its own schedule domain.

� NoSave When an activity has the property NoSave, it will not be saved in

cases.

This attribute is not mandatory.

The Length and

Size attributes

When an activity is present, the Length attribute defines the length of the ac-

tivity, and the Size attribute defines its size. The length of an activity is the

difference between its end and its begin. The size of an activity is the number

of periods, in which that activity is active from begin up to but not including

its end. For example, a non-contiguous activity which .Begins on Friday, .Ends

on Tuesday, and is not active during the weekend has a

� .Length of 4 days, and

� .Size of 2 days.

The numeric expressions entered at the Length and Size attributes may involve

other discrete variables. These attributes are not mandatory.

Chapter 22. Constraint Programming 383

For a contiguous activity we have that the .Length is equal to the .Size. Con-

versely, with a constraint a.Length=a.Size we have that a is contiguous, but the

propagation may be less efficient.

The Priority

attribute

The Priority attribute applies to all the discrete variables defined by an activ-

ity. To these variables it has the same meaning as for integer variables, see

page 211. This attribute is not mandatory.

The suffixes of

activities

An activity is made up of the following suffixes .Begin, .End, .Length, .Size

and .Present. Each of these suffixes is a discrete variable and can be used in

constraints.

The suffixes

.Begin and .End

The suffixes .Begin and .End are element valued variables. When scheduled,

the activity takes place from period .Begin up to but not including period .End.

For a present activity a, in a feasible solution:

� a.Begin is an element in the schedule domain of the activity. The range of

this element variable is the smallest named set encompassing the activity

schedule domain.

� a.End is an element in the schedule domain of the problem, and, depend-

ing on the .Length of a, with the following additional requirement:

– When the length of activity a is zero, a.End=a.Begin holds, and they

are both in the activity schedule domain.

– When the length of activity a is greater than 0, the element before

a.End is in the activity schedule domain.

The range of this element variable is the root set of the activity schedule

domain.

Comparison of the .Begin and .End suffixes of two activities a and b inside

a constraint definition will take place on the problem schedule domain, for

instance in a constraint like a.End <= b.Begin. Outside constraint definitions

these suffixes follow the rules of element comparison specified in Section 6.2.3.

The suffixes

.Length and

.Size

The suffixes .Length and .Size are nonnegative integer variables. The .Length

of an activity is defined as .End - .Begin. The .Size of an activity is the number

of timeslots in the schedule domain of the activity in the range [.Begin, .End).

When the attribute Length or Size is non-empty, Aimms will generate a defining

constraint for the suffix .Length resp. .Size like the definition attribute of a

variable, see Page 211. When the schedule domain of an activity is a calendar

or a subset thereof, the unit of each of the .Length and .Size suffixes is the

unit of the calendar.

Chapter 22. Constraint Programming 384

The suffix

.Present

The suffix .Present is a binary variable with default 0. For optional activities

this variable is 1 when the activity is scheduled and 0 when it is not. For

non-optional activities this variable is initialized with the value 1.

suffixes of

absent activities

in constraints

The value of one of the suffixes .Begin, .End, .Length, and .Size is not defined

when the corresponding activity is absent. However, in order to satisfy con-

straints where such a suffix is used for an absent activity, a value is chosen:

the socalled absent value. For the suffixes .Length, and .Size, the absent value

is 0. For the suffixes .Begin and .End this depends on the problem schedule

domain:

� If the problem schedule domain is a subset of Integers, the absent value

is 0.

� Otherwise, the absent value of the suffixes .Begin and .End is ’’.

To override the absent value use one of the following functions:

� cp::ActivityBegin,

� cp::ActivityEnd,

� cp::ActivityLength, or

� cp::ActivitySize.

Suffixes of

optional

activities in

constraints

The value of the suffix .present is defined for an absent activity as 0. However

the values of the other suffixes of an absent activity are not defined. To enable

the constraining of the values of those suffixes in constraints several formu-

lation alternatives are available. As an example of these alternatives, consider

an activity act whereby we want to enforce its length to be 7 if it is present.

1. Enforce the length constraint conditionally on the presence of activity

act:

if act.present then

act.length = 7

endif

2. The cp::ActivityLength function returns the length of a present activity

or its second argument if it is not present:

cp::ActivityLength(act, 7) = 7

3. If we simply want to set the value of the .Length or .Size suffix, we can

use the Length or Size attribute as follows.

Activity act {

ScheduleDomain : ...;

Property : optional;

Length : 7;

}

Chapter 22. Constraint Programming 385

Each of the above formulation alternatives has its own merits.

1. The merit of this alternative is that it is general and can also be used to

state for instance that the length of act is 7 or 11 when present:

if act.present then

act.Length = 7 or act.Length = 11

endif

2. The merit of this alternative is that it allows the solver to make stronger

propagations and thus potentially reduce solution time.

3. The merit of this alternative is that is does not force the model builder to

take the optionality of act into account when defining its length. Aimms

will make sure the length definition is translated to alternative 1 or 2 as

appropriate.

Solution values

of absent

activities

The value of the suffixes .Begin, .End, .Length, and .Size of an absent activ-

ity in a feasible schedule are meaningless and should not be used in further

computations.

Absent versus

0-length

activities

Even though no work is done for both absent and 0-length activities, there is a

difference in their usage. Let us consider the following two examples:

� Selection of an activity from alternatives; Consider a collection of ac-

tivities from which we need to select one. This is easily and efficiently

achieved by setting the property Optional to the activity. The ones not

selected become absent in a solution.

� Consider two collections of activities, whereby the n activities in the first

collection all need to be completed before the m activities in the second

collection can start. We can model this directly by n ×m precedence

constrains. Another way to model this is by introducing an extra activity,

say Milestone, of length zero. With this Milestone we only need n +m
precedence constraints.

To facilitate above and other examples of scheduling, the suffixes .Present and

.Length are supported independently.

Relation

between suffixes

of activities

Please note, for an activity act, the following relation is implicitly defined:

if act.Present then

act.Begin + act.Length = act.End

endif

if act.Present then

act.Size <= act.Length

endif

Chapter 22. Constraint Programming 386

22.2.2 Resource

A resource schedules activities by acting as a constraint on the activities it

schedules. A feasible resource requires the above implicit constraints on the

suffixes of the activities it schedules and the constraints implied by its at-

tributes as discussed below.

Attribute Value-type See also

page

IndexDomain index-domain 208

Usage Parallel or Sequential

ScheduleDomain set range or expression 381

Activities collection of activities

Property NoSave

GroupSet a reference to a set

GroupDefinition activity : expression

GroupTransition index domain : expression

Transition set of reference pair : expression

FirstActivity reference

LastActivity reference

ComesBefore set of reference pairs

Precedes set of reference pairs

Unit unit-valued expression 45, 211

LevelRange numeric range

InitialLevel reference

LevelChange per activity : expression

BeginChange per activity : expression

EndChange per activity : expression

Text string 19

Comment comment string 19

Table 22.4: Resource attributes

A resource is defined using the attributes presented in Table 22.4.

The Usage

attribute

A resource can be used in two ways: Parallel, and Sequential, of which pre-

cisely one must be selected. The resource usage is then as follows

� Sequential: Defines the resource to be used sequentially. Such a re-

source is also known as a unary or disjunctive resource. A sequential

resource has the additional attributes Transition, FirstActivity, Last-

Activity, ComesBefore, and Precedes, see Subsection 22.2.2.1.

� Parallel: Defines the resource to be used in parallel. Such a resource

is also known as a cumulative resource. A parallel resource has the ad-

Chapter 22. Constraint Programming 387

ditional attributes LevelRange, InitalLevel, LevelChange, BeginChange, and

EndChange, see Subsection 22.2.2.2.

The Usage attribute is mandatory; either Sequential or Parallel must be se-

lected.

The

ScheduleDomain

attribute

The resource is affected by activities during the periods set in its schedule

domain. This is an expression resulting in a one-dimensional set, or a set-

valued range. Aimms verifies that the schedule domain of the resource matches

the schedule domain of all activities it is affected by. Here, two sets match if

they have a common super set.

When the intersection of the schedule domain of a resource and the schedule

domain of a non-optional activity are empty, the result is an infeasible sched-

ule.

The Activities

attribute

The Activities attribute details the activities affecting the resource. This ad-

heres to the syntax:

activity-selection :

activity-reference : expression

,

as illustrated in the example below:

Resource myMachine {

ScheduleDomain : H;

Usage : ... ! sequential or parallel;

Activities : {

maintenance, ! Maintenance is scheduled between actual jobs.

simpleJob(i), ! Every simple job can be done on this machine.

specialJob(j) : jobpos(j) ! Only selected special jobs are allowed.

}

}

In this example, the activities maintenance and simpleJob can affect the resource

myMachine. However, the activity specialJob(j) can only affect the resource

when jobpos(j) is non-zero. Only the detailed activities can be used in the

attributes that follow. The Activities attribute is mandatory.

The Property

attribute

A resource can have the properties: NoSave and TransitionOnlyNext.

� When the property NoSave is set, this indicates that the resource data will

not be saved in cases.

� The property TransitionOnlyNext is relevant to the attributes Transition

and GroupTransition of sequential resources only, and is discussed after

the GroupTransition attribute below.

The attribute Property is not mandatory.

Chapter 22. Constraint Programming 388

22.2.2.1 Sequential resources

Sequential

resources

Sequential resources are used to schedule activities that are not allowed to

overlap. Those workers and machines that can only handle one activity at a

time are typical examples. A sequential resource has only one suffix, namely

.ActivityLevel. A sequential resource is active when it is servicing an activity,

and then its .ActivityLevel is 1. When a sequential resource is not active, or

idle, its .ActivityLevel is 0. The attributes particular to sequential resources

are discussed below. The .ActivityLevel suffix cannot be used in constraint

definitions.

The Transition

attribute

The Transition attribute is only available to sequential resources, and then

only if the GroupSet attribute has not been specified. This attribute contains a

matrix between activities a and b, specifying the minimal time between a and b

if a is scheduled before b. One example of using this attribute is to model trav-

eling times, when jobs are executed at different locations. Another example of

using this attribute is to model cleaning times of a paint machine, when the

cleaning time depends on the color used during the previous job. All entries

of this matrix are assumed to be 0 when not specified. If the schedule domain

is a calendar, the unit of measurement is the time unit of the schedule domain;

otherwise the unit of measurement is unitless. This matrix can, but need not,

be symmetric. In the constraint programming literature, this attribute is also

called sequence-dependent setup times or changeover times. The syntax for this

attribute is as follows:

activity-transition :

(activity-reference , activity-reference) : expression

,

An example of a transition specification is:

Resource myMachine {

ScheduleDomain : H;

Usage : sequential;

Activities : acts(a), maintenance;

Transition : {

(acts(a1),acts(a2)) : travelTime(a1,a2),

(maintenance,acts(a1)) : travelTime(’home’,a1),

(acts(a1),maintenance) : travelTime(a1,’home’)

}

Comment : {

"activities acts are executed on location/site; yet

maintenance is executed at home. Transitions are

the travel times between locations."

}

}

The Transition attribute is not mandatory.

Chapter 22. Constraint Programming 389

The GroupSet

attribute

The GroupSet attribute is only available to sequential resources. The elements

of this set name the groups into which the activities can be divided. This

attribute is not mandatory.

The

GroupDefinition

attribute

The GroupDefinition attribute is only available when the GroupSet attribute has

been specified. It contains a mapping of activities to group set elements. This

mapping is essential for the GroupTransition attribute and for the intrinsic

functions cp::GroupOfNext and cp::GroupOfPrevious. The syntax is as follows:

group-definition :

activity-reference : element-valued expression

,

This attribute is mandatory when the GroupSet attribute has been specified.

The

GroupTransition

attribute

The GroupTransition attribute is used to specify the transition times/sequence

dependent setup times between activities in a compressed manner. This at-

tribute is only available when the GroupSet attribute has been specified. The

syntax is:

activity-group-transition :

(index , index) : expression

Consider an application where each city has to be visited by a car on multiple

occasions, to bring goods being produced in one city to another city where

they are consumed. The first product is consumed before the last product is

produced:

Activity VisitCity {

IndexDomain : (car,city,iter);

ScheduleDomain : Timeline;

Property : Optional;

}

Resource carEnRoute {

Usage : sequential;

IndexDomain : car;

ScheduleDomain : TimeLine;

Activities : VisitCity(car,city,iter);

GroupSet : Cities;

GroupDefinition : VisitCity(car,city,iter) : city;

GroupTransition : (cityFrom,cityTo) : CityDistance(cityFrom,cityTo);

}

In this example, the group transition matrix is defined for each combination

of cities, which is significantly smaller than an equivalent transition matrix

defined for each possible combination of activities would have been. This

Chapter 22. Constraint Programming 390

not only saves memory, but may also save a significant amount of solution

time as some Constraint Programming solvers check whether the triangular

inequality holds at the start of the solution process in order to determine the

most effective reasoning available to that solver. The GroupTransition attribute

is not mandatory.

Property Tran-

sitionOnlyNext

The attributes Transition and GroupTransition specify the minimal time be-

tween two activities a1 and a2 if a1 comes before a2. By specifying the property

TransitionOnlyNext, these attributes are limited to specify only the minimal

distances between two activities a1 and a2 if a1 precedes a2. An activity a1 pre-

cedes a2, if there is no other activity b scheduled between a1 and a2. In the

example that follows, a, b, and c are all activities of length 1.

Resource seqres {

Usage : sequential;

ScheduleDomain : timeline;

Activities : a, b, c;

Property : TransitionOnlyNext;

Transition : (a,b):1, (b,c):1, (a,c):7;

Precedes : (a,b), (b,c);

}

Minimizing c.End, the solution is:

a.Begin := 0 ; a.End := 1 ;

b.Begin := 2 ; b.End := 3 ;

c.Begin := 4 ; c.End := 5 ;

By omitting the TransitionOnlyNext property, the minimal distance between a

and c is taken into account, and the solution becomes:

a.Begin := 0 ; a.End := 1 ;

b.Begin := 2 ; b.End := 3 ;

c.Begin := 8 ; c.End := 9 ;

The Sequencing

attributes

The attributes FirstActivity, LastActivity, ComesBefore, and Precedes are col-

lectively called sequencing attributes. They are used to place restrictions on

the sequence in which the activities are scheduled. These attributes are only

available to sequential resources.

� FirstActivity: When specified, this has to be a reference to a single

activity. When this activity is present, it will be the first activity in a

feasible solution.

� LastActivity: When specified, this has to be a reference to a single ac-

tivity. When this activity is present, it will be the last activity in a feasible

solution.

� ComesBefore: This is a list of activity pairs (a,b). A pair (a,b) in this

list indicates that activity a comes before activity b in a feasible solution.

There may be another activity c that is scheduled between a and b in a

feasible solution. This constraint is only enforced when both a and b are

present.

Chapter 22. Constraint Programming 391

� Precedes: This is a list of activity pairs (a,b). A pair (a,b) in this list in-

dicates that activity a precedes activity b in a feasible solution. There can

be no other activity c scheduled between a and b in a feasible solution,

but a gap between a and b is allowed. This constraint is only enforced

when both a and b are present.

The syntax of the attributes FirstActivity and LastActivity is simply a refer-

ence to a single activity and so the syntax diagram is omitted here. The syntax

diagram for the attributes ComesBefore and Precedes is more interesting:

activity-sequence :

(activity-reference , activity-reference) : expression

,

If, following the above syntax diagram, an expression is omitted, it is taken to

be 1. An example illustrating all the sequencing attributes is presented below:

Resource myMachine {

ScheduleDomain : H;

Usage : sequential;

Activities : setup(a), finish(a);

FirstActivity : setup(’warmingUp’);

LastActivity : finish(’Cleaning’);

ComesBefore : (setup(a1),setup(a2)) : taskbefore(a1,a2);

Precedes : (setup(a),finish(a));

}

None of the sequencing attributes are mandatory.

22.2.2.2 Parallel resources

Parallel resources model and limit the resource consumption and resource pro-

duction of activities that take place in parallel. Examples of parallel resources

could be monetary budget and truck load.

.ActivityLevel

suffix

A parallel resource has only one suffix, namely .ActivityLevel. This suffix is

only affected by scheduled activities. The limits on the .ActivityLevel suf-

fix, its initialization, and how it is affected by executed activities is discussed

below in the parallel resource specific attributes.

The LevelRange

attribute

The LevelRange attribute states the range for the activity level of a parallel re-

source. The maximum value represents the capacity of the resource. It cannot

be specified per element in the schedule domain of the resource. The syntax of

this attribute is similar to the syntax of the Range attribute for bounded integer

variables.

Resource myMachine {

IndexDomain : m;

ScheduleDomain : h;

Chapter 22. Constraint Programming 392

Usage : parallel;

Activities : act(a);

LevelRange : {

{minlev(m) .. maxlev(m)}

}

}

The LevelRange attribute is only applicable for parallel resources, and for such

a resource it is mandatory.

The

InitialLevel

attribute

The InitialLevel attribute defines the initial value of the .ActivityLevel suf-

fix. if it is not specified, the .ActivityLevel suffix is initialized to 0. The

InitialLevel attribute is not mandatory.

Resource AvailableBudget {

ScheduleDomain : Hor;

Usage : parallel;

Activities : act(a);

LevelRange : {0 .. 10000};

InitialLevel : 5000;

Comment : "we have a starting budget of 5000";

}

The

.ActivityLevel

modification

attributes

The attributes LevelChange, BeginChange, and EndChange are collectively called

.ActivityLevel modification attributes.

� An activity in the LevelChange attribute generates a pulse: at the .Begin

of the activity the .ActivityLevel of the resource is increased by the in-

dicated amount; at the .End of the activity that suffix is decreased by the

same amount.

� An activity in the BeginChange attribute increases the .ActivityLevel of

the resource at the .Begin of the activity by the indicated amount.

� An activity in the EndChange attribute increases the .ActivityLevel of the

resource at the .End of the activity by the indicated amount.

Note that not only can the indicated amount be a positive or negative integer, it

can also be an integer variable. The effect of an activity on the .ActivityLevel

is illustrated in the Figure 22.1. The syntax of these attributes is as follows:

level-modification :

activity-reference : expression

,

Chapter 22. Constraint Programming 393

Level change

 or pulse

.Begin
 .End

Amount

Begin change

.Begin
 .End

Amount

End change

.Begin
 .End

Amount

.Level:

.Level:

.Level:

Figure 22.1: Changes to the suffix .ActivityLevel of a resource

The next example illustrates the use of the .ActivityLevel modification at-

tributes:

Resource Budget {

ScheduleDomain : Days;

Usage : parallel;

Activities : Act(i), Alt_Act(j), Deposit_Act(d);

LevelRange : [0, 100];

LevelChange : Alt_Act(i) : -alt_act_budget(i);

BeginChange : {

Deposit_Act(d): Deposit(d),

Act(i) : -ActCost(i)

}

EndChange : Act(i) : Profit(i);

}

In this example, Deposit Act can be modeled as an activity with a schedule

domain containing only one element (an event), see Page 382. None of the

.ActivityLevel modification attributes are mandatory, but when none of them

is specified the resource is either infeasible or ineffective. When the .Activity-

Level is outside the range of a parallel resource, that resource is infeasible.

Activity level

and schedule

domain

The .ActivityLevel suffix is not affected by holes in the schedule domain of

scheduled activities. Figure 22.2 illustrates the effect of activities A and B with

a level change of 1 on the resource cash. The activity A has its .Begin set to

Friday, its .End set to Tuesday and it is not scheduled in the weekend. The

activity B is scheduled in the weekend.

Chapter 22. Constraint Programming 394

Cash

Th
 Fr
 Sa
 Su
 Mo
 Tu

Act
A

Act
B

Figure 22.2: Two activities scheduled on a parallel resource

22.2.3 Functions on Activities and Scheduling constraints

Precedence

constraints

The suffixes of an activity are variables, and they can be used in the formu-

lation of constraints. Below there follows an example of a simple linear con-

straint which states that at least a pause of length restTime should be observed

after activity a is completed before activity b can start.

a.End + restTime <= b.Begin

Precedence on

optional

activities

Consider again the inequality above, but now for optional activities a and b.

When a is absent, the minimum value of a.End is meaningless but its mini-

mum is 0 and b is present, this will enforce b to start after restTime. This

may or may not be the intended effect of the constraint. Enforcing such con-

straints only when both activities a and b are present, the scheduling con-

straint cp::EndAtStart(a,b,restTime) can be used. This constraint is semanti-

cally equivalent to:

if a.Present and b.Present then

a.End + restTime = b.Begin

endif

Here restTime is an integer valued expression that may involve variables. Note

that the scheduling constraint can be exploited more effectively during the

Chapter 22. Constraint Programming 395

solving process than the equivalent algebraic formulation. A list of available

scheduling constraints for precedence relations is given in Table 22.5.

Precedence Relations

When activities a and b are present

and for a non-negative integer delay d

cp::BeginBeforeBegin(a,b,d) a.Begin+ d ≤ b.Begin
cp::BeginBeforeEnd(a,b,d) a.Begin+ d ≤ b.End
cp::EndBeforeBegin(a,b,d) a.End+ d ≤ b.Begin
cp::EndBeforeEnd(a,b,d) a.End+ d ≤ b.End
cp::BeginAtBegin(a,b,d) a.Begin+ d = b.Begin
cp::BeginAtEnd(a,b,d) a.Begin+ d = b.End
cp::EndAtBegin(a,b,d) a.End+ d = b.Begin
cp::EndAtEnd(a,b,d) a.End+ d = b.End
Scheduling Constraints Interpretation

cp::Span(g,i,ai) The activity g spans the activities ai
g.Begin = mini ai.Begin∧
g.End = maxi ai.End

cp::Alternative(g,i,ai) Activity g is the single selected activity ai
∃j : g = aj ∧∀k, j ≠ k : ak.present = 0

cp::Synchronize(g,i,ai) If g is present, all present activities ai
are scheduled at the same time.

g.present⇒ (∀i : ai.present⇒ g = ai)

Table 22.5: Constraints for scheduling

Global

scheduling

constraints

In addition to these precedence constraints and the constraints that are de-

fined by resources, Aimms offers several other global constraints that are help-

ful in modeling scheduling problems. Table 22.5 presents the global schedul-

ing constraints and functions available in Aimms. These constraints are based

on activities and can be used to represent hierarchical planning problems

(cp::Span), to schedule activities over alternative resources (cp::Alternative),

and to synchronize the execution of multiple activities (cp::Synchronize).

Functions on

activities

There are several functions available that provide control over the value to be

used for the suffixes of activities in the case of absence. In addition, there are

functions available for relating adjacent activities on a resource. Table 22.6

lists the functions available that operate on activities. As an example, consider

a model whereby the length of two adjacent jobs is limited:

Set Timeline {

Index : tl;

}

Set Jobs {

Index : j;

}

Chapter 22. Constraint Programming 396

Limiting activity suffixes

taking absence into account

a is the activity

d the absence value

cp::ActivityBegin(a,d) Return begin of activity

cp::ActivityEnd(a,d) Return end of activity

cp::ActivityLength(a,d) Return length of activity

cp::ActivitySize(a,d) Return size of activity

Adjacent Activity

r is the resource

s is the scheduled activity

e is extreme value (when s is first or last)

a is absent value (s is not scheduled)

cp::BeginOfNext(r ,s,e,a) Beginning of next activity

cp::BeginOfPrevious(r ,s,e,a) Beginning of previous activity

cp::EndOfNext(r ,s,e,a) End of next activity

cp::EndOfPrevious(r ,s,e,a) End of previous activity

cp::GroupOfNext(r ,s,e,a) Group of next activity, see also page 389

cp::GroupOfPrevious(r ,s,e,a) Group of previous activity

cp::LengthOfNext(r ,s,e,a) Length of next activity

cp::LengthOfPrevious(r ,s,e,a) Length of previous activity

cp::SizeOfNext(r ,s,e,a) Size of next activity

cp::SizeOfPrevious(r ,s,e,a) Size of previous activity

Table 22.6: Functions for scheduling

Parameter JobLen {

IndexDomain : j;

}

Activity doJob {

IndexDomain : j;

ScheduleDomain : Timeline;

Length : Joblen(j);

}

Resource aWorker {

Usage : sequential;

ScheduleDomain : Timeline;

Activities : doJob(j);

}

Constraint LimitLengthTwoAdjacentJobs {

IndexDomain : j;

Definition : {

cp::ActivityLength(doJob(j),0) +

cp::LengthOfNext(aWorker,doJob(j)) <= 8

}

}

In the constraint LimitLengthTwoAdjacentJobs we take the length of job via the

function cp::ActivityLength and the length of the next job for resource aWorker

via the function cp::LengthOfNext. In the above constraint, the use of the func-

Chapter 22. Constraint Programming 397

tion cp::ActivityLength is not essential because activity doJob is not optional.

We can use the suffix notation instead and the constraint becomes:

Constraint LimitLengthTwoAdjacentJobs {

IndexDomain : j;

Definition : {

doJob(j).Length +

cp::LengthOfNext(aWorker,doJob(j)) <= 8

}

}

22.2.4 Problem schedule domain

The problem schedule domain of a mathematical program is a single named

set containing all timeslots referenced in the activities, resources and timeslot

valued element variables of that mathematical program. For the activities to

be scheduled, we are usually interested in when they take place in real time;

the mapping to real time is an ingredient of the solution. An exception might

be if we are interested in the process of scheduling instead of its results. In

that case, a contiguous subset of the Integers suffices. Contiguous subsets of

Integers are supported by Aimms, but not considered in the remainder of this

subsection.

Real world

representations

The problem schedule domain represents the period of time on which activ-

ities are to be scheduled. This portion of time is discretized into timeslots.

Consider the following three use cases for a problem schedule domain.

1. The first use case is probably the most common one; the distance in time

between two consecutive timeslots is constant. This distance is equal

to a single unit of time. As an example, consider an application that

constructs a maintenance scheme for playing fields. Two consecutive

line painting activities should not be scheduled too close or too far from

each other. Similarly for other consecutive activities of the same type

such as garbage pickup. In this use case the distance in time between

two consecutive timeslots is meaningful. A Calendar is practical for this

use case.

2. The second use case is the one in which the distance in time between two

consecutive timeslots is not constant. As an example, consider an appli-

cation that constructs a sequence of practice meetings for teams with a

limited number of playing fields available. The set of available dates is

based on the team member availability, and the distance in time between

two consecutive time slots may vary. An important restriction for this

application is that two meetings with the same type of practice should

be some number of meetings apart. In addition, we want to avoid, for

each team, peaks and big holes in exercise dates by limiting the number

of exercise dates skipped between two consecutive exercises.

Chapter 22. Constraint Programming 398

3. The third use case is a combination of the other two use cases. The prob-

lem schedule domain is again one whereby the distance in time between

two consecutive timeslots is constant. In addition, there are subsets of

this problem schedule domain which apply to selected activities and re-

sources. As an example, consider an application that schedules both

maintenance activities and team practice sessions on a set of playing

fields.

The above use cases are illustrated in Aimms below.

Use case 1:

constant

distance

In the first use case as illustrated by the example below, the problem schedule

domain is the calendar yearCal. Two consecutive timeslots in that calendar

have the fixed distance of 1 day. The activity FieldMaintenance models that

there are various types of maintenance activities to be scheduled for the vari-

ous fields, and each type of maintenance may occur more than once. The two

constraints in this example restrict the minimal and maximal distance between

consecutive maintenance activities of the same type on the same field.

Calendar yearCal {

Index : d;

Unit : day;

BeginDate : "2012-01-01";

EndDate : "2012-12-31";

TimeslotFormat : "%c%y-%sm-%sd";

}

Activity FieldMaintenance {

IndexDomain : (pf, mt, occ);

ScheduleDomain : yearCal;

Property : Optional;

Length : 1[day];

Comment : {

"Maintenance on

playing field pf

maintenance type mt

occurrence occ"

}

}

Constraint maintenanceMinimalDistance {

IndexDomain : (pf, mt, occ) | occ <> first(occurrences);

Text : "at least 7 days apart.";

Definition : {

cp::BeginBeforeBegin(FieldMaintenance(pf, mt, occ-1),

FieldMaintenance(pf, mt, occ), 7)

}

}

Constraint maintenanceMaximalDistance {

IndexDomain : (pf, mt, occ) | occ <> first(occurrences);

Text : "at most 14 days apart.";

Definition : {

cp::BeginBeforeBegin(FieldMaintenance(pf, mt, occ),

FieldMaintenance(pf, mt, occ-1), -14)

}

}

Chapter 22. Constraint Programming 399

Use case 2:

varying

distance

For the second use case, the same calendar yearCal is declared as in the first

use case, in order to relate to real time. We are interested in only a selection

of the dates available, and a subset exerciseCal is created from this calen-

dar. In order to remove the fixed distance from the timeslots, the elements in

exerciseCal are copied to exerciseDates.

Calendar yearCal {

...

}

Set exerciseCal {

SubsetOf : yearCal;

Index : yc;

}

Set exerciseDates {

Index : ed;

Comment : "Constructed in ...";

}

A simple way of copying the elements with their names from exerciseCal to

exerciseDates is in the code fragment below.

Empty exerciseDates ;

for yc do

exerciseDates += StringToElement(exerciseDates,

formatString("%e",yc), create:1);

endfor ;

Now that we have the set of exercise dates without a time unit associated, we

can use it to declare exercise activities for each team and enforce a minimal

distance between exercises of the same type as illustrated below. This minimal

distance will now be enforced using a sequential resource and counting the

number of times a particular exercise type occurred.

Set exerciseTypes {

Index : et;

}

Activity gExerciseTeam {

IndexDomain : (tm,occ);

ScheduleDomain : exerciseDates;

Length : 1;

Comment : {

"occ in Occurrencs, defining the number of times

team tm has to exercise"

}

}

Resource teamExercises {

Usage : sequential;

IndexDomain : tm;

ScheduleDomain : exerciseDates;

Activities : gExerciseTeam(tm, occ);

Precedes : (gExerciseTeam(tm, occ1),gExerciseTeam(tm, occ2)):occ1=occ2-1;

Comment : "Purpose: determine when a team may exercise";

}

Activity exerciseTeam {

IndexDomain : (tm,et,occ);

ScheduleDomain : exerciseDates;

Property : optional;

Length : 1;

}

Chapter 22. Constraint Programming 400

Constraint oneExerciseType {

IndexDomain : (tm,occ);

Definition : {

cp::Alternative(

globalActivity : gExerciseTeam(tm, occ),

activityBinding : et,

subActivity : ExerciseTeam(tm, et, occ))

}

Comment : "Purpose: select a single type of exercise";

}

Constraint doingAnExerciseTypeAtMostOnceOverOccurrences {

IndexDomain : (tm,et,occ) | occ <> first(occurrences);

Definition : {

sum(occ1 | occ1 <= occ and occ1 < occ + 2,

ExerciseTeam(tm, et, occ).Present) <= 1

}

Comment : {

"Purpose: the same type of exercise should be some

exercises apart"

}

}

Constraint avoidSmallHolesBetweenExercises {

IndexDomain : (tm,occ) | occ <> first(occurrences);

Text : "at least minHoleSize exercise dates apart.";

Definition : {

cp::EndBeforeBegin(gExerciseTeam(tm, occ-1),

gExerciseTeam(tm, occ), minHoleSize)

}

}

Constraint avoidBigHolesBetweenExercises {

IndexDomain : (tm,occ) | occ <> first(occurrences);

Text : "at most maxHoleSize exercise dates apart.":

Definition : {

cp::BeginBeforeEnd(gExerciseTeam(tm, occ),

gExerciseTeam(tm, occ-1), -maxHoleSize)

}

}

Use case 3:

combination

There can be only one problem schedule domain per mathematical program;

we use the one from the first use case as it encompasses the one from the

second use case. Thus we need to adapt the schedule domains of selected

activities and resources to the following:

Activity gExerciseTeam {

IndexDomain : (tm,occ);

ScheduleDomain : exerciseCal ! modified;

Length : 1[day] ! modified;

}

Resource OneExercise {

Usage : sequential;

IndexDomain : tm;

ScheduleDomain : exerciseCal ! modified;

Activities : gExerciseTeam(tm, occ);

Precedes : (gExerciseTeam(tm, occ1),gExerciseTeam(tm, occ2)):occ1=occ2-1;

Comment : "Purpose: determine when a team may exercise";

}

Activity exerciseTeam {

IndexDomain : (tm,et,occ);

ScheduleDomain : exerciseCal ! modified;

Chapter 22. Constraint Programming 401

Property : optional;

Length : 1[day] ! modified;

}

The constraints oneExerciseType and doingAnExerciseTypeAtMostOnceOverOccur-

rences can be left unchanged as they are not dependent on the distance be-

tween timeslots. The constraints avoidSmallHolesBetweenExercises and avoid-

BigHolesBetweenExercises is dependent on the distance between elements of

exerciseDates and will now have to be remodeled. By using the fact that the

.Size refers to the number of elements in the schedule domain of an activity

between its .Begin and .End and that we can define an activity that encom-

passes a hole by spanning the previous exercise and the current one, the re-

modeling is done as follows:

Activity encompassHoleBetweenExercises {

IndexDomain : (tm,occ)|occ <> first(occurrences);

ScheduleDomain : exerciseCal;

}

Constraint defineEncompassHoleBetweenExercises {

IndexDomain : (tm,occ)|occ <> first(Occurrences);

Definition : {

cp::Span(

globalActivity : encompassHoleBetweenExercises(tm, occ),

activityBinding : occ1 | occ1 = occ or occ1 = occ-1,

subActivity : gExerciseTeam(tm, occ1))

}

}

Constraint maxSizeEncompassingActivity {

IndexDomain : (tm,occ)|occ <> first(Occurrences);

Definition : {

encompassHoleBetweenExercises(tm,occ).size <=

(maxHoleSize + 2)[day]

}

}

Constraint minSizeEncompassingActivity {

IndexDomain : (tm,occ)|occ <> first(Occurrences);

Definition : {

encompassHoleBetweenExercises(tm,occ).size >=

(minHoleSize + 2)[day]

}

}

comparing use

cases 2 and 3

Only when the distance in real time is not relevant to an application, the rep-

resentation chosen for use case 2 has the following advantages over the repre-

sentation chosen for use case 3:

� The limiting of the size of a hole is formulated more directly using the

cp::EndBeforeBegin and cp::BeginBeforeEnd than one using an additional

activity leading to a formulation that is easier to understand.

� We not only lose the power of propagation provided by the global con-

straints cp::EndBeforeBegin and cp::BeginBeforeEnd in use case 3, but we

also introduce another activity, and thus additional variables, which in-

creases the search space thereby decreasing the perfomance further.

Chapter 22. Constraint Programming 402

� The set exerciseDates is smaller than the set yearCal. It is generally a

good idea to keep the sets used as ranges for element variables small

including the schedule domain to be considered.

This concludes the discussion on multiple use cases for problem schedule

domains.

The attribute

ScheduleDomain

of a

mathematical

program

When an application contains activities, the attribute ScheduleDomain becomes

available to a mathematical program declared in that application. Unlike the

attribute with the same name for activities and resources, only a single named

one-dimensional set can be filled in here. If this attribute is filled in, with,

say Timeline, then Aimms will ensure that each activity and resource has a

schedule domain that is a subset of Timeline. In addition, for each element

variable with a range say, selectedMoments, where Timeline and selectedMoments

have the same root set, Aimms will verify that selectedMoments is a subset of

Timeline. In addition, the problem schedule domain, say Timeline, has to meet

one of the following three requirements:

� Timeline is a true subset of the set Integers. In order to make references

forward and backward in time unambiguous, it is required that Timeline

is contiguous.

� Timeline is a subset of a calendar. Again, in order to make references

forward and backward in time unambiguous, it is required that Timeline

is contiguous.

� Timeline is not a subset of Integers nor a subset of a calendar. No addi-

tional requirements are placed on Timeline.

This attribute is not mandatory.

Deriving the

problem

schedule

domain

If this attribute is not filled in, then Aimms will derive the problem schedule

domain by finding the smallest common superset of the schedule domains of

the activities and resources of the mathematical program. If this set is not a

calendar, but a subset thereof, Aimms chooses to use the calendar instead. This

is motivated by the assumption that the length between timeslots is usually

relevant in scheduling applications. In scheduling applications in which the

subset is more appropriate, copying the elements of a calendar provides an

alternative, as illustrated above.

22.3 Modeling, solving and searching

IntroductionIn this section we explain how constraint programming models are formulated

and solved in Aimms. We start by explaining how constraint programming

formulations are fit into the paradigms of Aimms like the free objective and

units of measurement. We then explain the different mathematical program-

ming types associated to constraint programming, and finally we discuss how

a user can modify the search procedure in Aimms.

Chapter 22. Constraint Programming 403

The free

objective

By design, the objective of any mathematical program in Aimms is a free vari-

able, even when it can be deduced that the objective function is always integer

valued for a feasible solution. However, for an infeasible solution, Aimms will

assign the special value NA to the objective variable, in order to emphasize that

a feasible solution is not available. Having a single variable for the objective

function is convenient when communicating its value in the progress window

and other places of Aimms.

22.3.1 Constraint programming and units of measurement

Integer

coefficients only

Constraint programming solvers require the coefficients used in constraints

to be integer; fractional values or special values such as -inf, zero, na, undf,

or inf are not allowed. In applications where the choice of base units is free,

fractional values are easily avoided by choosing the base unit of quantities, and

the units of variables and constraints such that all amounts to be considered

are integer multiples of those base units, as detailed in Section 32.5.1. As

an example, consider a simple constraint stating that the integer variable y is

0.9[m] away from the integer variable x. Both variables are multiples of the

derived unit dm, i.e., 0.1[m]. The variables and constraints are declared as

follows:

Variable x {

Range : integer;

Unit : dm;

}

Variable y {

Range : integer;

Unit : dm;

}

Constraint y_away_from_x {

Unit : dm;

Definition : y = abs(x - 0.9[m]);

}

Using the unit m as a base unit, this will lead to fractional values, as can be seen

in the constraint listing:

y_away_from_x .. [1 | 1 | before]

y =

abs((x-0.9)) ****

name lower level upper scale

x 0 0 21474836470.000 0.100

y 0 0 21474836470.000 0.100

The coefficient for distance, 0.9[m], is in meters and the variables x and y have

the same units inside the row. This row is scaled back to dm afterwards. As

a result of all this scaling, the computations go from the domain of integer

arithmetic into the domain of floating point arithmetic. For constraint pro-

gramming, we need to avoid the domain of floating point arithmetic.

Chapter 22. Constraint Programming 404

Adapted base

unit

We will continue the above example, by adapting the base unit such that all

amounts are integral multiples of that base unit; we select dm as a base unit.

This will lead to the following row communicated to the solver:

y_away_from_x .. [1 | 1 | before]

y =

abs((x-9)) ****

name lower level upper

x 0 0 2147483647

y 0 0 2147483647

Observe that scaling is not needed anymore. Using the scaling based on dm in-

stead of m will keep all computations during the solution process in the domain

of integer arithmetic.

Quantity based

scaling

In the example of the previous paragraph, the base unit was adapted to the

needs of constraint programming; namely to stay within the domain of integer

arithmetic. For multi-purpose applications, freedom of choosing the base units

of quantities according to the needs of a constraint programming problem is

not always available. In order to stay within the domain of integer arithmetic,

we can associate a convention with the mathematical program and filling in

the per quantity attribute, see also Section 32.8. By filling in the per quantity

attribute, Aimms will generate the mathematical program where all coefficients

are scaled with respect to the units specified in the per quantity attribute. Let

us continue the example of the previous paragraph using m as the base unit

and adding a convention to the mathematical program.

Quantity SI_Length {

BaseUnit : m;

Conversions : {

dm -> m : # -> # / 10,

cm -> m : # -> # / 100

}

Comment : "Expresses the value of a distance.";

}

Parameter LengthGranul {

InitialData : 10;

}

Convention solveConv {

PerQuantity : SI_Length : LengthGranul * cm;

}

MathematicalProgram myCP {

Direction : minimize;

Constraints : AllConstraints;

Variables : AllVariables;

Type : Automatic;

Convention : solveConv;

}

Again, Aimms will generate the constraint such that only integer arithmetic is

needed. The constraint listing of that constraint is similar to the constraint

listing presented in the paragraph adapted base unit above and not repeated.

Chapter 22. Constraint Programming 405

Note also that with conventions, we can now use parameters to further control

the scaling; if we want to change the model such that we can use multiples

of 20[cm] instead of multiples of 10[cm], we only need to change the value of

LengthGranul.

Calendar used

for timeline

Scheduling applications in which the schedule domain is based on a calendar,

the length of a timeslot is equal to the unit of the calendar, see Section 33.2.

The time quantity is overridden, as if an entry in the per quantity attribute of

the associated convention is given, selecting the calendar unit. Even if no con-

vention was associated with the mathematical program. In short, for schedul-

ing applications, Aimms will scale time based data according to the length of a

timeslot.

22.3.2 Solving a constraint program

Mathematical

Programming

types

Aimms distinguishes two types of mathematical programs that are associated

with constraint programming models: COP for constraint optimization prob-

lems, and CSP for constraint satisfaction problems. Both COP and CSP are exact

in that COP provides a proven optimal solution while CSP provides a solution,

or proves that none exist, if time permits.

Limiting

solution time

Constraint programming problems are combinatorial problems and therefore

may take a long time to solve, especially when trying to prove optimality. In

order to avoid unexpectedly long solution times, you can limit the amount of

time allocated to the solver for solving your problem as follows:

solve myCOP where time_limit := pMaxSolutionTime ;

! pMaxSolutionTime is in seconds.

Alternatively, when you are satisfied with the current objective, as presented

in the progress window, and not want to wait on further improvements, you

can interrupt the solution process by using the key-stroke ctrl-shift-s.

22.3.3 Search Heuristics

Search

heuristics

During the solving process, constraint programming employs search heuristics

that define the shape of the search tree, and the order in which the search tree

nodes are visited. The shape of the search tree is typically defined by the

order of the variables to branch on, and the corresponding value assignment.

Aimms allows the user to specify which variable and value selection heuristics

are to be used. For example, to decide the next variable on which to branch,

a commonly used search heuristic is to choose a non-fixed variable with the

minimum domain size, and assign its minimum domain value.

Chapter 22. Constraint Programming 406

Search phasesThe first method offered by Aimms to influence the search process is through

using the Priority attributes of the variables. Aimms will group together all

variables that have the same priority value, and each block of variables will

define a search phase. That is, the solver will first assign the variables in the

block with the highest priority, then choose the next block, and so on. As

discussed in Section 14.1.1, the highest priority is the one with the highest

positive value. Defining search phases can be very useful. For example, when

scheduling activities to various alternative resources, it is natural to first assign

an activity to its resource before assigning its begin.

Variable and

value selection

The variable and value selection heuristics offered by Aimms are presented in

Table 22.7. They can be accessed through the ‘solver options’ configuration

window. As an example, we can define a ‘constructive’ scheduling heuristic

that builds up the schedule from the begin of the schedule domain by using

MinValue as the variable selection, and Min as the value selection. Indeed, this

heuristic will attempt to greedily schedule the activities as early as possible.

Note that both these variable and value heuristics apply to the entire search

process. If no variable priorities are specified, the variable selection heuristic

will consider all variables at a time. Otherwise, the variable selection heuristic

is applied to each block individually.

Heuristic Interpretation

Variable selection: choose the non-fixed variable with:

Automatic use the solver’s default heuristic

MinSize the smallest domain size

MaxSize the largest domain size

MinValue the smallest domain value

MaxValue the largest domain value

Value selection: assign:

Automatic use the solver’s default heuristic

Min the smallest domain value

Max the largest domain value

Random a uniform-random domain value

Table 22.7: Search heuristics

Chapter 23

Mixed Complementarity Problems

This chapterThis chapter discusses the special identifier types and language constructs

that Aimms offers to allow you to formulate mixed complementarity problems.

Although mixed complementarity problems do not involve optimization, they

are specified through variables which are linked to constraints in terms of

these variables, and thus fall into the common framework of a Mathematical-

Program. Aimms also supports nonlinear optimization problems with additional

complementarity constraints (also known as MPCC or MPEC problems)

23.1 Complementarity problems

Complementar-

ity problems

Complementarity relations arise in a variety of engineering and economics ap-

plications, most commonly to express an equilibrium of quantities such as

forces or prices. One standard application in engineering arises in contact me-

chanics, where complementarity expresses the fact that friction occurs only

when two bodies are in contact. Other applications are found in structural

mechanics, structural design, traffic equilibrium and optimal control.

Economic

models

Interest among economists in solving complementarity problems is due in part

to increased use of computational general equilibrium models, where for in-

stance complementarity is used to express Walras’ Law, and in part to the

equivalence of various games to complementarity problems.

Nonlinear

optimization

Some generalizations of nonlinear programming, such as multi-level optimi-

zation—in which auxiliary objectives are to be minimized—may be reformu-

lated as problems with complementarity conditions. Also, by formulating the

Kuhn-Tucker conditions of a nonlinear optimization model one obtains a com-

plementarity problem, which could be solved by a complementarity solver. In

the latter case, however, one requires second-order derivative information of

all constraints in the original optimization model.

Chapter 23. Mixed Complementarity Problems 408

Complementar-

ity conditions

Complementarity problems are, in general, systems of nonlinear constraints

where variables in the system are linked to constraints in the form of comple-

mentarity conditions. There are two forms of complementarity conditions, the

classical complementarity condition, and its generalization, the mixed comple-

mentarity condition.

Classical com-

plementarity

conditions

The classical form of a complementarity condition involves a nonnegative vari-

able xi and an associated function fi(x). It requires that

xi = 0 and fi(x) ≥ 0, or

xi > 0 and fi(x) = 0.

This condition states that of both inequalities, at least one must reach its

bound. Alternatively, one can formulate this complementarity condition as

xi ≥ 0, fi(x) ≥ 0 and xi · fi(x) = 0.

Mixed comple-

mentarity

condition

The mixed form of a complementarity condition involves a bounded variable

li ≤ xi ≤ ui with an associated function fi(x). It requires that

xi = li and fi(x) ≥ 0, or

xi = ui and fi(x) ≤ 0, or

li < xi < ui and fi(x) = 0.

This condition states that either xi must reach one of its bounds, or the func-

tion fi(x) must be zero. A mixed complementarity condition can be split into

two classical complementarity conditions (albeit by introducing auxiliary vari-

ables). The classical complementarity condition, on the other hand, is a special

case of the mixed complementarity condition by choosing li = 0 and ui = ∞.

Special casesBy choosing li = −∞ and ui = ∞, the mixed complementarity condition re-

duces to the special case

xi is “free” and fi(x) = 0.

Another special case is obtained when li = ui. The mixed complementarity

condition then reduces to

xi = li and fi(x) is “free”

Supported com-

plementarity

conditions in

Aimms

All complementarity conditions described above can be represented by asso-

ciating a variable with a single constraint, which will form the basis for repre-

senting complementarity conditions in Aimms. Consider the inequalities

lxi ≤ xi ≤ uxi and lfi ≤ fi(x) ≤ ufi
where fi(x) is a nonlinear expression, and exactly two of the constants lxi ,

uxi , lfi and ufi are finite. The six possible cases are enumerated in Table 23.1,

and are discussed below.

Chapter 23. Mixed Complementarity Problems 409

Case lxi uxi lfi ufi
1 finite finite −∞ ∞
2 finite ∞ finite ∞
3 finite ∞ −∞ finite

4 −∞ finite finite ∞
5 −∞ finite −∞ finite

6 −∞ ∞ finite finite

Table 23.1: Six allowed cases with exactly two finite bounds

Case 1The case lxi ≤ xi ≤ uxi and −∞ ≤ fi(x) ≤ ∞ corresponds to the mixed

complementarity condition already discussed above:

xi = lxi and fi(x) ≥ 0, or

xi = uxi and fi(x) ≤ 0, or

lxi < xi < uxi and fi(x) = 0.

Case 2The case lxi ≤ xi ≤ ∞ and lfi ≤ fi(x) ≤ ∞ corresponds to the classical com-

plementarity condition

x̂i = 0 and f̂i(x) ≥ 0, or

x̂i > 0 and f̂i(x) = 0.

where x̂i = xi − lxi and f̂i(x) = fi(x)− lfi .

Case 3The case lxi ≤ xi ≤ ∞ and −∞ ≤ fi(x) ≤ ufi corresponds to the classical

complementarity condition

x̂i = 0 and f̂i(x) ≥ 0, or

x̂i > 0 and f̂i(x) = 0.

where x̂i = xi − lxi and f̂i(x) = ufi − fi(x).

Case 4The case −∞ ≤ xi ≤ uxi and lfi ≤ fi(x) ≤ ∞ corresponds to the classical

complementarity condition

x̂i = 0 and f̂i(x) ≥ 0, or

x̂i > 0 and f̂i(x) = 0.

where x̂i = uxi − xi and f̂i(x) = fi(x)− lfi .

Chapter 23. Mixed Complementarity Problems 410

Case 5The case −∞ ≤ xi ≤ uxi and −∞ ≤ fi(x) ≤ ufi corresponds to the classical

complementarity condition

x̂i = 0 and f̂i(x) ≥ 0, or

x̂i > 0 and f̂i(x) = 0.

where x̂i = uxi − xi and f̂i(x) = ufi − fi(x).

Case 6: lfi = ufiThe case −∞ ≤ xi ≤ ∞ and lfi ≤ fi(x) ≤ ufi with lfi = ufi corresponds to the

first special case of the mixed complementarity condition

xi is “free” and f̂i(x) = 0.

where f̂ (x) = fi(x)− lfi .

Case 6: lfi < ufiAfter the introduction of variables x+i , x
−
i ≥ 0 and functions

fxi (x) = xi − x+i − x−i
f+i (x) = fi(x)− lfi
f−i (x) = ufi − fi(x)

the case −∞ ≤ xi ≤ ∞ and lfi ≤ fi(x) ≤ ufi with lfi < ufi corresponds to a

system of three simultaneous complementarity conditions

xi is “free” and fxi (x) = 0

x+i = 0 and f+i (x) ≥ 0, or

x+i > 0 and f+i (x) = 0

x−i = 0 and f−i (x) ≥ 0, or

x−i > 0 and f−i (x) = 0.

Aimms supportAimms supports the variable-constraint couples with two finite bounds, as

discussed above, through the special ComplementaryVariable data type. The

declaration and attributes of this data type are discussed in the next section,

while section 23.3 describes the declaration of mixed complementarity models

through the common MathematicalProgram declaration.

Well-behaved

systems

Like with nonlinear optimization models, not all mixed complementarity sys-

tems that can be formulated are well-behaved. For instance, a variable x ≥ 0

with an associated constraint 1 − x ≥ 0, only admits the solutions 0 and 1,

which would destroy the continuous character of complementarity problems.

For systems of complementarity conditions that are not well-behaved, the so-

lution process may produce no, or unexpected results.

Chapter 23. Mixed Complementarity Problems 411

23.2 ComplementaryVariable declaration and attributes

Complementar-

ity variables

To support you in formulating a complementarity model, Aimms provides a

special type of variable, the ComplementaryVariable. The attributes of a com-

plementarity variable allow you to declare an (indexed) class of variables in a

complementarity model along with their associated constraints. The attributes

of a ComplementaryVariable are listed in Table 23.2.

Automatic

sanity checks

By construction, this new variable type automatically ensures that every vari-

able in a complementarity model is associated with a single constraint. Also,

when Aimms detects that the total number of (finite) bounds on both the com-

plementarity variable and its associated constraint is not equal to two (as re-

quired above), a compilation error will result. Thus, ComplementaryVariable will

help to reduce the most common declaration errors for this type of model.

Attribute Value-type See also

page

IndexDomain index-domain 42, 208, 208

Range range 208

Unit unit-valued expression 45, 211

Text string 19, 45

Comment comment string 19

Complement expression 217

NonvarStatus reference 212

Property NoSave, Complement

Table 23.2: ComplementaryVariable attributes

The IndexDomain

attribute

Through the IndexDomain attribute of a complementarity variable you can spec-

ify domain of tuples for which you want Aimms to generate a variable and its

associated constraint. During generation, Aimms will only generate a variable

for all tuples that satisfy all domain restrictions that you have imposed on the

domain.

The Range

attribute

In the Range attribute you can specify the lower and upper bound of a com-

plementarity variable, in a similar manner for ordinary Variables (see also Sec-

tion 14.1). During generation, Aimms will perform a runtime check, for every

individual tuple in the index domain, whether the number of finite bounds

specified here, plus the number of finite bounds in the constraint specified in

the Complement attribute, exactly equals two.

Chapter 23. Mixed Complementarity Problems 412

The Complement

attribute

The Complement attribute allows you to specify the constraint that must be as-

sociated with the complementarity variable at hand. With f(x, . . .) a general

nonlinear function, the following types of expressions are allowed

� f(x, . . .) ≥ a (variable must have a single-sided Range),

� f(x, . . .) ≤ a (variable must have a single-sided Range),

� a ≤ f(x, . . .) ≤ b (variable must be free),

� f(x, . . .) = a (variable must be free), or

� f(x, . . .) (variable must be bounded).

In addition, the Complement attribute can refer to an existing Constraint in your

model, which then should hold a definition as one of the cases above. The

Complement attribute can also hold a scalar element parameter into the set

AllConstraints, which offers the possibility to assign different constraints to

the complementarity variable in sequential solves.

Constraint

listing

In the constraint listing, the constraints associated with a complementarity

variable will be listed with a generated name consisting of the name of the

ComplementarityVariable with an additional suffix “ complement”.

The

NonvarStatus

attribute

With the NonvarStatus attribute you can indicate for which tuples you want

Aimms to consider the complementarity variable as a parameter, i.e. with the

lower and upper bound set equal to the level value prior to solving the model

(see also Section 14.1.1). From the mixed complementarity condition it follows

that the function in the corresponding constraint is then allowed to assume

arbitrary values, whence there is no strict need to generate the variable and

constraint for the solver.

Positive and

negative values

The value of the NonvarStatus attribute must be an expression in some or all of

the indices in the index list of the variable, allowing you to change the nonva-

riable status of individual elements or groups of elements at once. When the

NonvarStatus assumes a positive value, Aimms will not generate the variable

and its associated constraint. For negative values, the variable and constraint

will be generated, but reduces to the second special case of the mixed comple-

mentarity condition

x̂i = xi − x0
i = 0 and fi(x) is “free”,

i.e. the function in the constraint will be allowed to assume arbitrary values.

The Unit

attribute

Providing a Unit for a complementarity variable will help you in a number of

ways.

� Aimms will help you to check the consistency of all the constraints and

assignments in your model (including the expression in the Complement

attribute), and

� Aimms will use the units to scale the model that is sent to the solver.

Chapter 23. Mixed Complementarity Problems 413

Proper scaling of a model will generally result in a more accurate and robust

solution process. You can find more information on the definition and use of

units to scale mathematical programs in Chapter 32.

The Property

attribute

Complementarity variables support the properties NoSave and Complement. With

the property NoSave you indicate that you do not want to store data associated

with this variable in a case. The Complement property indicates that you are in-

terested in the level values of the constraint defined in the Complement attribute.

When this property is set, Aimms will make the level value of this constraint

available through the .Complement suffix of the complementarity variable at

hand.

ExampleThe declaration of the complementarity variable MembraneHeight expresses a

complementarity condition for the height of a membrane in a rectangular

(x,y)-grid, with a uniform external force acting on each cell in the grid.

ComplementaryVariable MembraneHeight {

IndexDomain : (x,y);

Range : [MembraneLowerBound(x,y), MembraneUpperBound(x,y)];

Complement : {

4*MembraneHeight(x,y)

- MembraneHeight(x+1,y) - MembraneHeight(x-1,y)

- MembraneHeight(x,y+1) - MembraneHeight(x,y-1)

- CellForce

}

}

The complementarity condition expresses that either the membrane reaches

one its given bounds (for instance, an obstacle placed in the way of the mem-

brane), or the external force on the cell must be equal to the internal forces

acting on the cell caused by differences in height with neighboring cells.

23.3 Declaration of mixed complementarity models

Mixed comple-

mentarity

models

To define a pure mixed complementarity model, you must declare a Mathema-

ticalProgram (see also Section 15.1) and specify mcp as the Type attribute of the

MathematicalProgram. In the Variables attribute you can specify a subset of the

set of all ComplementarityVariables to be included in the mixed complemen-

tarity model at hand. Based on this specification, Aimms will automatically

generate all constraints associated with these complementarity variables, re-

sulting in a square system.

Additional

variables and

constraints

In addition, Aimms allows you to add ordinary variables to the Variables at-

tribute, and to specify additional constraints in the Constraints attribute of

the MathematicalProgram that must be satisfied as well. If the solver used to

solve the mixed complementarity model requires a square system, Aimms will

automatically add auxiliary constraints or variables to the generated system,

Chapter 23. Mixed Complementarity Problems 414

and provide the linkages with the ordinary variables and constraints you have

added to the system.

No optimizationFor a mixed complementarity problem you should not specify the Objective

and Direction attributes, as a complementarity solver will only compute a fea-

sible solution that satisfies all the complementarity conditions specified. If

these attributes are not empty, Aimms will produce a runtime error when you

apply the SOLVE statement the corresponding MathematicalProgram (see also Sec-

tion 15.3).

ExampleA mixed complementarity model containing the declaration of the comple-

mentarity variable MembraneHeight declared in the previous section, is defined

by the following declaration.

MathematicalProgram Membrane {

Variables : AllVariables;

Type : mcp;

}

As usual, you can solve the Membrane through the statement

solve Membrane;

which will generate the mixed complementarity model and invoke a suitable

solver for mcp problem type.

23.4 Declaration of MPCC models

MPCC modelsThrough the knitro solver, Aimms also supports mathematical programs with

complementarity constraints (MPCC models). MPCC models are also more com-

monly denoted by other modeling languages as MPEC models, which form a

more general, and much more difficult, class of optimization problems. A

MPCC model is an ordinary NLP model with additional complementarity con-

straints that have to be satisfied.

Declaring MPCC

models

To define a MPCC model, you must declare a MathematicalProgram (see also Sec-

tion 15.1) and specify mpcc as the Type attribute of the MathematicalProgram.

The variable set of a MathematicalProgram of a MPCC model can contain ordi-

nary variables as well as complementarity variables. Contrary to pure mixed

complementary models, a MPCC model has an objective function.

Solving MPCC

models

To solve MPCC models in Aimms, you need a license for the knitro solver. If

you do not have a license for the knitro solver, Aimms will return an error

that it has no suitable solver available for the mpcc class, whenever you try to

solve a MPCC model. The knitro solver can also be used for solving pure

mixed complementarity problems, but is, in general, far less efficient in that

case than dedicated mcp solvers.

Chapter 24

Node and Arc Declaration

This chapterThis chapter discusses the special identifier types and language constructs

that Aimms offers to allow you to formulate network optimization problems in

terms of nodes and arcs. In addition, it is illustrated how you can formulate

an optimization problem that consists of a network combined with ordinary

variables and constraints.

24.1 Networks

NetworksThere are several model-based applications which contain networks and flows.

Typical examples are applications for the distribution of electricity, water, ma-

terials, etc. Aimms offers two special constructs, Arcs and Nodes, to formulate

flows and flow balances as an alternative to the usual algebraic constructs.

Specialized algorithms exist for pure network problems.

Mixed

formulations

It is possible to intermingle network constructs with ordinary variables and

constraints. As a result, the choice between Arcs and Variables on the one

hand, and Nodes and Constraints on the other, becomes a matter of conve-

nience. For instance, in the formulation of a flow balance at a node in the

network you can refer to flows along arcs as well as to variables that represent

import from outside the network. Similarly, you can formulate an ordinary

capacity constraint involving both network flows and ordinary variables.

Flow keywordsIt is assumed here that you know the basics of network flow formulations. Fol-

lowing are three flow-related keywords which can be used to specify a network

flow model:

� NetInflow—the total flow into a node minus the total flow out of that

node,

� NetOutflow—the total flow out of a node minus the total flow into that

node, and

� FlowCost—the cost function representing the total flow cost built up from

individual cost components specified for each arc.

The first two are always used in the context of a node declaration, while the

third may be used for the network model declaration.

Chapter 24. Node and Arc Declaration 416

24.2 Node declaration and attributes

Node attributesEach node in a network has a number of associated incoming and outgoing

flows. Unless stated otherwise, these flows should be in balance. Based on the

flows specified in the model, Aimms will automatically generate a balancing

constraint for every node. The possible attributes of a Node declaration are

given in Table 24.1.

Attribute Value-type See also

page

IndexDomain index-domain 42, 208, 216

Unit unit-valued expression 45, 211

Text string 19, 45

Comment comment string 19

Definition expression 217

Property NoSave, Sos1, Sos2, 45, 213, 218

Level, Bound, ShadowPrice,

RightHandSideRange, ShadowPriceRange

Table 24.1: Node attributes

Nodes are like

constraints

Nodes are a special kind of constraint. Therefore, the remarks in Section 14.2

that apply to the attributes of constraints are also valid for nodes. The only

difference between constraints and nodes is that in the definition attribute of

a node you can use one of the keywords NetInflow and NetOutflow.

NetInflow and

NetOutflow

The keywords NetInflow and NetOutflow denote the net input or net output

flow for the node. The expressions represented by NetInflow and NetOutflow

are computed by Aimms on the basis of all arcs that depart from and arrive at

the declared node. Since these keywords are opposites, you should choose the

keyword that makes most sense for a particular node.

ExampleThe following two Node declarations show natural applications of the keywords

NetInflow and NetOutflow.

Node CustomerDemandNode {

IndexDomain : (j in Customers, p in Products);

Definition : {

NetInflow >= ProductDemanded(j,p)

}

}

Chapter 24. Node and Arc Declaration 417

Node DepotStockSupplyNode {

IndexDomain : (i in Depots, p in Products);

Definition : {

NetOutflow <= StockAvailable(i,p) + ProductImport(i,p)

}

}

The declaration of CustomerDemandNode(c,p) only involves network flows, while

the flow balance of DepotStockSupplyNode(d,p) also uses a variable Product-

Import(d,p).

24.3 Arc declaration and attributes

Arc attributesArcs are used to represent the possible flows between nodes in a network.

From these flows, balancing constraints can be generated by Aimms for every

node in the network. The possible attributes of an arc are given in Table 24.2.

Attribute Value-type See also

page

IndexDomain index-domain 42

Range range 208

Default constant-expression 44, 210

From node-reference

FromMultiplier expression

To node-reference

ToMultiplier expression

Cost expression

Unit unit-valued expression 211

Priority expression 211

NonvarStatus expression 212

RelaxStatus expression 213

Property NoSave, numeric-storage-property, 34, 45, 213

Inline, SemiContinuous, ReducedCost,

ValueRange, CoefficientRange

Text string 19, 45

Comment comment string 19

Table 24.2: Arc attributes

Arcs are like

variables

Arcs play the role of variables in a network problem, but have some extra at-

tributes compared to ordinary variables, namely the From, To, FromMultiplier,

ToMultiplier, and Cost attributes. Arcs do not have a Definition attribute be-

cause they are implicitly defined by the From and To attributes.

Chapter 24. Node and Arc Declaration 418

The From and To

attributes

For each arc, the From attribute is used to specify the starting node, and the

To attribute to specify the end node. The value of both attributes must be a

reference to a declared node.

The Multiplier

attributes

With the FromMultiplier and ToMultiplier attributes you can specify whether

the flow along an arc has a gain or loss factor. Their value must be an ex-

pression defined over some or all of the indices of the index domain of the

arc. The result of the expression must be positive. If you do not specify a

Multiplier attribute, Aimms assumes a default of one. Network problems with

non unit-valued Multipliers are called generalized networks.

FromMultiplier

and

ToMultiplier

The FromMultiplier is the conversion factor of the flow at the source node,

while the ToMultiplier is the conversion factor at the destination node. Having

both multipliers offers you the freedom to specify the network in its most

natural way.

The Cost

attribute

You can use the Cost attribute to specify the cost associated with the transport

of one unit of flow across the arc. Its value is used in the computation of the

special variable FlowCost, which is the accumulated cost over all arcs. In the

computation of the FlowCost variable the component of an arc is computed as

the product of the unit cost and the level value of the flow.

Graphically

illustrated

In the presence of FromMultiplier and ToMultipliers, the drawing in Figure 24.1

illustrates

� the level value of the flow,

� its associated cost component in the predefined FlowCost variable, and

� the flows as they enter into the flow balances at the source and destina-

tion nodes (denoted by SBF and DBF, respectively).

Node i Node j

SBF = Flow(i,j)/[FromMultiplier] DBF = Flow(i,j)*[ToMultiplier]

Level = Flow(i,j)
Cost = Flow(i,j)*[Cost]

Figure 24.1: Flow levels and cost from node i to node j

Chapter 24. Node and Arc Declaration 419

Semi-continuous

arcs

You can only use the SemiContinuous property for arcs if you use an LP solver

to find the solution. If you use the pure network solver integrated in Aimms,

Aimms will issue an error message.

ExampleUsing the declaration of nodes from the previous section, an example of a valid

arc declaration is given by

Arc Transport {

IndexDomain : (i,j,p) | Distance(i,j);

Range : nonnegative;

From : DepotStockSupplyNode(i,p);

To : CustomerDemandNode(j,p);

Cost : UnitTransportCost(i,j);

}

Note that this arc declaration declares flows between nodes i and j for multiple

products p.

24.4 Declaration of network-based mathematical programs

The FlowCost

variable

If your model contains arcs and nodes, the special variable FlowCost can be

used in the definition of the objective of your mathematical program. During

the model generation phase, Aimms will generate an expression for this vari-

able based on the associated unit cost for each of the arcs in your mathematical

program.

Pure network

models

Aimms will mark your mathematical program as a pure network, if the follow-

ing conditions are met:

� your mathematical program consists of arcs and nodes only,

� all arcs are continuous and do not have one of the SOS or the SemiContin-

uous properties,

� the value of the Objective attribute equals the variable FlowCost, and

� all Multiplier attributes assume the default value of one,

For pure network models you can specify network as its Type.

Network versus

LP solver

If your mathematical program is a pure network model, Aimms will pass the

model to a special network solver. If your mathematical program is a gener-

alized network or a mixed network-LP problem, Aimms will generate the con-

straints associated with the nodes in your network as linear constraints and

use an LP solver to solve the problem. Aimms will also use an LP solver if

you have specified its type to be lp. You may assert that your mathematical

program is a pure network model by specifying network as its type.

Chapter 24. Node and Arc Declaration 420

ExampleA pure network model containing the arc and node declarations of the previ-

ous sections, but without the additional term ProductImport(d,p) in the node

DepotStockSupplyNode(d,p), is defined by the following declaration.

MathematicalProgram ProductFlowDecisionModel {

Objective : FlowCost;

Direction : minimize;

Constraints : AllConstraints;

Variables : AllVariables;

Type : network;

}

If the arc Transport(i,j) declared in the previous section is the only arc, then

the variable FlowCost can be represented by the expression

sum [(i,j,p), UnitTransportCost(i,j) * Transport(i,j,p)]

Note that the addition of the term ProductImport(i,p) in DepotStockSupply-

Node(i,p) would result in a mixed network/linear program formulation, which

requires an LP solver.

Part VI

Data Communication

Components

Chapter 25

Data Initialization, Verification and Control

Aspects of the

use of data

Data initialization, verification and control are important aspects of modeling

applications. In general, verification of initialized data is required to check for

input and consistency errors. When handling multiple data input sets, data

control helps you to clean and maintain your internal data.

This chapterThis chapter describes how Aimms implements data initialization, as well as

the Assert mechanisms that you can use to verify the validity of the data of

your model. In addition, this chapter describes the data control statements

that you can use to maintain the data of your model in good order. All explicit

forms of data communication with text files, cases and external databases are

discussed in subsequent chapters.

25.1 Model initialization and termination

Separation of

model and data

In general, it is a good strategy to separate the initialization of data from the

specification of your model structure. This is particularly true for large mod-

els. The separation improves the clarity of the model text, but more impor-

tantly, it allows you to use the same model structure with various data sets.

Supplying initial

data

There are several methods to input the initial data of the identifiers in your

model. Aimms allows you:

� to supply initial data for a particular identifier as part of its declaration,

� to read in data from various external data sources, such as text data files,

Aimms cases and databases, and

� to initialize data by means of algebraic statements.

Interactive

initialization

In an interactive application the end-user often has to enter additional data

or modify existing data before the core of the model can be executed. Thus,

proper data initialization in most cases consists of more steps than just read-

ing data from external sources. It is the responsibility of the modeler to make

sure that an end-user is guided through all necessary initialization steps and

that the sequence is completed before the model is executed.

Chapter 25. Data Initialization, Verification and Control 423

The attribute

InitialData

Both sets and parameters can have an InitialData attribute. You can use it to

supply the initial data of a set or parameter, but only when the set or param-

eter does not have a definition as well. In general, the InitialData attribute

is not recommended when different data sets are used. However, it can be

useful for initializing those identifiers in your model that are likely to remain

constant for all data sets. The contents of the InitialData attribute must be

a constant expression (i.e. a constant, a constant enumerated set or a constant

list expression) or a DataTable. The table format is explained in Section 28.2.

The Main-

Initialization

and PostMain-

Initialization

procedures

Aimms will add the procedures MainInitialization and PostMainInitialization

to a new project automatically. Initially these are empty, leaving the (optional)

specification of their bodies to you. You can use these procedures to read

in data from external sources and to specify Aimms statements to compute

your model’s initial data in terms of other data. The latter step may even

include solving a mathematical program. Both the MainInitialization and

PostMainInitialization procedure are aimed at initializing your model. The

distinction between the two becomes apparent in the presence of libraries in

your model (cf. Section 35.5).

Library

initialization

Each library can provide LibraryInitialization and PostLibraryInitialization

procedures. The LibraryInitialization procedure is aimed at initializing the

state of each library, regardless of the state of other libraries, such as sets and

parameters that represent the internal state of the library, or, when the library

uses an external DLL, initializing such a DLL. The PostLibraryInitialization

procedures are executed after all LibraryInitialization procedures have been

executed, and thus, can rely on the internal state of all other libraries already

being initialized to perform tasks on its behalf.

Model

initialization

sequence

To initialize the data in your model, Aimms performs the following actions

directly after compiling the model:

� Aimms fills the contents of any global set or parameter with the contents

of its InitialData attribute,

� aimms executes the predefined procedures MainInitialization,

� Aimms executes the predefined procedure LibraryInitialization for each

library,

� Aimms executes the predefined procedure PostMainInitialization, and

� finally Aimms executes the predefined procedure PostLibraryInitializat-

ion for each library.

Thus, as a guideline, any model initialization that depends on (other) libraries

should go into a PostLibraryInitialization or the PostMainInitialization pro-

cedure, to make sure that it can be executed successfully.

Chapter 25. Data Initialization, Verification and Control 424

Library

termination

Similarly to the situation of library initialization, each library can provide

PreLibraryTermination and LibraryTermination procedures. The PreLibrary-

Initialization procedures are executed before all LibraryTermination proce-

dures have been executed, and are aimed at at library termination steps that

may still need other libraries to be functioning. The LibraryTermination pro-

cedures are aimed at terminating the state of each library individually, for

instance, to deinitialize any external DLLs the library may depend upon.

Model

termination

sequence

To terminate your model, Aimms performs the following actions directly prior

to closing the project:

� Aimms executes the predefined procedure PreMainTermination,

� Aimms executes the predefined procedure PreLibraryTermination for each

library,

� aimms executes the predefined procedures MainTermination, and

� finally Aimms executes the predefined procedure LibraryTermination for

each library.

25.1.1 Reading data from external sources

The READ

statement

You can use the READ statement to initialize data from the following external

data sources:

� user-supplied text files containing constant lists and tables,

� Aimms-generated binary case files, and

� external ODBC-compliant databases.

Reading from

text data files

With the READ statement you can initialize selected model input data from text

files containing explicit data assignments. Only DataTables and constant ex-

pressions (i.e. a constant, a constant enumerated set or a constant list expres-

sion) are allowed. Since the format of these Aimms data assignments is simple,

the corresponding files are easily generated by external programs or by using

the Aimms DISPLAY statement.

When usefulReading from text files is especially useful when

� the data must come directly from your end-users, but is not contained in

a formal database,

� the data is produced by external programs that are not linked or cannot

be linked directly to Aimms

Chapter 25. Data Initialization, Verification and Control 425

Reading from

binary case files

The READ statement can also initialize data from an Aimms case file. You can

instruct Aimms to read either selected identifiers or all identifiers. The case file

data is already in an appropriate format, and therefore provides a fast medium

for data storage and retrieval inside your application.

When usefulReading from case files is especially useful when

� you want to start up your Aimms application in the same state as you left

it when you last used it,

� you want to read from different data sources captured inside different

cases making up your own internal database.

Reading from

databases

A third (and powerful) application of the READ statement is the retrieval of data

from any ODBC-compliant database. This form of data initialization gives you

direct access to up-to-date corporate databases.

When usefulReading from databases is especially useful when

� data is shared by several users or applications inside an organization,

� data integrity over time in a database plays a crucial role during the

lifetime of your application.

Computing

initial data

After reading initial data from internal and external sources, Aimms allows

you to compute other identifiers not yet initialized. This feature is very useful

when the external data sources of your model supply only partial initial data.

For instance, after reading in event data which represent tank actions (when

and at what rate do charges and discharges take place), all stock levels at

distinct model time instances can be computed.

25.2 Assertions

Data validity is

important

In almost all modeling applications it is important to check the validity of in-

put data prior to its use. For instance, in a transportation model it makes no

sense if the total demand exceeds the total supply. In general, data consis-

tency checks guard against unexplainable or even infeasible model results. As

a result, these checks are essential to obtain customer acceptance of your ap-

plication. In rigorous model-based applications it is not uncommon that the

error consistency checks form a significant part of the total model text.

Assertion

declaration and

attributes

To provide you with a mechanism to implement data validity checks, Aimms

offers a special Assertion data type. With it, you can easily specify and verify

logical conditions for all elements in a particular domain, and take appropriate

action when you find an inconsistency. Assertions can be verified from within

the model through the ASSERT statement, or automatically upon data changes

Chapter 25. Data Initialization, Verification and Control 426

by the user from within the graphical user interface. The attributes of the

Assertion type are given in Table 25.1.

Attribute Value-type See also

page

IndexDomain index-domain 42, 208

Text string 19, 45

Property WarnOnly

AssertLimit integer

Definition logical-expression 34, 44

Action statements

Comment comment string 19

Table 25.1: Assertion attributes

The Definition

attribute

The Definition attribute of an Assertion contains the logical expression that

must be satisfied by every element in the index domain. If the logical expres-

sion is not true for a particular element in the index domain, the specified

action will be undertaken. Examples follow.

ExamplesAssertion SupplyExceedsDemand {

Text : Error: Total demand exceeds total supply;

Definition : {

Sum(i in Cities, Supply(i)) >=

Sum(i in Cities, Demand(i))

}

}

Assertion CheckTransportData {

IndexDomain : (i,j) | Distance(i,j);

Text : Please supply proper transport data for transport (i,j);

AssertLimit : 3;

Definition : {

UnitTransportCost(i,j) and

MinShipment(i,j) <= MaxShipment(i,j)

}

}

The assertion SupplyExceedsDemand is a global check. The assertion CheckTrans-

portData(i,j) is verified for every pair of cities i and j for which Distance(i,j)

assumes a nonzero value. Aimms will terminate further verification when the

assertion fails for the third time.

The Text

attribute

The Text attribute of an Assertion is the text that is used as warning or error

message when the assertion fails for an element in its domain. If the text con-

tains indices from the assertions index domain, these are expanded to identify

the elements for which the assertion failed. If you have overridden the default

response by means of the Action attribute (see below), then the text attribute

is ignored.

Chapter 25. Data Initialization, Verification and Control 427

The Property

attribute

The Property attribute of an assertion can only assume the value WarnOnly.

With it you indicate that a failed assertion should only result in a warning

being triggered, instead of an error. This attribute is also ignored if the Action

is overridden.

The AssertLimit

attribute

By default, Aimms will verify an assertion for every element in its index do-

main, and call the (default) action for every element for which the assertion

fails. With the AssertLimit attribute you can limit the number of verifications

that are made. When the number of failed assertions reaches the AssertLimit,

Aimms will stop the verification of any further elemens in the index domain.

By default, the AssertLimit is set to 1.

The Action

attribute

The default response to a failing assertion is that either an error or a warning

is raised, based on the Property setting. You can use the Action attribute if

you want to specify a nondefault response to a failed assertion. Like the body

of a procedure, the Action attribute can contain multiple statements which

together implement the appropriate response. During the execution of the

statements in the Action attribute, the indices occurring in the index domain

of the assertion are bound to the currently offending element. This allows you

to control the interaction with the end-user. For instance, you can request that

all detected errors in the index domain are changed appropriately, or perhaps

implement an auto-correct on invalid values.

The FailCount

operator

If you raise an error or call the HALT statement during the execution of an

Action attribute, the current model execution will terminate. When you use it in

conjunction with the predefined FailCount operator, you can implement a more

sophisticated version of the AssertLimit. The FailCount operator evaluates

to the number of failures encountered during the current execution of the

assertion. It cannot be referenced outside the context of an assertion.

Verifying

assertions

Assertions can be verified in two ways:

� by explicitly calling the ASSERT statement during the execution of your

model, or

� automatically, from within the graphical user interface, when the end-

user of your application changes input values in particular graphical ob-

jects.

The ASSERT

statement

With the ASSERT statement you verify assertions at specific places during the

execution of your model. Thus, you can use it, for instance, during the exe-

cution of the MainInitialization procedure, to verify the consistency of data

that you have read from a database. Or, just prior to solving a mathematical

program, to verify that all currently accrued data modifications do not result

in data inconsistencies. The syntax of the ASSERT statement is simple.

Chapter 25. Data Initialization, Verification and Control 428

Syntaxassert-statement :

ASSERT identifier (binding-domain)

,

;

ExampleThe following statement illustrates a basic use of the ASSERT statement.

assert SupplyExceedsDemand, CheckTransportData;

It will verify the assertion SupplyExceedsDemand, as well as the complete asser-

tion CheckTransportData, i.e. checks are performed for every element (i,j) in its

domain.

Sliced

verification

Aimms allows you to explicitly supply a binding domain for an indexed as-

sertion. By doing so, you can limit the assertion verification to the elements

in that binding domain. This is useful when you know a priori that the data

for only a small subset of the elements in a large index domain has changed.

You can use such sliced verification, for instance, during the execution of a

procedure that is called upon a single data change in a graphical object on a

page.

ExampleAssume that CurrentCity takes the value of the city for which an end-user

has made a specific data change in the graphical user interface. Then the

following ASSERT statement will verify the assertion CheckTransportData for only

this specific city.

assert CheckTransportData(CurrentCity,j),

CheckTransportData(i,CurrentCity);

25.3 Data control

Why data

control?

The contents of domain sets in your model may change through running pro-

cedures or performing other actions from within the graphical user interface.

When elements are removed from sets, there may be data for domain elements

that are no longer in the domain sets. In addition, data may exist for interme-

diate parameters, which is no longer used in the remainder of your model

session. For these situations, Aimms offers facilities to eliminate or activate

data elements that fall outside their current domain of definition. This sec-

tion provides you with housekeeping data control statements, which can be

combined with ordinary assignments to keep your model data consistent and

maintained.

Chapter 25. Data Initialization, Verification and Control 429

FacilitiesAimms offers the following data control tools:

� the EMPTY statement to remove the contents from all or a selected number

of identifiers,

� the CLEANUP and CLEANDEPENDENTS statements to clean up all, or a selected

number of identifiers,

� the REBUILD statement to manually instruct Aimms to reclaim unused

memory from the internal data structures used to the store the data of a

selected number of identifiers,

� the procedure FindUsedElements to find all elements of a particular set

that are in use in a given collection of indexed model identifiers, and

� the procedure RestoreInactiveElements to find and restore all inactive

elements of a particular set for which inactive data exists in a given col-

lection of indexed model identifiers.

The EMPTY

statement

The EMPTY statement can be used to discard the complete contents of all or

selected identifiers in your model. Its syntax follows.

empty-statement :

EMPTY reference

,

IN database-table ;

Empty Aimms

identifiers

The EMPTY operator operates on a list of references to Aimms identifiers and

takes the following actions.

� For parameters, variables (arcs) and constraints (nodes) Aimms discards

their values plus the contents of all their suffices.

� For sets, Aimms will discard their contents plus the contents of all cor-

responding subsets. If a set is a domain set, Aimms will remove the data

from all parameters and variables that are defined over this set or any of

its subsets.

� For slices of an identifier, Aimms will discard all values associated with

the slice.

� For sections in your model text, Aimms will discard the contents of all

sets, parameters and variables declared in this section.

� For a subset of the predefined set AllIdentifiers, Aimms will discard the

contents of all identifiers contained in this subset.

Use in

databases

You can also use the EMPTY statement in conjunction with databases. With

the EMPTY statement you can either empty single columns in a database table,

or discard the contents of an entire table. This use is discussed in detail in

Section 27.4. You should note, however, that applying the EMPTY statement to

Chapter 25. Data Initialization, Verification and Control 430

a subset of AllIdentifiers does not apply to any database table contained in

the subset to avoid inadvertent deletion of data.

ExamplesThe following statements illustrate the use of the EMPTY operator.

� Remove all data of the variable Transport.

empty Transport ;

� Remove all data in the set Cities, but also all data depending on Cities,

like e.g. Transport.

empty Cities ;

� Remove all the data of the indicated slice of the variable Transport

empty Transport(DiscardedCity, j);

� Remove all data of all identifiers in the model tree node CityData.

empty CityData ;

Inactive dataWhen you remove some but not all elements from a domain set, Aimms will not

automatically discard the data associated with those elements for every iden-

tifier defined over the particular domain set. Aimms will also not automatically

discard data that does not satisfy the current domain restriction of a given

identifier. Instead, it will consider such data as inactive. During the execution

of your model, no reference will be made to inactive data, but such data may

still be visible in the user interface. In addition, Aimms will not directly re-

claim the memory that is freed up when the cardinality of a multidimensional

identifier in your model decreases.

When usefulThe facility to create inactive data in Aimms allows you to temporarily remove

elements from domain sets when this is required by your model. You can then

restore the data after the relevant parts of the model have been executed.

Discard inactive

data

If you want to discard inactive data that has been introduced in a particular

data set, you can apply the CLEANUP statement to parameters and variables, or

the CLEANDEPENDENTS statement to root sets in your model. Through the REBUILD

statement you can instruct Aimms to reclaim the unused memory associated

with one or more identifiers in your model. The syntax follows.

cleanup-statement :

CLEANDEPENDENTS

CLEANUP

REBUILD

identifier

,

;

Chapter 25. Data Initialization, Verification and Control 431

RulesThe following rules apply when you call the CLEANUP statement.

� When you apply the CLEANDEPENDENTS statement to a set, all inactive ele-

ments are discarded from the set itself and from all of its subsets. In ad-

dition, Aimms will discard all inactive data throughout the model caused

by the changes to the set.

� When you apply the CLEANUP statement to a parameter or variable, all

inactive data associated with the identifier is removed. This includes

inactive data that is caused by changes in domain and range sets, as well

as data that has become inactive by changes in the domain condition of

the identifier.

� When you apply the CLEANDEPENDENTS, CLEANUP, or REBUILD statement to a

section, Aimms will remove the inactive data of all sets, or parameters

and variables declared in it, respectively.

After using the CLEANUP or CLEANDEPENDENTS statement for a particular identifier,

all its associated inactive data is permanently lost.

Resorting root

set elements

In addition to discarding inactive data from your model that is caused by the

existence of inactive elements in a root set, the CLEANDEPENDENTS operator will

also completely resort a root set and all data defined of it whenever possible

and necessary. The following rules apply.

� Resorting will only take place if the current storage order of a root set

differs from its current ordering principle.

� Aimms will not resort sets for which explicit elements are used in the

model formulation.

As a call to CLEANDEPENDENTS requires a complete rebuild of all identifiers de-

fined over the root sets involved, the CLEANDEPENDENTS statement may take a

relatively long time to complete. For a more detailed description of the pre-

cise manner in which root set elements and multidimensional data is stored

in Aimms refer to Section 13.2.7. This section also explains the benefits of

resorting a root set.

Generated

Mathematical

Programs

The CLEANDEPENDENTS statement will also check whether any variable or con-

straint is affected; and if so will remove any generated mathematical program

that is generated from such a variable or constraint.

Restricted usage

in Aimms GUI

You should not call the CLEANDEPENDENTS statement in procedures that have

been linked to edit actions in graphical objects in an Aimms end-user GUI via

the Procedures tab of the object Properties dialog box. During these actions,

Aimms does not expect the element numbering to change.

Chapter 25. Data Initialization, Verification and Control 432

Efficiency

considerations

If you want to apply the CLEANDEPENDENTS statement to multiple sets, applying

the operation to all sets in a single call of the CLEANDEPENDENTS statement will,

in general, be more efficient than using a separate call for every single set. If an

identifier depends on two or more of the sets to which you want to apply the

CLEANDEPENDENTS operation, the data of such an identifier will only be traversed

and/or rebuild once, rather than multiple times.

Examples� The following CLEANDEPENDENTS statement will remove all data from your

application that depends on the removed element ’Amsterdam’, including,

for instance, all previously assigned values to Transport departing from

or arriving at ’Amsterdam’.

Cities -= ’Amsterdam’ ;

cleandependents Cities ;

� The following CLEANUP statement will remove the data of the identifier

Transport for all tuples that either lie outside the current contents of

Cities, or do not satisfy the domain restriction.

cleanup Transport;

� Consider a parameter A(i,j) where i is an index into a set S and j an

index into a set T, then

cleandependents S,T;

will be more efficient than

cleandependents S;

cleandependents T;

because the latter may require A(i,j) to be rebuilt twice.

Finding used

elements

When you want to remove the elements in a set that are no longer used in your

application, you first have to make sure which elements are currently in use.

To find these elements easily, Aimms provides the procedure FindUsedElements.

It has the following three arguments:

� a set SearchSet for which you want to find the used elements,

� a subset SearchIdentifiers of the predefined set AllIdentifiers consisting

of all identifiers that you want to be investigated, and

� a subset UsedElements of the set SearchSet containing the result of the

search.

Upon execution, Aimms will return that subset of SearchSet for which the el-

ements are used in the combined data of the identifiers contained in Search-

Identifiers. When the identifiers SearchSet and UsedElements are contained in

SearchIdentifiers they are ignored.

Chapter 25. Data Initialization, Verification and Control 433

ExampleThe following call to FindUsedElements will find the elements of the set Cities

that are used in the identifiers Supply, Demand, and Distance, and store the result

in the set UsedCities.

SearchIdentifiers := DATA { Supply, Demand, Distance };

FindUsedElements(Cities, SearchIdentifiers, UsedCities);

If these cities are the only ones of interest, you can place them into the set

Cities, and thereby overwrite its previous contents. After that you can cleanup

your entire dataset by eliminating data dependent on cities other than the ones

currently contained in the set Cities. This process is accomplished through

the following two statements.

Cities := UsedCities;

cleandependents Cities;

Finding and

restoring

inactive

elements

Inactive data in Aimms results when elements are removed from (domain)

sets. Such data will be inaccessible, unless the corresponding set elements

are brought back into the set. When this is necessary, you can use the pro-

cedure RestoreInactiveElements provided by Aimms. This procedure has the

following three arguments:

� a set SearchSet for which you want to verify whether inactive data exists,

� a subset SearchIdentifiers of the predefined set AllIdentifiers consisting

of those identifiers that you want to be investigated, and

� a subset InactiveElements of the set SearchSet containing the result of

the search.

Upon execution Aimms will find all elements for which inactive data exists in

the identifiers in SearchIdentifiers. The elements found will not only be placed

in the result set InactiveElements, but also be added to the search set. This

latter extension of SearchSet implies that the corresponding inactive data is

restored.

ExampleThe following call to RestoreInactiveElements will verify whether inactive data

exists for the set Cities in AllIdentifiers.

RestoreInactiveElements(Cities, AllIdentifiers, InactiveCities);

After such a call the set InactiveCities could contain the element ’Amsterdam’.

In this case, the set Cities has been extended with ’Amsterdam’ as well. If you

subsequently decide that cleaning up the set Cities is harmless, the following

two statements will do the trick.

Cities -= InactiveCities;

cleandependents Cities;

Chapter 25. Data Initialization, Verification and Control 434

Reclaiming

memory

If the cardinality of a multidimensional identifier in your model decreases,

Aimms will not automatically reclaim the memory that is freed up because

of the decreased amount of data to store. Instead, it will keep the memory

available to store additional data that is associated with subsequent changes to

the identifier. If the cardinality of an identifier decreases dramatically during

a run the of a model, this may lead to a huge amount of memory getting stuck

up with a single identifier in your model.

Memory

fragmentation

In addition, if a model is running for a prolonged period of time, and an iden-

tifier has undergone huge amounts of structural changes during that time, the

memory associated with that identifier may become heavily fragmented. In

the long run, memory fragmentation may lead to decreased performance of

your model. Rebuilding the internal data structures associated with such an

identifier will resolve the fragmentation problem.

Automatic

reclamation

Prior to solving a mathematical program, Aimms will perform a quick check

comparing the total amount of memory used by an identifier to the amount

of unused memory associated with that identifier. By adding to and removing

elements from identifiers, memory may become fragmented and the fraction of

unused memory may grow. If the fraction of unused memory compared to the

total amount of memory in use becomes too large, Aimms will automatically

rebuild such an identifier in order to reclaim the unused memory. Aimms will

also reclaim the memory of an identifier whenever it becomes empty during

the run of a model.

the REBUILD

statement

Through the REBUILD statement you can manually instruct Aimms to rebuild

the internal data structures associated with one or more identifiers. During

the REBUILD statement Aimms uses a more thorough check to verify whether a

rebuild of an identifier is worthwhile prior to solving a mathematical program.

25.4 Working with the set AllIdentifiers

Working with

AllIdentifiers

Throughout your model you can use the predefined set AllIdentifiers to con-

struct and work with dynamic collections of identifiers in your model. Several

operators in Aimms support the use of a subset of AllIdentifiers instead of

an explicit list of identifier names, while other operators support the use of an

index into AllIdentifiers instead of a single explicit identifier name.

Constructing

identifier sets

Aimms offers a number of constructs that can help you to construct a mean-

ingful subset of AllIdentifiers. They are:

� set algebra with other predefined identifier subsets, and

� dynamic selection based on model query functions.

Chapter 25. Data Initialization, Verification and Control 435

Predefined

identifier sets

When compiling your model, Aimms automatically creates an identifier set for

every section in your model. Each such set contains all the identifier names

that are declared in the corresponding section. In addition, for every iden-

tifier type, Aimms fills a predeclared set AllIdentifierType (e.g. AllParameters,

AllSets) with all the identifiers of that type. The complete list of identifier type

related sets defined by Aimms can be found in the Aimms Function Reference.

You can use both type of sets to perform set algebra to construct particular

identifier subsets of interest to your model.

ExampleIf your model contains a section Unit Model, you can assign the collection of all

parameters in that section to a subset UnitModelParameters of AllIdentifiers

through the assignment

UnitModelParameters := Unit_Model * AllParameters;

Model query

functions

Another method to construct meaningful subsets of AllIdentifiers consists

of using the functions provided to query aspects of those identifiers. Selected

examples are:

� the function IdentifierDimension returning the dimension of the identi-

fier,

� the function IdentifierType returning the type of the identifier as an ele-

ment of AllIdentifierTypes,

� the function IdentifierText returning the contents of the TEXT attribute,

and

� the function IdentifierUnit returning the contents of the UNIT attribute.

These functions take as argument an element in the set AllIdentifiers.

Functions

accepting

identifier index

In addition to the functions lists above, the functions Card and ActiveCard also

accept an index into the set AllIdentifiers. They will then return the cardinal-

ity of the identifier represented by the index, or the cardinality of the active

elements of that identifier, respectively. You can also use these functions to

dynamically construct a subset of AllIdentifiers.

ExampleThe set expression

{ IndexIdentifiers in UnitModelParameters |

IdentifierDimension(IndexIdentifier) = 3 }

refers to the collection of all 3-dimensional parameter in the section Unit

Model.

Chapter 25. Data Initialization, Verification and Control 436

Working with

identifier sets

The following operators in Aimms support identifier subsets to represent a

collection of individual identifiers:

� the READ and WRITE operators,

� the EMPTY, CLEANUP, CLEANDEPENDENTS, and REBUILD operators.

If you are interested in the contents of an identifier subset, you can use the

DISPLAY operator, which will just print the identifier names contained in the

set, rather than the contents of the identifiers referred to in the identifier set

as is the case for the WRITE statement.

Functions

accepting

identifier sets

In addition to the operators above, the following Aimms functions also operate

on subsets of AllIdentifiers:

� GenerateXML,

� CaseCompareIdentifier,

� CaseCreateDifferenceFile,

� IdentifierMemory,

� GMP::Solution::SendToModelSelection,

� VariableConstraints,

� ConstraintVariables,

� ScalarValue,

� SectionIdentifiers,

� AttributeToString,

� IdentifierAttributes.

See also Section ”Model Query Functions” on page ?? of Aimms the Function

Reference.

Chapter 26

The READ and WRITE Statements

Dynamic data

transfer

In order to help you separate the model description and its input and output

data, Aimms offers the READ and WRITE statements for dynamic data transfer

between your modeling application and external data sources such as

� text data files, and

� database tables in external ODBC-compliant databases.

This chapterThis chapter first introduces the READ and WRITE statements in the form of an

extended example. Subsequently, their semantics are presented in full detail

including issues such as filtering, domain checking, and slicing.

26.1 A basic example

Getting startedThe aim of this section is to give you an overview of the READ and WRITE state-

ments through a short illustrative example. It shows how to read data from

and write data to text files and database tables. It is based on the familiar

transport problem with the following input data:

� the set Cities,

� the relation Routes from Cities to Cities,

� the parameters Supply(i) and Demand(i) for each city i, and

� the parameters Distance(i,j) and TransportCost(i,j) for each route be-

tween two cities i and j.

For the sake of simplicity, it is assumed that there is only a single output, the

actual Transport(i,j) along each route.

Format of input

data

The input data can be conveniently given in the form of tables. One for the

identifiers defined over a single city like Supply and Demand, and the other for

the identifiers defined over a tuple of cities like Distance and TransportCost.

These tables can be provided in the form of text files as in Table 26.1 (format

explained in Section 28.3). Alternatively, the data can be obtained from partic-

ular tables in a database. This example assumes the following database tables

exist:

� CityData for the one-dimensional parameters, and

Chapter 26. The READ and WRITE Statements 438

� RouteData for the two-dimensional parameters.

COMPOSITE TABLE

Cities Supply Demand

! ---------- ------ ------

Amsterdam 50

Rotterdam 100

Antwerp 75 25

Berlin 125

Paris 75

;

COMPOSITE TABLE

i j Distance TransportCost

! --------- --------- -------- -------------

Amsterdam Rotterdam 85 1.00

Amsterdam Antwerp 170 2.50

Amsterdam Berlin 660 10.00

Amsterdam Paris 510 8.25

Rotterdam Antwerp 100 1.20

Rotterdam Berlin 700 10.00

Rotterdam Paris 440 7.50

Antwerp Berlin 725 11.00

Antwerp Paris 340 5.00

Berlin Paris 1050 17.50

;

Table 26.1: Example data set for the transport model

26.1.1 Simple data transfer

Simple data

initialization

The simplest use of the READ statement is to initialize data from a fixed name

text data file, or a database table. To read all the data from each source, the

following groups of statements will suffice

read from file "transport.inp" ;

read from table CityData;

read from table RouteData;

Such statements are typically found in the body of the predefined procedure

MainInitialization.

Reading

identifier

selections

When a data source also contains data for identifiers that are of no interest to

your particular application (but may be to others), Aimms allows you to restrict

the data transfer to a specific selection of identifiers in that data source. For

instance, the following READ statement will only read the identifiers Distance

and TransportCost, not changing the current contents of the Aimms identifiers

Supply and Demand.

read Distance, TransportCost from file "transport.inp" ;

Similar identifier selections are possible when reading from a database table.

Chapter 26. The READ and WRITE Statements 439

Writing the

solution

After your model has computed the optimal transport, you may want to write

the solution Transport(i,j) to an text output file for future reference. You

can do this by calling the WRITE statement, which has equivalent syntax to

the READ statement. The transfer of Transport(i,j) to the file transport.out is

accomplished by the following WRITE statement.

write Transport to file "transport.out" ;

If you omit an identifier selection, Aimms will write all model data to the file.

When writing to a database table, Aimms can of course only transfer data for

those identifiers that are known in the table that you are writing to.

File name need

not be explicit

File data transfer is not restricted to files with a fixed name. To choose the

name of the data file either during execution or from within the end-user in-

terface, you have several options:

� replace the filename string in the READ and WRITE statements with a string-

valued parameter holding the filename, or

� use a File identifier (for text files only).

26.1.2 Set initialization and domain checking

Domain

restrictions

When you are reading the initial data of the transport model from an external

data source several situations can occur:

� you just want to initialize the set Cities from the data source,

� the set Cities has already been initialized, and you want to retrieve the

parametric data for existing cities only, or

� the set Cities has already been initialized, but you want to extend it on

the basis of the data read from the external data source.

The READ

statements

The following statements impose domain restrictions on the READ statement.

read Cities

from file "transport.inp" ;

read Supply, Demand

from file "transport.inp"

filtering i ;

read Supply, Demand

from file "transport.inp" ;

Initializing setsThe first READ statement is a straightforward initialization of the set Cities.

By default, Aimms reads in replace mode, which implies that any previous

contents of the set Cities is overwritten.

Chapter 26. The READ and WRITE Statements 440

Domain

checking

The second READ statement assumes that the set Cities has already been ini-

tialized. From all entries of the identifiers Supply and Demand it will only read

those which correspond to existing elements in the set Cities, and skip over

the data from the remaining entries.

Extending

domain sets

The third READ statement differs from the second in that the clause ’FILTERING

i’ has been omitted. As a result, Aimms will not reject data that does not

correspond to an existing label in the set Cities, but will read all available

Supply and Demand data, and extend the set Cities accordingly.

26.2 Syntax of the READ and WRITE statements

READ and WRITE

statements

In READ and WRITE statement you can specify the data source type, what data

will be transferred, and in what mode. The syntax of the statements reflect

these aspects.

Syntaxread-write-statement :

WRITE

READ selection FROM

TO FILE

TABLE data-source

IN DENSE REPLACE

COLUMNS

ROWS

BACKUP

MERGE

INSERT

MODE

CHECKING

FILTERING binding-tuple IN identifier

,

WHERE SUFFIX

= element-expression

IN set-expression ;

Chapter 26. The READ and WRITE Statements 441

selection :

binding-tuple IN identifier

data-selection

,

Data sourcesThe data source of a READ or WRITE statement in Aimms can be either

� a File represented by either

– a File identifier,

– a string constant, or

– a scalar string reference,

� a TABLE represented by either

– a DatabaseTable identifier,

– an element parameter with a range that is a subset of the prede-

clared set AllDatabaseTables

Strings for file data sources refer either to an absolute path or to a relative

path. All relative paths are taken relative to the project directory.

ExamplesAssuming that UserSelectedFile is a File identifier, and UserFilename a string

parameter, then the following statements illustrate the use of strings and File

identifiers.

read from file "C:\Data\Transport\initial.dat" ;

read from file "data\initial.dat" ;

read from file UserFileName ;

read from file UserSelectedFile ;

Specifying a

selection

The selection in a READ or WRITE statement determines which data you want to

transfer from or to a text file, or database table. A selection is a list of refer-

ences to sets, parameters, variables and constraints. During a WRITE statement,

Aimms accepts certain restrictions on each reference to restrict the amount of

data written (as explained below). Note, however, that Aimms does not accept

all types of restrictions which are syntactically allowed by the syntax diagram

of the READ and WRITE statements.

Default

selection

If you do not specify a selection during a READ statement, Aimms will transfer

the data of all identifiers stored in the table or file that can be mapped onto

identifiers in your model. If you do not specify a selection for a WRITE statement

to a text file, all identifiers declared in your model will be written. When writing

to a database table, Aimms will write data for all columns in the table as long

as they can be mapped onto Aimms identifiers.

Chapter 26. The READ and WRITE Statements 442

Filtering the

selection

You can apply the following filtering qualifiers on READ and WRITE statements

to restrict the data selection:

� the FILTERING or CHECKING clauses restrict the domain of all transferred

data in both the READ and WRITE statements, and

� an arbitrary logical condition can be imposed on each individual param-

eter and variable in a WRITE statement.

FILTERING

versus CHECKING

You can use both the FILTERING and CHECKING clause to restrict the tuples for

which data is transferred between a data source and Aimms. During a WRITE

statement there is no difference in semantics, and you can use both clauses

interchangeably. During a READ statement, however, the FILTERING clause will

skip over all data outside of the filtering domain, whereas the CHECKING clause

will issue a runtime error when the data source contains data outside of the

filtering domain. This is useful feature for catching typing errors in text data

files.

ExamplesThe following examples illustrate filtering and the use of logical conditions

imposed on index domains.

read Distance(i,j) from table RouteTable

filtering i in SourceCities, (i,j) in Routes;

write Transport((i,j) | Sum(k, Transport(i,k)) > MinimumTransport)

to table RouteTable ;

Advanced

filtering on

records

If you need more advanced filtering on the records in a database table, you can

use the database to perform this for you. You can

� define views to create temporary tables when the filtering is based on a

non-parameterized condition, or

� use stored procedures with arguments to create temporary tables when

the filtering is based on a parameterized condition.

The resulting tables can then be read using a simple form of the READ state-

ment.

Merge, replace

or backup mode

Aimms allows you to transfer data from and to a file or a database table in

merge mode, replace mode or insert mode. If you have not selected a mode in

either a READ or WRITE statement, Aimms will transfer the data in replace mode

by default, with one exception: when reading from a case difference file that

was generated by CaseCreateDifferenceFile function with diffTypes argument

equal to elementReplacement, elementAddition or elementMultiplication, the file

is always read in merge mode, so that the diffTypes can be applied in a sensible

way.

When you are writing data to a text data file, Aimms also supports a backup

mode. The insert mode can speed up writing to databases.

Chapter 26. The READ and WRITE Statements 443

Reading in

merge mode

When Aimms reads data in merge mode, it will overwrite existing elements

for all read identifiers, and add new elements as necessary. It is important to

remember that in this mode, if there is no data read for some of the existing

elements, they keep their current value.

Writing in

merge mode

When Aimms writes data in merge mode, the semantics is dependent on the

type of the data source.

� If the data source is a text file, Aimms will append the newly written data

to the end of the file.

� If the data source is a database table, Aimms will merge the new values

into the existing values, creating new records as necessary.

Reading in

replace mode

When Aimms reads data in replace mode, it will empty the existing data of all

identifiers in the identifier selection, and then read in the new data.

Writing in

replace mode

When Aimms writes data in replace mode, the semantics is again dependent on

the type of the data source.

� If the data source is a text file, Aimms will overwrite the entire contents of

the file with the newly written data. Thus, if the file also contained data

for identifiers that are not part of the current identifier selection, their

data is lost by the WRITE statement.

� If the data source is a database table, Aimms will either empty all columns

in the table that are mapped onto identifiers in the identifier selection

(default, REPLACE COLUMNS mode), or will remove all records in the table

not written by this write statement (REPLACE ROWS mode). The REPLACE

COLUMNS and REPLACE ROWS modes are discussed in more detail in Sec-

tion 27.3).

Writing in insert

mode

Writing in insert mode is only applicable when writing to databases. Essen-

tially, what it does is writing the selected data to a database table using SQL

INSERT statements. In other words, it expects that the selection of the data

that you write to the table doesn’t match any existing primary keys in the

database table. If it does, Aimms will raise an error message about duplicate

keys being written. Functionally, the insert mode is equivalent to the replace

rows mode, with the non-existing primary keys restriction. Especially when

writing to database tables which already contain a lot of rows, the speed ad-

vantage of the insert mode becomes more visible.

Writing in

backup mode

When you are transferring data to a text file, Aimms supports writing in backup

mode in addition to the merge and replace modes. The backup mode lets you

write out files which can serve as a text backup to a (binary) Aimms case file.

When writing in backup mode, Aimms

Chapter 26. The READ and WRITE Statements 444

� skips all identifiers on the identifier list which possess a nonempty defi-

nition (and, consequently, cannot be read in from a datafile),

� skips all identifiers for which the property NoSave has been set, and

� writes the contents of all remaining identifiers in such an order that,

upon reading the data from the file, all domain sets are read before any

identifiers defined over such domain sets.

Backup mode is not supported during a READ statement, or when writing to a

database.

Writing data in

a dense mode

Writing in dense mode is only applicable when writing to databases. Data in

Aimms is stored for non-default values only, and, by default, Aimms only writes

these non-default values to a database. In order to write the default values as

well to the database table at hand, you can add the dense keyword before

most of the WRITE modes discussed above. This will cause Aimms to write all

possible values, including the defaults, for all tuple combinations considered

in the WRITE statement. Care should be taken that writing in dense mode does

not lead to an excessive amount of records being stored in the database. The

mode combination merge and dense is not allowed, because it is ambiguous

whether or not a non-default entry in the database should be overwritten by a

default value of Aimms.

Replacing setsWhenever elements in a domain set have been removed by a READ statement in

replace mode, Aimms will not cleanup all identifiers defined over that domain.

Instead, it will leave it up to you to use the CLEANUP statement to remove the

inactive data that may have been created.

Domain filteringFor every READ and WRITE statement you can indicate whether or not you want

domain filtering to take place during the data transfer. If you want domain

filtering to be active, you must indicate the list of indices, or domain conditions

to be filtered in either a FILTERING of CHECKING clause. In case of ambiguity

which index position in a parameter you want to have filtered you must specify

indices in the set or parameter reference.

ExampleThe following READ statements are not accepted because both Routes and Dist-

ance are defined over Cities × Cities, and it is unclear to which position the

filtered index i refers.

read Routes from table RouteTable filtering i ;

read Distance from table RouteTable filtering i ;

This ambiguity can be resolved by explicitly adding the relevant indices as

follows.

read (i,j) in Routes from table RouteTable filtering i ;

read Distance(i,j) from table RouteTable filtering i ;

Chapter 26. The READ and WRITE Statements 445

Semantics of

domain filtering

When you have activated domain filtering on an index or index tuple, Aimms

will limit the transfer of data dependent on further index restrictions.

� During a READ statement only the data elements for which the value of

the given index (tuple) lies within the specified set are transfered. If no

further index restriction has been specified, transfer will take place for

all elements of the corresponding domain set.

� During a WRITE statement only those data elements are transferred for

which the index (tuple) is contained in the Aimms set given in the (op-

tional) IN clause. If no set has been specified, and the data source is

a database table, the transfer is restricted to only those tuples that are

already present in the table. When the data source is a text file the lat-

ter type of domain filtering is not meaningful and therefore ignored by

Aimms.

READ exampleIn the following two READ statements the data transfer for elements associated

with i and (i,j), respectively, is further restricted through the use of the sets

SourceCities and Routes.

read Distance(i,j) from table RouteTable filtering i in SourceCities ;

read Distance(i,j) from table RouteTable filtering (i,j) in Routes ;

WRITE exampleIn the following two WRITE statements, the values of the variable Transport(i,j)

are written to the database table RouteTable for those tuples that lie in the

Aimms set SelectedRoutes, or for which records in the table RouteTable are

already present, respectively.

write Transport(i,j) to table RouteTable filtering (i,j) in SelectedRoutes ;

write Transport(i,j) to table RouteTable filtering (i,j) ;

The FILTERING clause in the latter WRITE statement would have been ignored by

Aimms when the data source was a text data file.

Writing selected

suffices using

the WHERE clause

Using the WHERE clause of the WRITE statement you can instruct Aimms, for all

identifiers in the identifier selection, to write the data of either a specified suf-

fix or a set of suffices to file, rather than their level values. The WHERE clause can

only be specified during a WRITE statement to a FILE, and the corresponding set

or element expression must refer to a subset of, or element in, the predefined

set AllSuffixNames.

ExampleThe following WRITE statement will write the values of the .Violation suffix of

to the file ViolationsReport.txt for all variables in the project.

write AllVariables to file "ViolationsReport.txt" where suffix = ’Violation’;

Chapter 27

Communicating With Databases

Communicating

with databases

One of the most important capabilities of the READ and WRITE statements in

Aimms is its ability to transfer data with ODBC-compliant databases. Although

there are similarities between the basic concepts of data storage in databases

and those in Aimms, they are sufficiently different to justify a separate chapter

in this manual.

This chapterThis chapter deals with the intricacies of data transfer from and to databases.

It first discusses the link between data in Aimms and a table in a database. Then

it explains the database-specific requirements regarding the READ and WRITE

statements. Next comes a discussion on how to access stored procedures,

followed by a description how to send SQL statements directly to a particular

data source.

27.1 The DatabaseTable declaration

Database tablesYou can make a database table known to Aimms by means of a DatabaseTable

declaration in your application. Inside this declaration you can specify the

ODBC data source name of the database and the name of the database table

from which you want to read, or to which you want to write. The list of at-

tributes of a DatabaseTable is given in Table 27.1.

Attribute Value-type See also

page

IndexDomain index-domain 42

DataSource string-expression

TableName string-expression

Owner string-expression

Property ReadOnly

Mapping mapping-list

Text string 19

Comment comment string 19

Convention convention 534

Table 27.1: DatabaseTable attributes

Chapter 27. Communicating With Databases 447

The DataSource

attribute

The mandatory DataSource attribute specifies the ODBC data source name of

the database you want to link with. Its value must be a string or a string

parameter. If you are unsure about the data source name by which a particular

database is known, Aimms will help you. While completing the declaration

form of a database table, Aimms will automatically let you choose from the

available data sources on your system using the DataSource wizard. Aimms

supports the following data source types:

� ODBC file data sources (.dsn extension, only available on Windows), and

� ODBC user and system data sources (no extension), and

� ODBC connection string.

In addition, you can specify the name of an Aimms string parameter, holding

the name of any of the above data source types. If the data source you are

looking for is not available in this list, you can set up a link to that database

from within the wizard.

The TableName

attribute

With the TableName attribute you must specify the name of the table or view

within the data source to which the DatabaseTable is mapped. Once you have

provided the DataSource attribute, the TableName wizard will let you select any

table or view available in the specified data source.

ExampleThe following declaration illustrates the simplest possible DatabaseTable dec-

laration.

DatabaseTable RouteData {

DataSource : "Topological Data";

TableName : "Route Definition";

}

It will connect to an ODBC user or system data source called “Topological

Data”, and in that data source search for a table named “Route Definition”.

The Owner

attribute

The Owner attribute is for advanced use only. By default, when connecting to a

database server, you will have access to all tables and stored procedures which

are visible to you. In case a table name appears more than once, but is owned

by different users, by default a connection is made to the table instance owned

by yourself. By specifying the Owner attribute you can gain access to the table

instance owned by the indicated user.

The Property

attribute

With the Property attribute of a DatabaseTable you can specify whether the de-

clared table is ReadOnly. Specifying a database table as ReadOnly will prevent

you from inadvertently modifying its content. If you do not provide this prop-

erty, the database table will default to read-write permissions unless the server

does not allow write access.

Chapter 27. Communicating With Databases 448

The Mapping

attribute

By default, Aimms tries to map the column names used in a database table

onto the Aimms identifiers of the same name. Such an implicit mapping is, of

course, not always possible. When you link to an existing database that was not

specifically designed for your Aimms application, it is very likely that the col-

umn names do not correspond to the names of your Aimms identifiers. There-

fore, the Mapping attribute lets you override this default. The database columns

explicitly mapped through the Mapping attribute are added to the set of implicit

mappings constructed by Aimms. The column names from the database table

used in a mapping list must be quoted. If the implicit mapping is not desirable

you can provide the property No Implicit Mapping.

ExampleThe following declarations demonstrate the use of mappings in a DatabaseTable

declaration. This example assumes the set and parameter declarations of Sec-

tion 26.1 plus the existence of the relation Routes given by

Set Routes {

SubsetOf : (Cities, Cities);

}

The following mapped database declaration will take care of the necessary

column to identifier mapping.

DatabaseTable RouteData {

DataSource : "Topological Data";

TableName : "Route Definition";

Mapping : {

"from" --> i, ! name substitution

"to" --> j,

"dist" --> Distance(i,j),

"fcost" --> TransportCost(i,j,’fixed’), ! slicing

"vcost" --> TransportCost(i,j,’variable’),

("from","to") --> Routes ! mapping to relation

}

}

Name

substitution

The first three lines of the Mapping attribute provide a simple name translation

from a column in the database table to an Aimms identifier. You can only

use this type of mapping if the structural form of the database table (i.e. the

primary key) coincides with the domain of the Aimms identifier.

Mapping

columns to

slices

If the number of attributes in the primary key of a database table is lower than

the dimension of the intended Aimms identifier, you can also map a column

name to a slice of an Aimms identifier of the proper dimension, as shown in

the fcost and vcost mapping. You can do this by replacing one or more of the

indices in the identifier’s index space with a reference to a fixed element.

Chapter 27. Communicating With Databases 449

Mapping

primary key to

relation

As shown in the last line of the Mapping attribute, you can let the complete

primary key in a database table correspond with a simple set, or with a relation

(see Section 3.2.3) in Aimms. This correspondence is specified by mapping the

tuple of primary attributes of the table onto the Aimms set itself, or onto an

index into this set. The primary attributes in the tuple are mapped in a one-to-

one fashion onto the indices in the relation.

SyntaxThe syntax of the Mapping attribute is given by the following diagram.

mapping-list :

(column-name

,

)

column-name --> reference

,

The Convention

attribute

With the Convention attribute you can indicate to Aimms that the external data

is stored with the units provided in the specified convention. If the unit spec-

ified in the convention differs from the unit that Aimms uses to store its data

internally, the data is scaled at the time of transfer. For the declaration of

Conventions you are referred to Section 32.8.

Date

conversions

In addition, you can use Conventions to convert calendar data from the calendar

slot format used within your model to the format expected by the database and

vice versa. The use of Conventions for this purpose is discussed in full detail

in Section 33.10. For non-calendar related date-time values you can use the

predefined identifier OBDCDateTimeFormat to accomplish this (see Section 27.8).

27.2 Indexed database tables

Exogenous

columns in

primary key

While the Mapping attribute allows you to map data columns in a database

table onto a slice of a higher-dimensional Aimms identifier, a different type of

slicing is required when the primary key of a database table contains exogenous

columns that are of no interest to your application. Consider, for instance, the

following situations.

� You are linking to a database table that contains data for a huge set of

cities, but your model only deals with a single city that is not explicitly

part of the model formulation. For your application the city column is

exogenous.

� A table in a database contains several versions of a particular data set,

where the version number is represented by an additional version col-

umn in the table. For your application the version column is exogenous.

Chapter 27. Communicating With Databases 450

Indexed

DatabaseTables

In your Aimms application you can deal with these situations by partitioning a

single table inside the database into a set of virtual lesser-dimensional tables

indexed by the exogenous column(s). You can do this by declaring the database

table to have an IndexDomain corresponding to the sets that map onto the ex-

ogenous columns. In subsequent READ and WRITE statements you can then refer

to a particular instance of a virtual table through a reference to the database

table with an explicit set element or an element parameter.

ExampleThe following example assumes that the table "Route Definition" contains sev-

eral versions of the data, each identified by the value of an additional column

version. In the Aimms model, this column is associated with a set TableVersions

given by the following declaration.

Set TableVersions {

Index : v;

Parameter : LatestVersion;

}

The following declaration will provide a number of virtual tables indexed by v.

DatabaseTable RouteData {

IndexDomain : v;

DataSource : "Topological Data";

TableName : "Route Definition";

Mapping : {

"version" --> v,

"from" --> i,

"to" --> j,

"dist" --> Distance(i,j),

"cost" --> TransportCost(i,j)

}

}

Note that the index v in the index domain is mapped onto the column version

in the table.

Data transfer

with indexed

tables

In order to obtain the set of TableVersions you can follow one of two strategies:

� you can obtain the set of the available versions from the table "Route

Definition" itself by declaring another DatabaseTable in Aimms

DatabaseTable VersionTable {

DataSource : "Topological Data";

TableName : "Route Definition";

Mapping : {

"version" --> TableVersions

}

}

� or, you can obtain the versions from a separate table in a relational

database declared similarly as above.

A typical sequence of actions for data transfer with indexed tables could then

be the following.

Chapter 27. Communicating With Databases 451

� Read the set of all possible versions from VersionTable:

read TableVersions from table VersionTable ;

� Obtain the value of LatestVersion from within the language or the graph-

ical user interface.

� Read the data accordingly:

read Distance, TransportCost from RouteData(LatestVersion) ;

27.3 Database table restrictions

Data transfer to

single tables

The Aimms READ and WRITE statements are intended to directly transfer data to

and from a single text or case file, or a single table in a database. This is the

simplest form of communication with a database. If you need more advanced

control over the connection with a particular database, you can access stored

procedures within the database using Aimms. Such procedures can be imple-

mented by the database designer to accomplish advanced tasks that go beyond

the ordinary. The use of stored procedures is discussed in Section 27.5.

Automatic

connection

When you are connecting to a table in a database through a READ or WRITE

statement, you do not have to make a connection to the server explicitly. The

database table declaration and the ODBC configuration files on your system

provide sufficient information to allow Aimms to make the connection auto-

matically whenever needed. If you need to log on to the database, you will be

prompted with a log on screen. On some systems it is possible to store log on

information in the ODBC data source file.

Different data

representation

There is a fundamental difference in the storage of data in Aimms and the

storage of data in a database table. Whereas Aimms stores its data separately

per identifier, a database table stores the data of several indexed identifiers

in records all indexed by the same single index tuple. This difference implies

that Aimms has to impose some additional restrictions on data transfer with

database tables that are not needed when reading from or writing to either

Aimms case files or text files.

Assumptions

about database

tables

In order to be able to define the semantics of the READ and WRITE statements

to database tables in an unambiguous way, Aimms makes a number of (rea-

sonable) assumptions about the database tables in an external database. It is,

however, not always possible for Aimms to verify these assumptions, and un-

expected effects may occur when they do not hold. The following assumptions

about database tables are made.

� Every database table is in second normal form, i.e. every non-primary

column in the table is functionally dependent on the primary key.

Chapter 27. Communicating With Databases 452

� Every primary column in a database table is mapped onto an index in an

Aimms domain set.

� Every non-primary column in a database table is mapped onto a (slice of

an) Aimms identifier, such that the specific index domain of this identifier

precisely matches the primary key of the database table according to the

existing index mapping.

Assumptions

about identifier

selections

Aimms will not allow all identifier selections to be read from or written to

database tables. An identifier selection is allowed when the following condi-

tions hold for its components.

� All parameter and variable references must have the same domain after

slicing. The resulting domain must correspond to the primary key of the

database table.

� During a WRITE statement in REPLACE mode you can only write a simple

set or relation mapped onto the primary key of a database table as long

as there are no non-primary columns, or when the selection comprises

all the columns of the table.

� Aimms allows each domain set associated with a primary column in a

table of any dimension to be read from that table.

Simply statedThe above rules can be summarized by stating that the database table can be

transformed into an Aimms composite table for the indexed identifiers in it.

Selections are

sparse

Identifier selections in READ and WRITE statements form a one-to-one correspon-

dence with a sparse set of records in the database table. During a READ state-

ment the sparsity pattern is determined by all the records in the database

table. During a WRITE statement the sparsity pattern is determined by all in-

dexed identifiers in the selection. Records will be written for only those tuples

for which at least one of the indexed identifiers or tuple references has a non-

default value. Thus, the transferred data resulting from a WRITE statement is

equivalent to the single composite table in Aimms for all indexed identifiers in

the selection.

Creation of

records

Writing data to a database in either merge or replace mode may lead to the

creation of new records in a database table. New records will be created when

Aimms writes a tuple for a key for which no record is available. If the table has

non-primary attributes for which no data is written, Aimms will leave these

attributes empty when it creates new rows.

Removal of

records: REPLACE

COLUMNS/ROWS

mode

Aimms supports two replace modes for writing: REPLACE COLUMNS mode (default)

and REPLACE ROWS mode.

� In REPLACE or REPLACE COLUMNS mode, Aimms will only remove data from

columns mapped onto identifiers in your model. Rows will only be re-

Chapter 27. Communicating With Databases 453

moved from the database table if all columns in the table are mapped

onto identifiers in your model.

� In REPLACE ROWS mode, Aimms will remove all rows whose primary key

does not correspond to an index tuple being written during the WRITE

statement. Columns that are not mapped onto identifiers in your model,

either are assigned their default value specified in the database, or a NULL

value otherwise. As a consequence, you should make sure that all non-

nullable columns in the table are mapped onto identifiers in your model

(or have a default value in the database) during REPLACE ROWS mode.

Aimms will only remove records if the selection you are writing comprises all

the columns in the database table, including the set mapped onto the primary

key. In this way, Aimms ensures that no data is lost in the table inadvertently.

Filtering on

records

Using the DatabaseTable interface it is only possible to filter records using sim-

ple domain conditions formulated in a FILTERING clause. For huge database

tables it may be desirable to use more advanced filtering techniques designed

to restrict the number of records to be transferred. This can be done inside

the database application itself in the following two ways.

� Create a view in the database that does the filtering for you, and then use

the standard READ statement. This is the most straightforward approach,

and is sufficient if the filter does not depend on Aimms data.

� Create a stored procedure in the database that can be activated through a

DatabaseProcedure in Aimms. This allows you to filter records dependent

on the value of some Aimms identifiers that are used as arguments of the

stored procedure (see Section 27.5).

27.4 Data removal

Data removalThe Aimms database interface offers limited capabilities to manage the tables

in a database. Such management is typically done through the use of stored

procedures within a database. Aimms, however, offers you the possibility to re-

move data from a database table by means of the EMPTY or TRUNCATE statement.

Empty database

columns

The EMPTY statement can remove data from a database table in two manners.

� When you use a database table identifier in the identifier selection in an

EMPTY statement, Aimms will remove all data from that table.

� When you use a database table identifier behind the IN clause in an EMPTY

statement, Aimms will empty all columns in the corresponding database

table which are mapped onto the Aimms identifiers in the identifier se-

lection of that EMPTY statement.

For more details on the EMPTY statement, refer to Sections 25.3.

Chapter 27. Communicating With Databases 454

ExamplesThe examples in this paragraph illustrate various uses of the EMPTY statement

applied to database tables.

� The following statement removes all data from the table CityTable.

empty CityTable ;

� The following statement removes the data from the table CityTable that

maps onto the Aimms identifier Demand.

empty Demand in CityTable ;

� The following statement removes the data associated with the version

OldVersion from the indexed table RouteTable(v). The data associated

with other versions will remain intact.

empty RouteTable(OldVersion) ;

� The following statement removes the data from the table RouteTable(v)

for all versions v in the set Versions.

empty RouteTable;

� The following statement removes the data from the table RouteTable(v)

for all versions sv in the subset SelectedVersions of the set Versions.

empty RouteTable(sv);

� The following statement removes the data in the column mapped onto

the Aimms identifier Transport and associated with the version Latest-

Version from the indexed table RouteTable(v).

empty Transport in RouteTable(LatestVersion) ;

Truncate

database tables

Depending on the type of the underlying data source you are connecting to,

you can use the TRUNCATE statement to empty the database table in a very fast

way. The drawbacks of the TRUNCATE statement are that not all type of data

sources support the

tt TRUNCATE statement and rollback support for the TRUNCATE operation is

also depending on the type of data source you are connecting to. In case the

underlying data source does not support truncating, depending on the setting

of the option Warning truncate table a warning is issued and Aimms will use

the slower EMPTY statement to empty the table.

ExampleThe following statement removes all data from the table CityTable at once.

truncate table CityTable ;

Chapter 27. Communicating With Databases 455

27.5 Executing stored procedures and SQL queries

Sophisticated

control

When transferring data from or to a database table, you may need more sophis-

ticated control over the data link than offered by the standard DatabaseTable

interface. Aimms offers you this additional control by letting you have access

to stored procedures as well as letting you execute SQL statements directly.

The following two paragraphs provide some examples where such control may

be useful.

Useful for data

processing

Your application may require its data in a somewhat different form than is

directly available in the database. In this case you may have to perform some

pre-processing of the data in the database. Similarly, you may want to perform

post-processing in the database after writing data to it. In such circumstances

you may call a stored procedure to perform these tasks for you.

Useful for

dynamic access

In some cases, the required data for your application may need to be the result

of a parameterized query of the database, i.e. a database table whose contents

is dependent on one or more parameters which are only known during run-

time. Such dynamic tables are usually obtained as the result set of a stored

procedure or of a parameterized query. In this case Aimms will allow you to

use a stored procedure call or a dynamically composed SQL query inside the

READ statement as if it were a database table. Please note that it’s currently

not possible to read a result set from an Oracle stored procedure, since Oracle

uses a non-standard mechanism for that (involving so-called ref cursors).

The Database-

Procedure

declaration

Every stored procedure or SQL query that you want to call from within Aimms

must be declared as a DatabaseProcedure within your application. The at-

tributes of a DatabaseProcedure are listed in Table 27.2.

Attribute Value type See also

page

DataSource string 447

Arguments argument-list 143

StoredProcedure string-expression

SQLQuery string-expression

Owner string-expression 447

Property UseResultSet

Mapping mapping-list 448

Comment comment string 19

Convention convention 449, 534

Table 27.2: DatabaseProcedure attributes

Chapter 27. Communicating With Databases 456

SQL query or

stored

procedure

A DatabaseProcedure in Aimms can represent either a (dynamically created) SQL

query or a call to a stored procedure. Aimms makes the distinction on the basis

of the StoredProcedure and SQLQuery attributes. If the StoredProcedure attribute

is nonempty, Aimms assumes that the DatabaseProcedure represents a stored

procedure and expects the SQLQuery attribute to be empty, and vice versa.

The

StoredProcedure

attribute

With the StoredProcedure attribute you can specify the name of the stored pro-

cedure within the ODBC data source that you want to be called. The Stored-

Procedure wizard will let you select any stored procedure name available within

the specified ODBC data source. If the stored procedure that you want to call

is not owned by yourself, or if there are name conflicts, you should specify the

owner with the Owner attribute.

The SQLQuery

attribute

You can use the SQLQuery attribute to specify the SQL query that you want to

be executed when the DatabaseProcedure is called. The value of this attribute

can be any string expression, allowing you to generate a dynamic SQL query

using the arguments of the DatabaseProcedure.

The Arguments

attribute

With the Arguments attribute you can indicate the list of scalar arguments of

the database procedure. The specified arguments must have a matching decla-

ration in a declaration section local to the DatabaseProcedure. If the Database-

Procedure represents a stored procedure, the argument list is interpreted as the

argument list of the stored procedure. When you use the StoredProcedure wiz-

ard, Aimms will automatically enter the argument list, including their Aimms

prototype, for you. For a DatabaseProcedure representing an SQL query, you

can use the arguments in composing the SQL query string.

Input-output

type

For SQL queries all arguments must be Input arguments, as the query cannot

modify them. For stored procedures, the StoredProcedure wizard will by de-

fault set the input-output type of each argument equal to its SQL input-output

type. However, if you want to discard the result of any output argument, you

can change its type to Input.

The Property

attribute

With the Property attribute of a DatabaseProcedure you can indicate the in-

tended use of the procedure.

� When you do not specify the property UseResultSet, Aimms lets you call

the DatabaseProcedure as if it were an Aimms procedure.

� When you do specify the property UseResultSet, Aimms lets you use the

DatabaseProcedure as a parameterized table in the READ statement. In

that case, you can also provide a Mapping attribute to specify the map-

ping from column names in the result set onto the corresponding Aimms

identifiers.

Chapter 27. Communicating With Databases 457

Stored

procedure

examples

The following declarations will make two stored procedures contained in the

data source “Topological Data” available in your Aimms application. The local

declarations of all arguments are omitted for the sake of brevity. They are all

assumed to be Input arguments.

DatabaseProcedure StoreSingleTransport {

DataSource : "Topological Data";

StoredProcedure : "SP_STORE_SINGLE_TRANSPORT";

Arguments : (from, to, transport);

}

DatabaseProcedure SelectTransportNetwork {

DataSource : "Topological Data";

StoredProcedure : "SP_DISTANCE";

Arguments : MaxDistance;

Property : UseResultSet;

Mapping : {

"from" --> i,

"to" --> j,

"dist" --> Distance(i,j),

("from","to") --> Routes

}

}

The procedure StoreSingleTransport can be used like any other Aimms proce-

dure, as in the following statement.

StoreSingleTransport(’Amsterdam’, ’Rotterdam’,

Transport(’Amsterdam’, ’Rotterdam’));

The second procedure SelectTransportNetwork can be used in a READ statement

as if it were a database table, as illustrated below.

read from table SelectTransportNetwork(UserSelectedDistance);

SQL query

example

The following example illustrates the declaration of a DatabaseProcedure rep-

resenting a direct SQL query. Its aim is to delete those records in the specified

table for which the column VersionCol equals the specified version. Both argu-

ments must be declared as local Input string parameters.

DatabaseProcedure DeleteTableVersion {

DataSource : "Topological Data";

Arguments : (DeleteTable, DeleteVersion);

SQLQuery : {

FormatString("DELETE FROM %s WHERE VersionCol = ’%s’",

DeleteTable, DeleteVersion)

}

}

Executing SQL

statements

directly

In addition to executing SQL queries through DatabaseProcedure, Aimms also

allows you to execute SQL statements directly within a data source. The in-

terface for this mechanism is simple, and forms a convenient alternative for a

DatabaseProcedure when you want to execute a single SQL statement only once.

Chapter 27. Communicating With Databases 458

The procedure

DirectSQL

You can send SQL statements to a data source by calling the procedure Direct-

SQL with the following prototype:

� DirectSQL(data-source, SQL-string)

Both arguments of the procedure should be string expressions. Note that in

case the SQL statement also produces a result set, then this set is ignored by

Aimms.

ExampleThe following call to DirectSQL drops a table called "Temporary Table" from the

data source "Topological Data".

DirectSQL("Topological Data",

"DROP TABLE Temporary_Table");

Use

FormatString

The procedure DirectSQL does not offer direct capabilities for parameterizing

the SQL string with Aimms data. Instead, you can use the function FormatString

to construct symbolic SQL statements with terms based on Aimms identifiers.

27.6 Database transactions

TransactionsBy default, Aimms places a transaction around any single WRITE statement to a

database table. In this way, Aimms makes sure that the complete WRITE state-

ment can be rolled back in the event of a database error during the execution

of that WRITE statement. You can increase the amount of transactional control

over READ, WRITE statements and SQL queries through the procedures

� StartTransaction([isolation-level])

� CommitTransaction

� RollbackTransaction

The procedure

StartTransac-

tion

With the procedure StartTransaction you can manually initiate a database

transaction. As a consequence, you can commit or roll back the changes in

the database caused by all WRITE statements and SQL queries executed within

the context of the transaction simultaneously. You can specify the exact se-

mantics of the transaction through its only (optional) argument isolation-level,

which must be an element from the predefined set AllIsolationLevels. You

cannot call StartTransaction recursively, i.e. you must call CommitTransaction

or CallbackTransaction prior to the next call to StartTransaction. The pro-

cedure returns a value of 1 if the transaction was started successfully, or 0

otherwise.

Chapter 27. Communicating With Databases 459

The set AllIso-

lationLevels

Besides the ability to commit roll back all the changes made to the database

during the transaction, Aimms supports the following isolation levels for trans-

actions:

� ReadUncommitted: a transaction operating at this level can see uncommit-

ted changes made by other transactions,

� ReadCommitted (default): a transaction operating at this level cannot see

changes made by other transactions until those transactions are commit-

ted,

� RepeatableRead: a transaction operating at this level is guaranteed not to

see any changes made by other transactions in values it has already read

during the transaction, and

� Serializable: a transaction operating at this level guarantees that all con-

current transactions interact only in ways that produce the same effect

as if each transaction were entirely executed one after the other.

Note that not all database servers may support all of these isolation levels, and

may cause the call to StartTransaction to fail.

The procedure

CommitTransac-

tion

Through the procedure CommitTransaction you can commit all the changes that

you have made to the database since the previous call to StartTransaction. The

function returns a value of 1 of the changes are committed successfully, or 0

otherwise.

The procedure

RollbackTrans-

action

With the procedure RollbackTransaction you can roll back (i.e. undo) all the

changes that you have made to the database since the previous call to Start-

Transaction. The function returns a value of 1 of the changes are rolled back

successfully, or 0 otherwise.

27.7 Testing the presence of data sources and tables

Fail safe accessWhen you want to run an Aimms-based application on the computer of an

end-user, you may want to make sure that the data sources and database ta-

bles required to run the application successfully are present, prior to actually

initiating any data transfer. Normally, trying to execute a READ and WRITE state-

ments on a nonexisting data source or database table causes Aimms to generate

run-time errors, which might be confusing to your end-users. By first verifying

the presence of the required data sources and database tables, you are able to

generate error messages which are more meaningful to your end-users.

SyntaxYou can test the presence of data sources and database tables on a host com-

puter through the functions

� TestDataSource(data-source)

� TestDatabaseTable(data-source, table-name)

Chapter 27. Communicating With Databases 460

Both data-source and table-name are string arguments.

The procedure

TestDataSource

With the procedure TestDataSource you can check whether the ODBC data

source named data-source is present on the host computer on which your

Aimms application is being run. The procedure returns 1 if the data source

is present, or 0 otherwise.

The procedure

TestDatabase-

Table

The function TestDatabaseTable lets you check whether a given table named

table-name exists in the data source named data-source. The procedure re-

turns 1 if the database table is present in the given data source, or 0 otherwise.

However, the procedure TestDatabaseTable will not let you check whether the

table contains the columns which you expect it to contain. If you try to access

columns in the database table which are not present during either a READ or

WRITE statement, Aimms will still generate a run-time error to this effect.

27.8 Dealing with date-time values

Mapping

date-time values

Special care is required when you want to read data from or write data to a

database which represents a date, a time, or a time stamp in the database

table. The ODBC technology uses a fixed string format for each of these data

types. Most likely, this format will not coincide with the format that you use

to store dates and times in your modeling application.

Mapped onto

calendars

When a column in a database table containing date-time values maps onto

a Calendar in your Aimms model, Aimms will automatically convert the date-

time values to the associated time slot format of the calendar, and store the

corresponding values for the appropriate time slots.

Time zone

translation

By default, Aimms assumes that the date-time values mapped onto a particular

CALENDAR are stored in the database according to the same time zone (ignoring

daylight saving time) as specified in the TimeslotFormat attribute of that calen-

dar (see also Section 33.7.4). In the absence of such a time zone specification,

Aimms will assume the local time zone (without daylight saving time). You can

override the time zone through the TimeslotFormat attribute of a Convention.

The use of Conventions with respect to Calendar is discussed in full detail in

Section 33.10.

The ODBCDate-

TimeFormat

parameter

If a date-time column in a database table does not map onto a Calendar in

your model, you can still convert the ODBC date-time format into the date- or

time representation of your preference, using the predefined string parame-

ter ODBCDateTimeFormat defined over the set of AllIdentifiers. With it, you can

specify, on a per identifier basis, the particular format that Aimms should use

to store dates and/or times using the formats discussed in Section 33.7. Aimms

Chapter 27. Communicating With Databases 461

will never perform a time zone conversion for non-calendar data, and will ig-

nore ODBCDateTimeFormat when it contains a date-time format specification for

a CALENDAR.

Unmapped

columns

If you do not specify a date-time format for a particular identifier, and the

column does not map onto a Calendar, Aimms will assume the fixed ODBC

format. These formats are:

� YYYY-MM-DD hh:mm:ss.tttttt for date-time columns,

� YYYY-MM-DD for date columns, and

� hh:mm:ss for time columns.

When you are unsure about the specific type of a date/time/date-time column

in the database table during a WRITE action, you can always store the Aimms

data in date-time format, as Aimms can convert these to both the date and

time format. During a READ action, Aimms will always translate into the type

for the column type.

ExampleA stock ordering model contains the following identifiers:

� the set Products with index p, containing all products kept in stock,

� an ordinary set OrderDates with index d, containing all ordering dates,

and

� a string parameter ArrivalTime(p,d) containing the arrival time of the

goods in the warehouse.

The order dates should be of the format ’140319’, whilst the arrival times

should be formatted as ’12:30 PM’ or ’9:01 AM’. Using the time specifiers of Sec-

tion 33.7, you can accomplish this through the following assignments to the

predefined parameter ODBCDateTimeFormat:

ODBCDateTimeFormat(’OrderDates’) := "%y%m%d";

ODBCDateTimeFormat(’ArrivalTime’) := "%h:%M %p";

Chapter 28

Format of Text Data Files

This chapterData provided in text data files can be provided in scalar, list or tabular format.

While the scalar and list formats can also be used in ordinary expressions, the

tabular formats are only allowed for data initialization. This chapter discusses

the general format of text data files with special emphasis on the two possible

tabular formats. Data provided in text files can only be read through the use

of the READ statement which is discussed in Chapter 26.2.

28.1 Text data files

Allowed text

formats

Text data files must contain one or a sequence of identifier assignments with a

constant right-hand side. All assignments must be terminated by a semi-colon.

The following constant formats can be assigned:

� assignment of scalar constants,

� assignment of constant enumerated set expressions,

� assignment of constant enumerated list expressions,

� assignment of constant tabular expressions, and

� assignment via composite tables.

The first three formats can also be used in ordinary expressions, and have

been discussed in Chapters 5 and 6. The tabular and composite table formats

are mostly placed in external data files, and will be discussed in this chapter.

Aimms

generated

output

When you use the WRITE statement to write the contents of some or all identi-

fiers in your model to a text file, Aimms will select the appropriate format and

write the resulting output accordingly. If you want actual control over the way

identifiers are printed, you should use the PUT or DISPLAY statements (see also

Sections 31.2 and 31.3).

Easily generatedThe text formats allowed in Aimms are straightforward, and it is not difficult

to generate these formats either manually or through an external program. As

a result, text files form an ideal input medium when you quickly need to create

a small data set to test your Aimms application, or when data is obtained from

a program to which a direct link cannot be made.

Chapter 28. Format of Text Data Files 463

ExampleThe following initialization statements illustrate an arrangement of assign-

ments of scalar constants, constant enumerated sets and lists which can be

used in an text data file.

Cities := DATA { Amsterdam, Rotterdam, Antwerp, Berlin, Paris } ;

Supply(i) := DATA { Amsterdam : 50,

Rotterdam : 100,

Antwerp : 75 } ;

PricePerMile := 50 ;

LargestCity := ’Paris’ ;

Dimensions

must match

There is an important rule that applies to any data initialization statement in

an text data file: the dimensions of left-hand side identifier and the right-hand

side expressions must be equal. For instance, the assignment

Supply(i) := 100 ;

cannot be made inside an text data file for data initialization. Of course, the

above statement is a valid assignment when used inside a procedure in Aimms.

Reducing the

dimension

Sometimes it is more convenient to initialize multidimensional parameters

and variables using several tables of lesser dimension than by providing a

huge table covering the full index space at once. This is especially convenient

when data in your model is supplied in natural portions (for instance, all city-

dependent data separate for each city). Aimms helps you in these situations by

allowing you to initialize a slice of a parameter or a variable.

Sliced

initialization

You can specify a slice of a non-scalar identifier by replacing one or more of its

indices by explicit elements. The result of a slice can be either a scalar quantity

which you can initialize by assigning a scalar, or a non-scalar quantity which

you can initialize using either a enumerated list, a table, or a composite table.

ExampleThe following data assignments illustrate valid examples of sliced initializa-

tion.

Supply(’Amsterdam’) := 75;

Distance(’Amsterdam’,j) := DATA { Rotterdam : 85,

Antwerp : 170,

Berlin : 660,

Paris : 530 } ;

Chapter 28. Format of Text Data Files 464

28.2 Tabular expressions

Tables for

initialization

For multidimensional quantities the table format often provides the most nat-

ural structure for data entry because elements are repeated less often. Tables

can be used in text data files and in the InitialData attribute inside the decla-

ration of an identifier.

Two-dimen-

sional views

A table is a two-dimensional view of a multidimensional quantity. The index

tuple of the quantity is split into two parts: row identifiers and column identi-

fiers. Indices may not be permuted.

ExampleThe following example illustrates a simple example of the table format.

Distance(i,j) := DATA TABLE

Rotterdam Antwerp Berlin Paris

! --------- ------- ------ -----

Amsterdam 85 170 660 510

Rotterdam 100 700 440

Antwerp 725 340

Berlin 1050

;

The first line of a table (after the keyword DATA TABLE) contains the column

identifiers. Each subsequent line contains a row identifier followed by the

table entries.

Multi-

dimensional

entries

Row and column identifiers may be set elements, tuples of elements, or tuples

containing element ranges. As a result, multidimensional identifiers can still

be captured within the two-dimensional framework of a table.

Proper spacingColumn identifiers must be separated by at least one space. Aimms keeps

track of the column width by maintaining the first and last position used by

each column identifier. Any entry must intersect only one column and is un-

derstood to be part of that column. Aimms will reject any entry that intersects

two columns, or falls between them.

Continuation

of tables with +

Even though the table format is a convenient way to enter data, the number

of columns is always restricted by the width of a line. However, by placing a

+ on a new line you can continue a table by repeating the table format. Row

identifiers and column identifiers can be repeated in each block separated by

the + sign, but must be unique within a block.

Chapter 28. Format of Text Data Files 465

ExampleThe following table illustrates a valid example of table continuation, equivalent

with the previous example.

Distance(i,j) := DATA TABLE

Rotterdam Antwerp

! --------- -------

Amsterdam 85 170

Rotterdam 100

+

Berlin Paris

! ------ -----

Amsterdam 660 510

Rotterdam 700 440

Antwerp 725 340

Berlin 1050

;

Data and

membership

tables

Tables can be used for the initialization of both parameters and sets. When

used for parameter initialization, table entries are either blank or contain ex-

plicit numbers, quoted or unquoted set elements and quoted strings. Entries

in tables used for set initialization are either blank or contain a “*” denoting

membership.

SyntaxThe detailed syntax of a table constant is given by the following diagram, where

the symbol “\n” stands for the newline character.

table :

DATA TABLE \n table-header \n table-row

\n

+

table-header :

element-tuple

table-row :

element-tuple constant

*

Chapter 28. Format of Text Data Files 466

28.3 Composite tables

Multiple

identifiers

A composite table is a bulk form of initialization, and is similar in structure to

a table in a database. Using a composite table you can initialize simple sets,

relations, parameters, and variables in a single statement. Composite tables

always form a single block, and can only be used in text data files.

FormatThe first line of a composite table contains column identifiers that define the

index columns and the quantity columns. The subsequent lines contain data

entries. Like in a tabular expression, entries in a composite table may be ei-

ther blank or contain explicit numbers, quoted or unquoted set elements and

quoted strings, depending on the type of the identifier associated with a col-

umn. Blank entries in the quantity columns are treated as “no assignment.”,

while blank entries in the index columns are not allowed. All data entries must

lie directly below their corresponding column identifier as in regular tables.

Indices must

come first

The full index space is declared in the first group of column identifiers, and

is comparable to the primary key in a database table. The remaining column

identifiers declare various quantities that must share the identical index space.

Note that, unlike in tabular expressions, index columns in a data entry row of

a composite table cannot refer to tuples or ranges of elements, but only to

single set elements.

ExampleThe following statement illustrates a valid example of a composite table. It ini-

tializes the relation Routes, as well as the parameters Distance and TransportCost,

all of which are defined over the index space (i, j).

COMPOSITE TABLE

i j Routes Distance TransportCost

! --------- --------- ------ -------- -------------

Amsterdam Rotterdam * 85 1.00

Amsterdam Antwerp * 170 2.50

Amsterdam Berlin 660 10.00

Amsterdam Paris * 510 8.25

Rotterdam Antwerp * 100 1.20

Rotterdam Berlin * 700 10.00

Rotterdam Paris 440 7.50

Antwerp Berlin * 725 11.00

Antwerp Paris * 340 5.00

Berlin Paris 1050 17.50

;

Chapter 28. Format of Text Data Files 467

SyntaxThe detailed syntax of the composite table is given by the following diagram,

where the symbol “\n” stands for the newline character.

composite-table :

COMPOSITE TABLE \n composite-header \n

composite-row \n ;

composite-header :

index reference

composite-row :

element constant

Chapter 29

Reading and Writing Spreadsheet Data

Treating Excel

as a database

While it is technically possible to exchange data with Excel through the READ

and WRITE statements using the ODBC database connectivity interfaces (see

Chapter 27), the Excel ODBC drivers have many limitations. Essential internal

SQL statements like UPDATE and DELETE are not supported by these interfaces,

effectively making the READ statement the only Aimms statement which might

be used in this setup. For this reason, we strongly recommend you not to

use this setup, but to consider to use the spreadsheet functions, described in

this chapter, instead. Please note that there are no ODBC drivers available for

OpenOffice Calc, so the remarks above apply to the Excel case only.

The Excel

Add-In

On the other hand, from within Excel, it is possible to exchange data with an

Aimms model in a variety of list and tabular formats using the Excel add-in

provided with Aimms. The Excel add-in is described in full detail in the Excel

Add-In User’s Guide.

The OpenOffice

Calc function

library

From Aimms version 3.12 FR1 on, it is also possible to communicate with

OpenOffice Calc workbooks from within the Aimms model (there is no equiva-

lent of the Excel add-in for OpenOffice Calc). The function library is the same

as used for the communication with Excel from within the Aimms model. To

use the functions with OpenOffice Calc workbooks instead of Excel workbooks,

simply use the extension .ods in the WorkbookName argument of the functions.

This chapterThis chapter provides a brief description of an Aimms function library that

allows you programmatic access, from within your model, to the extensive data

exchange capabilities provided by the Excel add-in.

29.1 An example

The Excel

transport

example. . .

To illustrate the functionality of the Excel add-in, the Aimms distribution con-

tains an example, which provides a simple Excel workbook that illustrates the

use of the Excel add-in. In this example workbook, all the input and output

data of a transport model in Aimms is retained in the workbook and exchanged

with Aimms using the data exchange functionality provided by the Excel add-in.

You can find the example in the Examples directory of your Aimms installation.

Chapter 29. Reading and Writing Spreadsheet Data 469

. . . started from

within Aimms

In this section, you will learn how the same data exchange could be accom-

plished from within your model using the spreadsheet function library of

Aimms. The source code illustrated in this section is contained in the Aimms

model accompanying the Excel Link example workbook. Thus, if you run this

model in a stand-alone way from within Aimms, the Excel Link example also

serves as an example of the spreadsheet function library.

Retrieving the

input data

The input data of the transport model consists of:

� a set Depots with index d,

� a set Customers with index c,

� a parameter Supply(d),

� a parameter Demand(c), and

� a parameter UnitTransportCost(d,c).

Using the spreadsheet function library, the following function calls retrieve

all input data from the Excel workbook whose name is stored in the string

parameter WorkbookName.

Spreadsheet::SetActiveSheet(WorkbookName, "Transport Model");

Spreadsheet::RetrieveSet(WorkbookName, Depots, "DepotsRange");

Spreadsheet::RetrieveSet(WorkbookName, Customers, "CustomersRange");

Spreadsheet::RetrieveParameter(WorkbookName, Supply, "SupplyRange");

Spreadsheet::RetrieveParameter(WorkbookName, Demand, "DemandRange");

Spreadsheet::RetrieveTable(WorkbookName, UnitTransportCost,

"UnitTransportRange", "DepotsRange", "CustomersRange");

This sequence of function calls, with the exception of the first call, is the direct

counterpart of the sequence of actions in the Excel workbook example used to

pass the model data to the Aimms model.

ExplainedBy calling the function Spreadsheet::SetActiveSheet, you indicate to Aimms

that all following calls operate on a single sheet, allowing you to omit the sheet

name as an optional argument in subsequent calls. Through the functions

� Spreadsheet::RetrieveSet,

� Spreadsheet::RetrieveParameter, and

� Spreadsheet::RetrieveTable,

you indicate to Aimms that the corresponding set and parameter data must be

obtained from the specified named Excel ranges. The functionality of these

functions is exactly the same as the functionality of the corresponding actions

in the Excel add-in. Note that ranges can also be described using the standard

A1 and R1C1 styles of Excel.

Chapter 29. Reading and Writing Spreadsheet Data 470

Writing back the

solution

The input data of the transport model consists of:

� a variable Transport(d,c), and

� a variable TotalCost containing the objective value of the optimization

model.

These values can be stored in the given workbook using the following function

calls.

Spreadsheet::SetActiveSheet(WorkbookName, "Transport Model");

Spreadsheet::AssignParameter(WorkbookName, Transport, "TransportRange", sparse: 1);

Spreadsheet::AssignValue(WorkbookName, TotalCost, "TotalCostRange");

ExplainedAgain, these functions provide exactly the same functionality as the corre-

sponding actions in the Excel add-in, and the sequence of function calls corre-

sponds in a one-to-one fashion to the sequence of actions in the Excel work-

book example to retrieve the solution back from Aimms. Through the optional

sparse argument of Spreadsheet::AssignParameter you can indicate whether

zero values should be passed as 0.0 or as a blank.

Running a

macro

The following function call illustrates how a macro contained in a workbook

can be run from within your Aimms model.

Spreadsheet::RunMacro(WorkbookName, "AssignRandomTransportCost");

In the Excel Link example this macro is used to randomize the values of the

range holding the values of UnitTransportCost. After re-retrieving the input

data again and solving the model, this may result in a different optimal solu-

tion to the transport model.

29.2 Function overview

Function

overview

In this section you will find an overview of all the functions provided by the

spreadsheet function library. The function library contains both

� control functions, and

� data exchange functions.

All functions are described in full detail in the Function Reference.

Function

naming

From Aimms 3.12 Feature Release 1 on, the first part of the function names

has changed from Excel... to the more general Spreadsheet::..., to reflect

the fact that the functions are not exclusively used to communicate with Ex-

cel anymore. When you want to work with an OpenOffice Calc workbook, the

WorkbookName argument of the functions should end in .ods (which is the ex-

tension of Calc workbooks). Any other ending of this argument will result in

Aimms operating on an Excel workbook.

Chapter 29. Reading and Writing Spreadsheet Data 471

Control

functions

The control functions listed in Table 29.1 allow you to perform actions such as

opening and closing workbooks and worksheets, copying and printing ranges,

and running macros contained in the workbook.

Not in Excel

add-in

The control functions listed in Table 29.1 do not have a direct counterpart

in the Aimms Excel add-in. They represent a subset of common spreadsheet

commands, which may be convenient when reading and writing data to an

Excel or OpenOffice Calc workbook.

Procedure Description

Spreadsheet::CreateWorkbook Creates a workbook

Spreadsheet::SaveWorkbook Saves an opened workbook

Spreadsheet::CloseWorkbook Closes an opened workbook

Spreadsheet::AddNewSheet Adds a new sheet to a workbook

Spreadsheet::DeleteSheet Delete a sheet from a workbook

Spreadsheet::SetActiveSheet Sets the currently active sheet

Spreadsheet::Print Prints a range from a workbook

Spreadsheet::ClearRange Clears the specified range

Spreadsheet::CopyRange Copies a source into a destination

range

Spreadsheet::SetVisibility Changes the visibility of a

workbook

Spreadsheet::SetUpdateLinksBehavior Sets the behavior w.r.t. linked

workbooks

Spreadsheet::ColumnName Returns the name of a numbered

column

Spreadsheet::ColumnNumber Returns the number of a named

column

Spreadsheet::RunMacro Runs the specified macro

Figure 29.1: Spreadsheet control functions

Data exchange

functions

The functions listed in table 29.2 can be used to exchange set data, scalar

values, one- and two-dimensional identifiers, and general multi-dimensional

identifiers with tabular ranges in an Excel or Calc sheet. Each of these functions

corresponds to an associated action in the Excel add-in.

Chapter 29. Reading and Writing Spreadsheet Data 472

Function Description

Spreadsheet::AssignSet Assigns set elements to specified range

Spreadsheet::RetrieveSet Fills set with elements from specified

range

Spreadsheet::AssignValue Assigns scalar value to specified range

Spreadsheet::RetrieveValue Fills scalar parameter from specified

range

Spreadsheet::AssignParameter Assigns 1- or 2-dimensional parameter

to raange

Spreadsheet::RetrieveParameter Fills 1- or 2-dimensional parameter

from range

Spreadsheet::AssignTable Assigns multi-dimensional parameter to

range

Spreadsheet::RetrieveTable Fills multi-dimensional parameter from

range

Figure 29.2: Spreadsheet data exchange functions

Chapter 30

Reading and Writing XML Data

This chapterThe Extensible Markup Language (XML) is a universal format for exchang-

ing structured documents and data on the web. For those unfamiliar with

XML, Section 30.1 provides a short introduction. It is taken literally from

http://www.w3.org/XML/1999/XML-in-10-points, and is copyrighted c© 1999–

2000 by the W3C organization. Sections 30.2 onwards explain in detail how

Aimms lets you employ the XML data format from within your Aimms applica-

tions.

Further

information

about XML

If you are unfamiliar with XML, the explanation given here will probably not be

sufficient. The best starting point to obtain further information about XML, as

well as references to specific XML specifications, formats and tools is the W3C

XML site http://www.w3.org/XML/.

30.1 XML in 10 points

XML is for

structuring data

Structured data includes things like spreadsheets, address books, configura-

tion parameters, financial transactions, and technical drawings. XML is a set of

rules (you may also think of them as guidelines or conventions) for designing

text formats that let you structure your data. XML is not a programming lan-

guage, and you don’t have to be a programmer to use it or learn it. XML makes

it easy for a computer to generate data, read data, and ensure that the data

structure is unambiguous. XML avoids common pitfalls in language design: it

is extensible, platform-independent, and it supports internationalization and

localization. XML is fully Unicode-compliant.

XML looks a bit

like HTML

Like HTML, XML makes use of tags (words bracketed by ’<’ and ’>’) and at-

tributes (of the form name="value"). While HTML specifies what each tag and

attribute means, and often how the text between them will look in a browser,

XML uses the tags only to delimit pieces of data, and leaves the interpretation

of the data completely to the application that reads it. In other words, if you

see “<p>” in an XML file, do not assume it is a paragraph. Depending on the

context, it may be a price, a parameter, a person, a p. . . (and who says it has to

be a word with a “p”?).

http://www.w3.org/XML/1999/XML-in-10-points
http://www.w3.org/XML

Chapter 30. Reading and Writing XML Data 474

XML is text, but

isn’t meant to

be read

Programs that produce spreadsheets, address books, and other structured

data often store that data on disk, using either a binary or text format. One

advantage of a text format is that it allows people, if necessary, to look at the

data without the program that produced it; in a pinch, you can read a text

format with your favorite text editor. Text formats also allow developers to

more easily debug applications. Like HTML, XML files are text files that people

shouldn’t have to read, but may when the need arises. Less like HTML, the

rules for XML files are strict. A forgotten tag, or an attribute without quotes

makes an XML file unusable, while in HTML such practice is tolerated and is of-

ten explicitly allowed. The official XML specification forbids applications from

trying to second-guess the creator of a broken XML file; if the file is broken, an

application has to stop right there and report an error.

XML is verbose

by design

Since XML is a text format and it uses tags to delimit the data, XML files are

nearly always larger than comparable binary formats. That was a conscious

decision by the designers of XML. The advantages of a text format are evident

(see point 3), and the disadvantages can usually be compensated at a differ-

ent level. Disk space is less expensive than it used to be, and compression

programs like zip and gzip can compress files very well and very fast. In ad-

dition, communication protocols such as modem protocols and HTTP/1.1, the

core protocol of the Web, can compress data on the fly, saving bandwidth as

effectively as a binary format.

XML is a family

of technologies

XML 1.0 is the specification that defines what “tags“ and “attributes” are. Be-

yond XML 1.0, “the XML family” is a growing set of modules that offer useful

services to accomplish important and frequently demanded tasks. Xlink de-

scribes a standard way to add hyperlinks to an XML file. XPointer and XFrag-

ments are syntaxes in development for pointing to parts of an XML document.

An XPointer is a bit like a URL, but instead of pointing to documents on the

Web, it points to pieces of data inside an XML file. CSS, the style sheet lan-

guage, is applicable to XML as it is to HTML. XSL is the advanced language

for expressing style sheets. It is based on XSLT, a transformation language

used for rearranging, adding and deleting tags and attributes. The DOM is a

standard set of function calls for manipulating XML (and HTML) files from a

programming language. XML Schemas 1 and 2 help developers to precisely

define the structures of their own XML-based formats. There are several more

modules and tools available or under development. Keep an eye on W3C’s

technical reports page.

XML is new, but

not that new

Development of XML started in 1996 and has been a W3C Recommendation

since February 1998, which may make you suspect that this is rather immature

technology. In fact, the technology isn’t very new. Before XML there was SGML,

developed in the early ’80s, an ISO standard since 1986, and widely used for

large documentation projects. The development of HTML started in 1990. The

designers of XML simply took the best parts of SGML, guided by the experience

Chapter 30. Reading and Writing XML Data 475

with HTML, and produced something that is no less powerful than SGML, and

vastly more regular and simple to use. Some evolutions, however, are hard to

distinguish from revolutions. . . And it must be said that while SGML is mostly

used for technical documentation and much less for other kinds of data, with

XML it is exactly the opposite.

XML leads

HTML to XHTML

There is an important XML application that is a document format: W3C’s

XHTML, the successor to HTML. XHTML has many of the same elements as

HTML. The syntax has been changed slightly to conform to the rules of XML. A

document that is “XML-based” inherits the syntax from XML and restricts it in

certain ways (e.g, XHTML allows “<p>”, but not “<r>”); it also adds meaning to

that syntax (XHTML says that “<p>” stands for “paragraph”, and not for “price”,

“person”, or anything else).

XML is modularXML allows you to define a new document format by combining and reusing

other formats. Since two formats developed independently may have elements

or attributes with the same name, care must be taken when combining those

formats (does “<p>” mean “paragraph” from this format or “person” from that

one?). To eliminate name confusion when combining formats, XML provides

a namespace mechanism. XSL and RDF are good examples of XML-based for-

mats that use namespaces. XML Schema is designed to mirror this support for

modularity at the level of defining XML document structures, by making it easy

to combine two schemas to produce a third which covers a merged document

structure.

XML is the basis

for RDF and the

Semantic Web

W3C’s Resource Description Framework (RDF) is an XML text format that sup-

ports resource description and metadata applications, such as music playlists,

photo collections, and bibliographies. For example, RDF might let you iden-

tify people in a Web photo album using information from a personal contact

list; then your mail client could automatically start a message to those people

stating that their photos are on the Web. Just as HTML integrated documents,

menu systems, and forms applications to launch the original Web, RDF inte-

grates applications and agents into one Semantic Web. Just like people need

to have agreement on the meanings of the words they employ in their commu-

nication, computers need mechanisms for agreeing on the meanings of terms

in order to communicate effectively. Formal descriptions of terms in a certain

area (shopping or manufacturing, for example) are called ontologies and are a

necessary part of the Semantic Web. RDF, ontologies, and the representation

of meaning so that computers can help people do work are all topics of the

Semantic Web Activity.

Chapter 30. Reading and Writing XML Data 476

XML is license-

free, platform-

independent

and well-

supported

By choosing XML as the basis for a project, you gain access to a large and

growing community of tools (one of which may already do what you need!)

and engineers experienced in the technology. Opting for XML is a bit like

choosing SQL for databases: you still have to build your own database and your

own programs and procedures that manipulate it, and there are many tools

available and many people who can help you. And since XML is license-free,

you can build your own software around it without paying anybody anything.

The large and growing support means that you are also not tied to a single

vendor. XML isn’t always the best solution, but it is always worth considering.

30.2 Introduction to XML support in Aimms

XML support in

Aimms

In order to help you understand the XML support available within Aimms to

its full extent, this section provides an explanation of the basic concepts used

in XML. If you are already familiar with XML and XML schemas, the material in

this section may help you to understand how the XML concepts you are already

familiar with are used by the XML facilities in Aimms.

The XML data

format

The XML data format is a text format built around just two syntactical com-

ponents, elements and attributes. Because the semantics of these components

are not fixed and can be user-defined, the XML data format can be used to

represent virtually any meaningful concept.

XML elementsXML elements are denoted by a start tag (a word identifying the type of element

enclosed by the “<” and “>” characters) and an end tag (the same element type

enclosed by the “</” and “>” characters). Elements delimit the piece of XML

data between its start and end tag. Elements may hold only text or numeric

data, or they can provide depth to XML data, since the enclosed XML data may

contain other XML elements. An element in a stream of XML data is, in fact, a

node in the tree associated with the entire stream of XML data. The root node

of this tree corresponds to the obligatory and unique root element of the XML

data stream.

XML elements

without content

If an element does not contain any enclosed XML content, it is possible to omit

the end tag alltogether, and enclose the start tag between “<” and “/>” charac-

ters. This format is commonly used if the element contains only attributes.

XML attributesXML attributes provide additional information about a particular element in an

XML data stream. Attributes are specified by the form name="value" between

the “<” and “>” (or “/>”) characters of the start tag of the element in question.

Chapter 30. Reading and Writing XML Data 477

The Data

Reconciliation

example

All examples in this chapter make use of a single Aimms project that comes

with the Aimms system, the Data Reconciliation project. In this example, flows

between units in a chemical plant, as well the chemical composition of these

flows, are measured. Unfortunately, such measurements might not be inter-

nally consistent despite, for instance, a physical requirement that the sum of

all flows into any unit be equal to the sum of all flows out of that unit (i.e.

no material is created or lost within a unit). Due to the inaccuracy of the mea-

surement devices (or, even worse, broken measurement devices), the measured

values do not necessarily satisfy such balances. The objective of the model is

to find a set of flow values and compositions which are internally consistent,

and lie as close as possible to the corresponding measured values. Such con-

sistent values are called reconciled values. Within the model the measured and

reconciled values are stored in the identifiers

� MeasuredFlow(f),

� MeasuredComposition(f,c),

� Flow(f), and

� Composition(f,c),

where f is an index into a set of Flows, and c is an index into a set of Components.

Table 30.1 contains the measured and reconciled flow values and compositions

used throughout this chapter.

Measured values

Flow name Flow value Flow composition [%]

[ton/h] N2 H2 NH3 Ar

Inflow 111.98 26.96 72.71 0.33

Mix 24.56 4.91

NH3-Mix 19.99

NH3-Flow 105.59

Residue 69.68

Ar-Flow

Feedback 358.00

Reconciled values

Flow name Flow value Flow composition [%]

[ton/h] N2 H2 NH3 Ar

Inflow 117.03 26.96 72.71 0.00 0.33

Mix 475.03 23.95 71.08 0.05 4.91

NH3-Mix 475.03 19.99 59.08 15.27 5.66

NH3-Flow 105.59 0.00 0.00 100.00 0.00

Residue 369.44 23.57 69.68 0.07 6.67

Ar-Flow 11.44 89.19 0.00 0.00 10.81

Feedback 358.00 22.82 70.48 0.07 6.62

Table 30.1: Measured and reconciled values

Chapter 30. Reading and Writing XML Data 478

XML data

example

The XML fragment below illustrates a possible XML format to store the mea-

sured and reconciled flows and compositions. The root element FlowMeasure-

mentData has a date attribute to indicate the date of the measurements. The

root element contains one or more Flow elements which contain the measured

(if any) and reconciled flow values for all the flows in the network. Each Flow

element contains a single Composition element, which, in turn, contains one or

more Component elements with the measured (if any) and reconciled composi-

tion values for each component of the flow in question.

<FlowMeasurementData xmlns="http://www.aimms.com/Reconciliation" date="2001-10-01">

<Flow name="Inflow" measured="111.98" reconciled="117.03">

<Composition>

<Component name="N2" measured="26.96" reconciled="26.96"/>

<Component name="H2" measured="72.71" reconciled="72.71"/>

<Component name="Ar" measured="0.33" reconciled="0.33"/>

</Composition>

</Flow>

<Flow name="Mix" reconciled="475.03">

<Composition>

<Component name="N2" measured="24.56" reconciled="23.95"/>

<Component name="H2" reconciled="71.08"/>

<Component name="NH3" reconciled="0.05"/>

<Component name="Ar" measured="4.91" reconciled="4.91"/>

</Composition>

</Flow>

<Flow name="NH3-Mix" reconciled="475.03">

<Composition>

<Component name="N2" measured="19.99" reconciled="19.99"/>

<Component name="H2" reconciled="59.08"/>

<Component name="NH3" reconciled="15.27"/>

<Component name="Ar" reconciled="5.66"/>

</Composition>

</Flow>

<Flow name="NH3-Flow" measured="105.59" reconciled="105.59">

<Composition>

<Component name="NH3" reconciled="100.00"/>

</Composition>

</Flow>

<Flow name="Residue" reconciled="369.44">

<Composition>

<Component name="N2" reconciled="23.57"/>

<Component name="H2" measured="69.68" reconciled="69.68"/>

<Component name="NH3" reconciled="0.07"/>

<Component name="Ar" reconciled="6.67"/>

</Composition>

</Flow>

<Flow name="Ar-Flow" reconciled="11.44">

<Composition>

<Component name="N2" reconciled="89.19"/>

<Component name="Ar" reconciled="10.81"/>

</Composition>

</Flow>

<Flow name="Feedback" measured="358.00" reconciled="358.00">

<Composition>

<Component name="N2" reconciled="22.82"/>

<Component name="H2" reconciled="70.48"/>

<Component name="NH3" reconciled="0.07"/>

<Component name="Ar" reconciled="6.62"/>

</Composition>

Chapter 30. Reading and Writing XML Data 479

</Flow>

</FlowMeasurementData>

Not uniqueThe XML data format illustrated above is not unique. For instance, the mea-

sured and reconciled values could have been represented by child elements of

the Flow and Component elements instead of by attributes. Thus, a different, but

equally valid, XML representation of the same data is illustrated in the XML

data snippet below.

<Flow name="Inflow">

<MeasuredValue>111.984</MeasuredValue>

<ReconciledValue>117.034</ReconciledValue>

<Composition>

<Component name="N2">

<MeasuredValue>26.960</MeasuredValue>

<ReconciledValue>26.960</ReconciledValue>

</Component>

...

</Composition>

</Flow>

The particular XML data format chosen may be a matter of taste, or the result

of a formal agreement between several parties who wish to use the correspond-

ing XML data.

XML schemaTo support you in defining a particular XML data format in a formal manner,

XML provides an XML-based standard to specify such definitions. This stan-

dard is called XML Schema. It allows you, among other things, to specify

� the allowed (tree) structure of a particular XML data format in terms of

all possible elements and their child elements,

� the minimum and maximum number of times a particular element can

occur,

� which attributes are supported by particular elements,

� whether attributes are optional or required, and

� the intended data types of elements and attributes in your XML data

format.

To create an XML schema file that matches an intended XML data format, it

is best to use one of the tools available for this purpose. For more detailed

information about XML schema, as well as the tools available for creating an

XML schema file, refer to http://www.w3.org/XML/Schema

XML schema

example

The following XML schema definition, formally defines the XML data format as

used in the XML data example above.

<xs:schema targetNamespace="http://www.aimms.com/Reconciliation"

xmlns="http://www.aimms.com/Reconciliation"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:element name="FlowMeasurementData">

http://www.w3.org/XML/Schema

Chapter 30. Reading and Writing XML Data 480

<xs:complexType>

<xs:sequence>

<xs:element name="Flow" maxOccurs="unbounded">

<xs:complexType>

<xs:sequence>

<xs:element name="Composition" minOccurs="0">

<xs:complexType>

<xs:sequence>

<xs:element name="Component" maxOccurs="unbounded">

<xs:complexType>

<xs:attribute name="name" type="xs:string" use="required"/>

<xs:attribute name="measured" type="xs:double" use="optional"/>

<xs:attribute name="reconciled" type="xs:double" use="optional"/>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

<xs:attribute name="name" type="xs:string" use="required"/>

<xs:attribute name="measured" type="xs:double" use="optional"/>

<xs:attribute name="reconciled" type="xs:double" use="optional"/>

</xs:complexType>

</xs:element>

</xs:sequence>

<xs:attribute name="date" type="xs:date" use="required"/>

</xs:complexType>

</xs:element>

</xs:schema>

Schema

namespaces

An XML schema definition can specify a namespace by which the schema

is to be known. In the example above, the targetNamespace attribute of the

xs:schema element specifies that the schema that follows defines the name-

space http://www.aimms.com/XMLSchema/ReconciliationExample. In the XML data

example listed earlier in this section, the xmlns attribute of the root element

specifies that all element and attribute names underneath the root element are

to be interpreted in the context of that namespace.

Two modes of

XML support

Aimms allows you to read and write XML data from within your model in two

modes:

� it lets Aimms generate and read XML data based on identifier definitions

in your model, or

� it lets Aimms generate and read XML data according to a given XML

schema specification.

Aimms-

generated

XML

In the first mode, Aimms will generate and read XML for the subset of iden-

tifiers that you specify. The format of the generated XML closely resembles

the declaration of the identifiers in your model, generates XML data for one

identifier at a time, and adds a tree level for each dimension. Letting Aimms

generate XML data for your model is the fastest way of getting XML data that

corresponds to your model, but

Chapter 30. Reading and Writing XML Data 481

� gives you little control over the final result, and

� programs that use the generated XML data have to adhere to the gener-

ated format.

User-defined

XML

In the second mode, Aimms assumes that you already have a XML schema file

that specifies the precise XML data format that you want to generate from

within Aimms, or want to read from an external XML data file. Aimms provides

a tool to let you map the elements and attributes in the XML schema onto sets

and multidimensional identifiers in your model. Based on this mapping, and

the data in your model, you can let Aimms generate XML data according to the

specified schema, or let Aimms fill the corresponding identifiers according to

an XML data file in the specified format.

30.3 Reading and writing Aimms-generated XML data

Obtaining

generated XML

output

Through the functions

� GenerateXML(XMLFile,IdentifierSet[,merge][,SchemaFile])

� ReadGeneratedXML(XMLFile[,merge])

Aimms will generate XML output associated with one or more identifiers in

your model, or read Aimms-generated XML from a file.

The function

GenerateXML

Using the function GenerateXML, you can let Aimms write XML data to the file

XMLFile. Aimms will generate XML data for all the identifiers in the IdentifierSet

argument, which must be a subset of the predefined set AllIdentifiers. With

the optional merge argument (default 0) you can indicate whether you want to

merge the generated XML data in another XML document, in which case Aimms

will omit the XML header from the generated XML file. This allows you to

merge the contents of the generated file into another XML file. Note that setting

the merge argument to 1 does not mean that the generated XML data will be

appended to the specified file, its contents are always completely overwritten.

If you specify a SchemaFile name, Aimms will also generate an XML schema file

with the specified file name, matching the generated XML data. All data in the

XML file is represented in terms of the currently active unit convention (see

also Section 32.8). The function will return 1 if successful, or 0 if not.

The function

ReadGenerat-

edXML

With the function ReadGeneratedXML you can read back Aimms-generated XML

data from the specified XMLFile. With the optional merge argument (default

0), you can choose whether you want to merge the data included in the XML

file with the existing data, or overwrite any existing data (default). All data

in the XML file will be interpreted in accordance with the currently active unit

convention (see also Section 32.8). The function will return 1 if successful, or

0 if not.

Chapter 30. Reading and Writing XML Data 482

Fixed formatThe XML data format generated by the function GenerateXML solely depends

on the declaration of the identifiers for which you want the XML data to be

generated. Thus, you can use the generated XML data simply to store some

model data in an XML file, ready to be read back into Aimms through the func-

tion ReadGeneratedXML, or by any other program that adheres to the XML data

format as generated by Aimms.

ExampleA call to the function GenerateXML, for the identifiers listed in Section 30.2, will

result in the following XML data being generated.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<AimmsData>

<Flows>

<Flows elem="Inflow"/>

<Flows elem="Mix"/>

<Flows elem="NH3-Mix"/>

<Flows elem="NH3-Flow"/>

<Flows elem="Residue"/>

<Flows elem="Ar-Flow"/>

<Flows elem="Feedback"/>

</Flows>

<MeasuredFlow>

<f elem="Inflow" value="111.98"/>

<f elem="NH3-Flow" value="105.59"/>

<f elem="Feedback" value="358.00"/>

</MeasuredFlow>

<Flow>

<f elem="Inflow" value="117.03"/>

<f elem="Mix" value="475.03"/>

<f elem="NH3-Mix" value="475.03"/>

<f elem="NH3-Flow" value="105.59"/>

<f elem="Residue" value="369.44"/>

<f elem="Ar-Flow" value="11.44"/>

<f elem="Feedback" value="358.00"/>

</Flow>

<MeasuredComposition>

<nmf elem="Inflow">

<c elem="N2" value="26.96"/>

<c elem="H2" value="72.71"/>

<c elem="Ar" value="0.33"/>

</nmf>

<nmf elem="Mix">

<c elem="N2" value="24.56"/>

<c elem="Ar" value="4.91"/>

</nmf>

<nmf elem="NH3-Mix">

<c elem="N2" value="19.99"/>

</nmf>

<nmf elem="Residue">

<c elem="H2" value="69.68"/>

</nmf>

</MeasuredComposition>

<Composition>

<nmf elem="Inflow">

<c elem="N2" value="26.96"/>

<c elem="H2" value="72.71"/>

<c elem="Ar" value="0.33"/>

</nmf>

Chapter 30. Reading and Writing XML Data 483

<nmf elem="Mix">

<c elem="N2" value="23.95"/>

<c elem="H2" value="71.08"/>

<c elem="NH3" value="0.05"/>

<c elem="Ar" value="4.91"/>

</nmf>

<nmf elem="NH3-Mix">

<c elem="N2" value="19.99"/>

<c elem="H2" value="59.08"/>

<c elem="NH3" value="15.27"/>

<c elem="Ar" value="5.66"/>

</nmf>

<nmf elem="NH3-Flow">

<c elem="NH3" value="100.00"/>

</nmf>

<nmf elem="Residue">

<c elem="N2" value="23.57"/>

<c elem="H2" value="69.68"/>

<c elem="NH3" value="0.07"/>

<c elem="Ar" value="6.67"/>

</nmf>

<nmf elem="Ar-Flow">

<c elem="N2" value="89.19"/>

<c elem="Ar" value="10.81"/>

</nmf>

<nmf elem="Feedback">

<c elem="N2" value="22.82"/>

<c elem="H2" value="70.48"/>

<c elem="NH3" value="0.07"/>

<c elem="Ar" value="6.62"/>

</nmf>

</Composition>

</AimmsData>

Numeric width

and precision

Using the Aimms options XML number width and XML number precision you can

specify the print width and precision of any numerical data generated through

the function GenerateXML. The rules are as follows.

� If the option XML number width is set to −1, Aimms will always use scien-

tific format with precision XML number precision.

� If the option XML number width is 0, Aimms will print a fixed point floating

point number with precision XML number precision, provided the number

can be represented exactly with the given precision, otherwise scientific

format will be used.

� If the option XML number width is greater than 0, Aimms will print a fixed

point floating point number with precision XML number precision, pro-

vided the number to be printed fits within the specified width, otherwise

scientific format will be used.

Chapter 30. Reading and Writing XML Data 484

30.4 Reading and writing user-defined XML data

Writing user-

defined XML

If you already have a given XML data format to which you want your Aimms

application to adhere, the simple XML generation functions discussed in the

previous section will not work. This section discusses the tools and functions

provided by Aimms to help you read and write XML data in a given format,

on the explicit assumption that your XML data format is formally described

through an XML schema file. If you do not have a schema file for your XML

data format, you are advised to use one of the XML schema editors available

on the market to construct an XML schema file corresponding to your XML

data format.

Mapping XML

schema to

Aimms

identifiers

Once you do have an XML schema file corresponding to your XML data for-

mat, you must create a mapping between the tree structure described by the

XML schema, and the identifiers in your Aimms model that will hold the cor-

responding data. This mapping is described using another XML format (as

illustrated later in this section), which, in principle, can be edited manually.

However, to create such a mapping, you can also use the Tools-XML Schema

Mapping menu. This will ask you to select an XML schema file (with an .xsd

extension), and will open the XML Schema Mapping dialog box for the corre-

sponding schema, as illustrated in Figure 30.1. If there is already an Aimms

Figure 30.1: The XML Schema Mapping dialog box

XML Mapping file (with an .axm extension) corresponding to the XML schema

file, Aimms will also read the information in that file, and adapt the attributes

of the nodes in the XML mapping tree accordingly.

Chapter 30. Reading and Writing XML Data 485

Binding indicesThe mapping between an XML schema and Aimms is based on the principle

that any element that occurs multiple times in an XML data stream can be

associated with an index in your Aimms model. If an index is bound for a par-

ticular element, it is also considered to be bound for all attributes and child

elements of the element at hand. These can then be mapped onto multidimen-

sional Aimms identifiers defined over all indices bound at a particular level in

the XML tree.

Index valueThe element values of such an index associated with an element occurring

multiple times in the XML tree can come from several sources:

� a required (i.e. non-optional) attribute of the element,

� the data of a direct data-only child element (i.e. without any child ele-

ments of its own) which occurs exactly once, or

� if there is no such attribute or child element, an element name generated

by Aimms as if there were an attribute containing the generated name.

ExamplesIn the example of Section 30.2, the index f is bound to the element Flow

through the value of its attribute name.

<Flow name="Inflow" measured="111.98" reconciled="117.03">

...

</Flow>

Equally, the index f, associated with the Flow element, could have obtained its

value from the data-only child element FlowName, as illustrated below.

<Flow>

<FlowName>Inflow</FlowName>

<MeasuredValue>111.98</MeasuredValue>

<ReconciledValue>117.03</ReconciledValue>

...

</Flow>

Consider the following XML logging format.

<LogEntries>

<Log date="2008-03-31 12:07:31" severity="error">No value for ’Inflow’</Log>

<Log date="2008-03-31 12:07:35" severity="warning">Error for ’Inflow’</Log>

</LogEntries>

None of the attributes nor the element value can uniquely identify a Log el-

ement. Rather the LogEntries element contains a sequence of Log entries.

The log date, severity and message can perfectly be stored in parameters

LogDate(l), LogSeverity(l) and LogMessage(l), where the values of index l into

the set LogEntries are numbered elements generated by Aimms when reading

the XML file, and ignored when writing.

Chapter 30. Reading and Writing XML Data 486

Mapped dataIn addition to binding indices, the values of attributes and data-only elements

can also be mapped to multidimensional identifiers in your model. Such mul-

tidimensional identifiers can be defined over a subset of, or all, indices bound

at the level of the attribute or element to be mapped. Attributes mapped to

multidimensional identifiers may be optional, corresponding to the mapped

identifier holding a default value in the Aimms model.

ExampleIn the example above, the attributes measured and reconciled are mapped to the

multidimensional identifiers MeasuredFlow(f) and Flow(f), respectively. This is

a valid mapping since the index f is bound at the level of the element Flow

and hence also to all its child attributes and elements. Similarly, the identi-

fiers MeasuredFlow(f) and Flow(f) could have been mapped to the data-only

elements MeasuredValue and ReconciledValue in the second part of the example

above.

Mapping tree

nodes

The XML Schema Mapping dialog box displays an XML mapping tree based on

the information available in the schema file. The XML mapping tree consists

of the following components.

� A single root node AimmsXMLSchemaMapping, which contains the single Ele-

mentMapping node for the root element defined in the XML schema to be

mapped. In the XML Schema Mapping tree, the AimmsXMLSchemaMapping

node is displayed by the icon.

� ElementMapping nodes, each of which will have zero or more Attribute-

Mapping, VirtualAttributeMapping and ElementMapping child nodes. In the

XML Schema Mapping tree, a data-only ElementMapping node is displayed

by either the icon, or the icon when a data-only element is bound

to an index, or the icon when a data-only element is mapped to mul-

tidimensional data. ElementMapping nodes with children are displayed by

the icon.

� AttributeMapping nodes, which do not have child nodes. In the tree, an

AttributeMapping node is displayed by either the icon, or the icon

when the attribute is bound to an index, or the icon when the attribute

is mapped to multidimensional data.

� VirtualAttributeMapping nodes, which basically behave like AttributeMap-

ping nodes, but have no counterpart in the XML schema. In the tree, a

VirtualAttributeMapping node is displayed by either the icon, or the

icon when the virtual attribute is bound to an index. VirtualAttribute-

Mapping nodes are automatically inserted by Aimms underneath elements

that can occur multiple times, and can only be bound to an index. They

can be used to let Aimms generate element names for an index that can-

not be bound to a real attribute or child element.

Chapter 30. Reading and Writing XML Data 487

Mapping

attributes

To each node type in the mapping tree, a number of possibly node-specific at-

tributes are associated. Some of these attributes are based on the information

in the schema file and cannot be edited, while others define the actual map-

ping between the XML schema and identifiers in your model, and can naturally

be edited. When creating a mapping tree, Aimms will look for an .axm file

corresponding to the schema file you selected, and read the actual mapping

attributes from the mapping file.

AimmsXML-

SchemaMapping

attributes

The AimmsXMLSchemaMapping node supports the attributes listed in Table 30.2.

Attribute Use Editable Stored Value-type

MappedNameSpace info no yes namespace-URI

AimmsModel optional yes yes string

default-width optional yes yes integer

default-precision optional yes yes integer

comment optional yes yes string

Table 30.2: AimmsXMLSchemaMapping attributes

The Mapped-

NameSpace

attribute

The MappedNameSpace attribute contains the namespace URI (Universal Resource

Identifier) by which the XML schema is identified. Aimms will retrieve it from

the XML schema, whenever the schema contains a namespace URI, or will gen-

erate an artificial namespace URI "http://tempuri.org/AIMMS/auto-generated-

namespace" if the XML schema does not contain this information.

The AimmsModel

attribute

Using the AimmsModel attribute you can indicate the Aimms model for which the

mapping is intended. The information you enter here is solely for your own

use, and is ignored by Aimms when reading or writing XML data according to

this mapping.

The default-

width and

-precision

attributes

Using the default-width and default-precision attributes you can specify the

width and precision with which you want Aimms to write numerical data,

when writing an XML file subject to this mapping. These attributes override

the Aimms options XML number width and XML number precision discussed in Sec-

tion 30.3, and use the same semantics.

ElementMapping

attributes

An ElementMapping node supports the attributes listed in Table 30.3. Some at-

tributes used in an element mapping do not apply to all ElementMapping nodes.

Binding the contents of an element to an index, or mapping the contents to

a multidimensional identifier in your model, is only useful if the element is a

data-only element, and not when the element contains child elements. When

reading an XML schema file, Aimms distinguishes between these two types of

elements, and omits the attributes for mapping data-only elements whenever

Chapter 30. Reading and Writing XML Data 488

Attribute Use Data-only Editable Stored Value-type

name required no no yes string

occurrence info yes no no string

datatype info yes no no string

default info yes no yes string

binds-to optional yes yes yes index-reference

maps-to optional yes yes yes reference

width optional yes yes yes integer

precision optional yes yes yes integer

read-filter optional no yes yes expression

write-filter optional no yes yes expression

comment optional no yes yes string

Table 30.3: ElementMapping attributes

appropriate. If the schema file indicates that an element can have a mixed

content (i.e. both character data and child elements), Aimms will ignore the

character data.

XML

schema-based

attributes

The occurrence, datatype and default attributes of an ElementMapping node con-

tain information about the element that is obtained from the XML schema.

The values of these attributes cannot be edited, and are displayed in the XML

Schema Mapping dialog box solely for your information.

The occurrence

attribute

The occurrence attribute of an element can hold the values optional/once,

optional/many, never, once, or many. If you try to bind an index to an optional

data-only element, Aimms will issue a warning, since this can potentially cause

problems when reading an XML file.

The datatype

attribute

In the datatype attribute, Aimms displays the datatypes as either unspecified,

number, integer, string, or any, whichever is nearest to the datatype of the ele-

ment specified in the XML schema. You can use this information to determine

to which Aimms identifiers a particular element can be mapped.

The default

attribute

In the default attribute, Aimms displays the default value of a data-only ele-

ment as specified in the XML schema file (if any). If there is a default value,

this information is also stored in the mapping file, as this information is used

by Aimms to interpret the value of non-existent elements when reading an XML

file.

The binds-to

attribute

With the binds-to attribute you can indicate that Aimms must bind the con-

tents of a data-only element to a particular index in your model. The value of

the binds-to attribute must be a reference to an index in your Aimms model.

Chapter 30. Reading and Writing XML Data 489

As explained at the start of this section, the binding propagates to the direct

parent of the element, and recursively to any of the child attributes and ele-

ments of the parent. Those indices that are bound at a particular level of the

tree, are displayed in the XML Schema Mapping dialog box in the attribute

Indices bound at this level, which is automatically updated by Aimms if you

change the value of a binds-to attribute.

The maps-to

attribute

With the maps-to attribute you can indicate that the contents of a data-only

element must be mapped to a multidimensional identifier in your model (in-

cluding subsets). The value of this attribute must be a reference to an Aimms

identifier in your model, and can refer to the indices that are bound at the level

of the ElementMapping in question (or a subset thereof). Note that you might ob-

tain unexpected results when reading XML data if the maps-to attribute does

not refer to all indices bound at this level. If there are multiple instances of the

element (corresponding to indices not used in the identifier), only the value of

the most recent instance will be registered. The expression that you specify for

this attribute can be a slice of a higher-dimensional identifier, and the indices

may also be permuted.

maps-to in the

presence of

binds-to

Even if you have specified a binds-to attribute for a node in the tree, you are

also allowed to specify the maps-to attribute as well, which will then be used

when reading and writing an XML file in the given XML data format. If, in

that situation, the maps-to attribute contains a reference to a multidimensional

identifier, Aimms will assign a value of 1.0 to that identifier, or if the maps-to at-

tribute contains a reference to a, possibly multidimensional, subset, Aimms will

add the corresponding tuple to the subset. When writing an XML file, Aimms

will always write out the element if the identifier contained in the maps-to at-

tribute contains non-default data, even if there is no other data to be written

that is defined over the index associated with the binds-to attribute.

The read-filter

attribute

Using the read-filter attribute you can specify an Aimms expression to use as

a filter when reading an XML data file. The value of the read-filter attribute

must be a reference to a multidimensional identifier in your model, similar

to the maps-to attribute, or can be 0 or 1 (the default). If the value is 0, the

element and all its child attributes and elements are ignored when reading an

XML file. If the value is a reference to an Aimms identifier, the element, along

with its child attributes and elements, is skipped if the identifier at hand does

not contain a nonzero value for the index tuple bound at that particular posi-

tion in the XML file. If the read-filter attribute refers to an identifier that is

also read from the XML file, Aimms will use the value for that identifier as con-

tained in the XML file, provided that this value is read before the corresponding

reference to the read-filter is evaluated.

Chapter 30. Reading and Writing XML Data 490

The write-

filter attribute

With the write-filter attribute you can specify an Aimms expression to use as

a filter when writing an XML data file. The value of the write-filter attribute

must be a reference to a multidimensional identifier in your model, similar

to the maps-to attribute, or can be 0 or 1. If the value is 0, the element and

all its child attributes and elements are ignored when writing an XML file. If

the value is 1, the element is always written, regardless of whether there are

any nondefault data within your model for that particular element. If there is

no nondefault data, Aimms will write the corresponding default value. If the

value is a reference to an Aimms identifier, the element, along with its child

attributes and elements, is skipped if the identifier at hand does not contain a

nonzero value for the index tuple bound at that particular position in the XML

file.

The width and

precision

attributes

Using the width and precision attributes of a data-only element you can over-

ride the values of the default-width and default-precision attributes of the

AimmsXMLSchemaMapping node (or, eventually, of the Aimms options XML number

width and XML number precision) for the element in question. The attributes will

only be used if a maps-to attribute has also been specified. With these options

you can determine, for each individual element type, how numerical data will

be formatted when writing an XML file.

AttributeMap-

ping attributes

AttributeMapping nodes support the attributes listed in Table 30.4.

Attribute Use Editable Stored Value-type

name required no yes string

datatype info no no string

default info no yes string

use info no no namespace-URI

binds-to optional yes yes index-reference

maps-to optional yes yes reference

width optional yes yes integer

precision optional yes yes integer

read-filter optional yes yes expression

write-filter optional yes yes expression

comment optional yes yes string

Table 30.4: AttributeMapping attributes

The use

attribute

The use attribute contains the value of the attribute of the same name obtained

from the XML schema, and indicates whether an XML attribute is optional,

required or prohibited. If you try to bind an optional attribute to a index

in your Aimms model, Aimms will issue a warning, since such bindings may

Chapter 30. Reading and Writing XML Data 491

cause problems when reading an XML file in which the optional attribute is not

present.

Other attributes

similar to ele-

ment attributes

The remaining attributes of an AttributeMapping node have identical interpre-

tations to those of an ElementMapping node. For information about these at-

tributes refer to the documentation for the corresponding attributes of Elem-

entMapping nodes above.

ExampleThe following XML data fragment shows the mapping between the XML data

file, illustrated in Section 30.2, and the identifiers

� MeasuredFlow(f),

� Flow(f),

� MappedMeasuredComposition(f,c), and

� MappedComposition(f,c)

which contain the corresponding data in the Data Reconciliation project.

<AimmsXMLSchemaMapping xmlns="http://www.aimms.com/XMLSchema/AimmsXMLMappingSchema"

MappedNameSpace="http://www.aimms.com/Reconciliation"

default-width=16 default-precision=2>

<ElementMapping name="FlowMeasurementData">

<AttributeMapping name="date" maps-to="ReconciliationDate"/>

<ElementMapping name="Flow">

<AttributeMapping name="measured" maps-to="MeasuredFlow(f)"/>

<AttributeMapping name="name" binds-to="f"/>

<AttributeMapping name="reconciled" maps-to="Flow(f)"/>

<ElementMapping name="Composition">

<ElementMapping name="Component">

<AttributeMapping name="measured" maps-to="MappedMeasuredComposition(f,c)"/>

<AttributeMapping name="name" binds-to="c"/>

<AttributeMapping name="reconciled" maps-to="MappedComposition(f,c)"/>

</ElementMapping>

</ElementMapping>

</ElementMapping>

</ElementMapping>

</AimmsXMLSchemaMapping>

Virtual-

AttributeMap-

ping attributes

VirtualAttributeMapping nodes support the attributes listed in Table 30.5. The

VirtualAttributeMapping allows you to associate an index with an element that

occurs multiple times in your XML file, but which has no unique attribute

or child element in the XML schema to which you can bind this index. A

VirtualAttributeMapping allows you to still associate such elements with an

index, as if there were a virtual, hidden attribute to which you bind. When read-

ing an XML file, the element names associated with that index are then gener-

ated by Aimms either numbered on the basis of a given prefix, or by retrieving

the names from the element contents itself. When writing an XML file, the

element names associated with an index bound to a VirtualAttributeMapping

attribute are ignored.

Chapter 30. Reading and Writing XML Data 492

Attribute Use Editable Stored Value-type

binds-to required yes yes index-reference

maps-to optional yes yes reference

read-filter optional yes yes expression

write-filter optional yes yes expression

assume-element-value required yes yes Yes / No

element-prefix optional yes yes string

comment optional yes yes string

Table 30.5: VirtualAttributeMapping attributes

Virtual-

AttributeMap-

ping attributes

The binds-to, maps-to, read-filter and write-filter have the exact same inter-

pretation as for a normal AttributeMapping. Through the assume-element-value

attribute you can indicate whether Aimms should generate element values

when reading, or, when the parent element is a data-only element, whether

the element content should be taken as the element value for the index. The

default value of the assume-element-value attribute is No. Element names gen-

erated by Aimms are numbered starting from 1, with the prefix specified in the

element-prefix attribute.

binds-to is

mandatory

Note that the binds-to attribute is required for a VirtualAttributeMapping at-

tribute. The VirtualAttributeMapping node and all changes you made to any

of its other attributes in the XML Schema Mapping dialog box will be ignored

when saving the mapping, unless the binds-to attribute has a value.

ExampleConsider the XML logging format discussed above

<LogEntries>

<Log date="2008-03-31 12:07:31" severity="error">No value for ’Inflow’</Log>

<Log date="2008-03-31 12:07:35" severity="warning">Error for ’Inflow’</Log>

</LogEntries>

The following schema mapping maps the contents of this XML file to identifiers

LogDate(l), LogSeverity(l) and LogMessage(l), where l is an index into a set

LogEntries.

<AimmsXMLSchemaMapping xmlns="http://www.aimms.com/XMLSchema/AimmsXMLMappingSchema"

MappedNameSpace="http://www.aimms.com/LoggingData"

default-width=16 default-precision=2>

<ElementMapping name="LogEntries">

<ElementMapping name="Log" maps-to="LogMessage(l)">

<VirtualAttributeMapping binds-to="l" assume-element-value="No"

element-prefix="logentry-"/>

<AttributeMapping name="date" maps-to="LogDate(l)"/>

<AttributeMapping name="severity" maps-to="LogSeverity(l)"/>

</ElementMapping>

</ElementMapping>

</AimmsXMLSchemaMapping>

Chapter 30. Reading and Writing XML Data 493

When reading the XML file, Aimms will create two elements ’logentry-1’ and

’logentry-2’ into the set LogEntries. When writing the XML file, Aimms will

write Log elements whenever there is non-default data for LogDate(l), LogSever-

ity(l) or LogMessage(l), regardless of the specific format of the elements in the

set LogEntries.

A second

example

Consider the following XML file

<Flows>

<Flow>Inflow</Flow>

<Flow>Mix</Flow>

<Flow>NH3-Mix</Flow>

<Flow>NH3-Flow</Flow>

<Flow>Residue</Flow>

<Flow>Ar-Flow</Flow>

<Flow>Feedback</Flow>

</Flows>

This XML format can be used to represent an Aimms set Flows with an index f.

The following schema mapping accomplishes this.

<AimmsXMLSchemaMapping xmlns="http://www.aimms.com/XMLSchema/AimmsXMLMappingSchema"

MappedNameSpace="http://www.aimms.com/FlowsExample"

default-width=16 default-precision=2>

<ElementMapping name="Flows">

<ElementMapping name="Flow">

<VirtualAttributeMapping binds-to="f" maps-to="Flows"

assume-element-value="Yes"/>

</ElementMapping>

</ElementMapping>

</AimmsXMLSchemaMapping>

In this mapping, the element values of the Flow elements are taken as the value

of a virtual attribute bound to the index f. The maps-to attribute is added to

ensure that on reading the set Flows is filled with the encountered flow names,

and on writing a Flow element is written out for every element in the set Flows.

Checking and

saving the

mapping file

On pressing the OK button in the XML Schema Mapping dialog box, Aimms

checks the validity of your mapping, and reports any errors it encounters. If

there are no errors, Aimms will save (or update) the mapping file associated

with the XML schema file (.xsd extension) that you selected when opening the

dialog box. The mapping file will be saved as an .axm file, with the same base

name as the .xsd file.

Obtaining

user-defined

XML

Once you have created a mapping file between a given XML schema and the

appropriate identifiers in your model, you can use the functions

� WriteXML(XMLFile,MappingFile[,merge])

� ReadXML(XMLFile,MappingFile[,merge][,SchemaFile])

to read data from, and write data to, an XML data file in the specified format.

Chapter 30. Reading and Writing XML Data 494

The function

WriteXML

The function WriteXML lets Aimms generate XML data and write it into the file

XMLFile based on the mapping file MappingFile. The optional merge argument

(default 0) indicates whether you want to merge the generated XML data into

another XML document, in which case Aimms will omit the XML header from

the generated XML file. This allows you to merge the contents of the generated

file into another XML file. Note that setting the merge argument to 1 does

not result in the generated XML data being appended to the specified file, its

contents are completely overwritten. All data in the XML file are represented

with respect to the currently active unit convention (see also Section 32.8). The

function will return 1 if successful, or 0 if not.

Adding a

namespace

If your XML schema file defines a namespace, reflected in the MappedNameSpace

attribute of the root node in the corresponding .axm file, Aimms will add this

namespace to the XML file written by WriteXML through the xmlns attribute the

root node of that file. If your XML schema file does not define a namespace, the

MappedNameSpace attribute in the .axm file contains an artificial namespace URI

"http://tempuri.org/AIMMS/auto-generated-namespace", which will not be added

as the xmlns attribute to the root node of the file being written

The function

ReadXML

Using the function ReadXML you can let Aimms read the XML data contained in

the file XMLFile into the Aimms identifiers specified in the mapping file Map-

pingFile. If the mapping file contains a valid (i.e. not generated by Aimms)

namespace URI of the corresponding XML schema, Aimms requires the root

element of the XML data file to be also associated with the namespace through

the xmlns attribute. With the optional merge argument (default 0), you may

indicate whether you want to merge the data included in the XML file with the

existing data, or overwrite any existing data (default). All data in the XML file

will be interpreted in accordance with the currently active unit convention (see

also Section 32.8). The function will return 1 if successful, or 0 if not.

Schema

validation

If you specify an optional SchemaFile, the XML parser used by Aimms will val-

idate the contents of the XML data contained in your XML file against this

schema. This will only work, however, if the specified schema file defines a

namespace matching the xmlns attribute of the root node of your XML file.

Chapter 31

Text Reports and Output Listing

Reporting

facilities

The Aimms system has several reporting features to present model results to

you or an end-user.

� The graphical (end-)user interface lets you not only view your model re-

sults, but also change input values and run the model interactively. In

general, the graphical user interface is the most convenient and direct

way to verify model results and view the effect of input changes.

� A print page allows you to obtain a hard-copy of your graphical model

results. It is created in the graphical user interface of Aimms and can

contain the same objects as pages in the end-user interface. Single print

pages or reports composed of multiple print pages can be printed either

from within the end-user interface or from within the model. Printing

pages and the available functions that you can use in your model to ini-

tiate printing is discussed in the Aimms User’s Guide.

� An text report lets you save your model results in files. It is created as

part of your model using PUT and DISPLAY statements. The result can be

written to either a file or to a text window in the graphical user interface.

Text reports are convenient, for instance, when you need to generate a

special format input file for an external program.

� The listing file lets you view the contents of all constraints and variables

of a particular mathematical program in your model just before or after

solving it. The listing file is a convenient medium for debugging the

precise contents of the constraints in a mathematical program generated

on the basis of your model and data.

This chapterThis chapter concentrates on the last two reporting media. It explains how to

create and print text reports. More specifically, it discusses the File declara-

tion, as well as the PUT and DISPLAY statements. It also explains how you can

optionally create a text report consisting of pages each built up of a header,

footer and data area. The remaining part of the chapter will explain the format

of the constraint and solution listings generated by Aimms.

Chapter 31. Text Reports and Output Listing 496

31.1 The File declaration

File declarationExternal file names that you want to use for reporting must be linked to Aimms

identifiers in your model. In this way, external file names become data. When-

ever you want to send output to a particular external file, you must refer to

its associated identifier. This linking is achieved using a File declaration, the

attributes of which are given in Table 31.1.

Attribute Value-type See also

page

Name string-expression

Device disk, window, void.

Mode replace, merge

Encoding an element in AllCharacterEncodings 18

Text string 19

Comment comment string 19

Convention convention 449, 534

Table 31.1: File attributes

The Name

attribute

With the Name attribute you can specify the actual name of the disk file or

window that you want to refer to. If the file identifier refers to a disk file, the

Name will be the file name on disk. If it refers to a window the Name attribute

will serve as the title of the window. If you do not specify a name, Aimms will

construct a default name, using the internal identifier name as the root and

“.put” as the extension.

The Device

attribute

The Device attribute can have three values

� disk (default),

� window, and

� void.

You can use it to indicate whether the output should be directed to an ex-

ternal file on disk, a window in the graphical user interface, or whether no

output should be generated at all. This latter void device is very convenient,

for instance, to hide output statements in your code that are useful during

the development of your model but should not be displayed in an end-user

version.

Chapter 31. Text Reports and Output Listing 497

The Mode

attribute

You can use the Mode attribute to specify whether the file or window should be

overwritten (replace mode, default), or appended to (merge mode). The graph-

ical window in the user interface differs from a file in that it can be closed

manually by the user. In this case, its contents are lost and Aimms starts writ-

ing to a new instance regardless of the mode.

ExampleThe following File declarations illustrate the declaration of a link to the ex-

ternal file “result.dat” in the Output subdirectory of the project directory, and

a text window that will appear with the title “Model results”. The contents

of ResultFile will be overwritten whenever it is opened, while the window

ResultWindow will be appended to whenever possible.

File ResultFile {

Name : "Output\\result.dat";

Device : disk;

Mode : replace;

}

File ResultWindow {

Name : "Model results";

Device : window;

Mode : merge;

}

The Encoding

attribute

In the Encoding attribute of a file, a specific character encoding can be speci-

fied for that file, either as a specific element of the set AllCharacterEncodings

or as an element parameter with the set AllCharacterEncodings as its range.

Encodings are explained in Paragraph Text files on Page 18. In the example be-

low, the attribute Encoding states that code page WINDOWS-1252 should be used

for the file WindmillLocations.txt. This code page is not uncommon in the

Netherlands.

File WindMillLocs {

Name : "WindmillLocations.txt";

Encoding : ’WINDOWS-1252’;

}

The statement Write to file WindMillLocs ; will subsequently write the file

"WindmillLocations.txt" using the character encoding WINDOWS-1252. When the

Encoding attribute is not specified, the statements Read from file and Write to

file will use the encodings specified by the options default input character -

encoding and default output character encoding respectively. The default of

these options is the preferred encoding UTF8. The Encoding attribute is ignored

when reading from files which start with a Unicode BOM (Byte Order Mask).

The Convention

attribute

With the Convention attribute you can indicate that Aimms must assume that

the data in the file is to be stored according to the units provided in the spec-

ified convention. If the unit specified in the convention differs from the unit

in which Aimms stores its data internally, the data is scaled just prior to data

transfer. For the declaration of Conventions you are referred to Section 32.8.

Chapter 31. Text Reports and Output Listing 498

31.2 The PUT statement

Customized text

reports

Aimms provides two statements to create a customized text output report in

either a file or in a text window in the user interface. They are the PUT and the

DISPLAY statements. The result of these statements must always be directed to

either a single file or a window.

Basic stepsThe following steps are required to create a customized text report:

� direct the output to the appropriate File identifier, and

� print one or more strings, set elements, numerical items, or tabular ar-

rangements of data to it.

These basic operations are the subject of the subsequent subsections. At the

end of the section, an extended example will illustrate most of the discussed

features.

Stream versus

page mode

Aimms can produce text reports in two modes. They are:

� stream mode, in which all lines are printed consecutively, and

� page mode, where the report is divided into pages of equal length, each

consisting of a header, a footer and a data area.

Most aspects, such as opening files, output direction, and formatting, are the

same for both reporting modes. Only the structuring of pages is an extra

aspect of the page mode, and is discussed in Section 31.4.

31.2.1 Opening files and output redirection

Opening filesDisk files and windows are opened automatically as soon as output is written

to them. You can send output to a particular file by providing the associated

File identifier as the first argument of a PUT statement, which designates the

file as the current file.

PUT without file

identifier

If you use the DISPLAY statement or any of the PUT operators listed in Table 31.2

without a file identifier, Aimms will direct the output to the current file, i.e., the

file last opened through the PUT statement.

Undirected

output

When you have not yet selected a current file yet, Aimms will send the output

of any PUT or DISPLAY statement to the standard listing file associated with your

model.

Chapter 31. Text Reports and Output Listing 499

ExampleThe following statements illustrates how to send output to a particular file.

PUT ResultFile ;

PUT "The model results are:" ;

DISPLAY Transport ;

PUTCLOSE;

The first PUT statement sets the current file equal to ResultFile, causing the

output of the subsequent PUT and DISPLAY statements to be directed to it. The

final PUTCLOSE statement will close ResultFile.

File identifiers

only

Unlike other statements like READ and WRITE which allow you to represent files

by strings or string parameters as well, the PUT statement requires that you

use a File identifier to represent the output file. The way in which output to a

file is generated by the PUT statement is completely controlled by the suffices

associated with the corresponding File identifier (see also Section 31.4).

Accessing the

current file

Aimms has two pre-defined identifiers that provide access to the current file.

They are

� the element parameter CurrentFile (into the set AllIdentifiers) contain-

ing the current File identifier, and

� the string parameter CurrentFileName, containing the file name or window

title associated with the current file identifier.

The parameter CurrentFileName is output only.

Changing the

current file

To select another current file, you can use either of two methods:

� use the PUT statement to (re-)direct output to a different file, or

� set the identifier CurrentFile to the File identifier of your choice.

Closing external

files

Closing an external file can be done in two ways:

� automatically, by quitting Aimms at the end of a session, or

� manually by calling “PUTCLOSE file-identifier” during execution.

Files left openIf you leave a file open during the execution of a procedure, Aimms will tem-

porarily close it at the end of the current execution, and re-open it in append

mode at the beginning of a subsequent execution. This enables you to inspect

the PUT files in between runs.

Chapter 31. Text Reports and Output Listing 500

31.2.2 Formatting and positioning PUT items

The PUT

statement

Besides selecting the current file, the PUT statement can be used to output one

or more individual strings, numbers or set elements to an external text file

or window. Each item can be printed in either a default or in a customized

manner. The syntax of the PUT statement follows.

Syntaxput-statement :

PUT-operator

expression format-field

position-determination

file-identifier

,

;

PUT operatorsAll possible variants of the PUT operator are listed in Table 31.2. The PUT and

PUTCLOSE operators can be used in both stream mode and page mode. The

operators PUTHD, PUTFT and PUTPAGE only make sense in page mode, and are

discussed in Section 31.4.

Statement Description Stream Page

mode mode

PUT Direct output or write output • •
PUTCLOSE PUT and close current file • •
PUTHD Write in header area •
PUTFT Write in footer area •
PUTPAGE PUT and output current page •

Table 31.2: PUT keywords

Put items are

always scalar

All PUT operators only accept scalar expressions. For each scalar item to be

printed you can optionally specify a format field, with syntax:

Chapter 31. Text Reports and Output Listing 501

Syntaxformat-field :

:

<>

>

<

numerical-expression : numerical-expression

Format fieldsWith the format field you specify

� whether the item is to be centered, left aligned or right aligned,

� the field width associated with an identifier, and

� the precision.

Customized default values for the justification, field width and precision can

be specified through PUT-related options, which can be set via the Options

menu. Table 31.3 shows a number of examples of format fields, where m

and n are expressions evaluating to integers.

Justification Field width Precision

PUT argument (characters)

item default default default

item:m default m default

item:m:n default m n

item:<m:n left m n

item:>m:n right m n

item:<>m:n centered m n

Table 31.3: Format specification of PUT arguments

Interpretation

of precision

For numerical expressions the precision is the number of decimals to be dis-

played. For strings and set elements the precision is the maximum number of

characters to be displayed. The numbers or characters are placed into a field

with the indicated width, and are positioned as specified.

Using the

FormatString

function

The PUT syntax for formatting and displaying multiple items on a single line

is somewhat similar to the reporting syntax in programming languages like

Fortran or Pascal. If you are a C programmer, you may prefer to construct

and format a single line of text using the FormatString function (see also Sec-

tion 5.3.2). In this case you only need the PUT statement to send the resulting

string to a text report or window.

Chapter 31. Text Reports and Output Listing 502

Position

determination

For advanced reporting the PUT statement allows you to directly position the

cursor at a given row or column. The syntax is shown in the following syntax

diagram.

position-determination :

numerical-expression

@ numerical-expression

/

How to positionThere are three special arguments for the PUT statement that can be used to

position printable items in a file:

� the “@” operator—for horizontal positioning on a line,

� the “#” operator—for vertical positioning, and

� the newline operator “/”.

These three operators are explained in Table 31.4, where the symbols k and l

are expressions evaluating to integers.

Operator Meaning

@k Start printing the next item at column k of the current line.

#l Goto line l of current page (page mode only).

/ Goto new line.

Table 31.4: Position determination

Page mode onlyUsing the vertical positioning operator # only makes sense when you are print-

ing in page mode. When printing in stream mode all lines are numbered con-

secutively from the beginning of the report, and added to the output file or

window as soon as Aimms encounters the newline character /. In page mode,

Aimms prints pages in their entirety, and lines are numbered per page. As a

result, you can write to any line within the current page.

31.2.3 Extended example

ExampleThis example builds upon the transport model used throughout the manual.

The following group of statements will produce a text report containing the

contents of the identifiers Supply(i), Demand(j) and Transport(i,j), in a com-

bined tabular format separated into right aligned columns of length 12.

Chapter 31. Text Reports and Output Listing 503

The statements! Direct output to ResultFile

put ResultFile ;

! Construct a header for the table

put @13, "Supply":>12, @30, "Transport":>12, /, @30 ;

for (j) do put j:>12 ; endfor ;

put // ;

! Output the values for Demand

put "Demand", @30 ;

for (j) do put Demand(j):>12:2 ; endfor ;

put // ;

! Output Supply and Transport

for (i) do

put i:<12, Supply(i):>12:2, @30 ;

for (j) do put Transport(i,j):>12:2 ; endfor;

put / ;

endfor ;

! Close ResultFile

putclose ResultFile ;

The produced

report

For a particular small data set containing only three Dutch cities, the above

statements could result in the following report being generated.

Supply Transport

Amsterdam Rotterdam Den Haag

Demand 5.00 10.00 15.00

Amsterdam 10.00 2.50 2.50 5.00

Rotterdam 12.50 2.50 5.00 5.00

Den Haag 7.50 0.00 2.50 5.00

31.3 The DISPLAY statement

Output in

Aimms format

You can use the DISPLAY statement to print the data associated with sets, pa-

rameters and variables to a file or window in Aimms format. As this format

is also very easy to read, the DISPLAY statement is an excellent alternative for

printing indexed identifiers.

Chapter 31. Text Reports and Output Listing 504

Syntaxdisplay-statement :

DISPLAY { data-selection display-format

,

}

WHERE display-format

,

;

display-format :

format-specifier := expression

Display formatAll data selections of a DISPLAY statement are printed by Aimms in the form of

a data assignment.

� Sets are printed in the form of a set assignment with an enumerated set

on the right-hand side.

� (Slices of) parameters and variables are printed in the form of data as-

signments, which can be either a table format, a list format, or a com-

posite table.

For indexed parameters and variables Aimms uses a default display format

which is dependent on the dimension.

Overriding the

display format

You can override the default Aimms format by specifying a display format,

consisting of one or more format specifications, in the WHERE clause. Aimms

supports the following format specifiers:

� DECIMALS: the number of decimals to be printed for each entry,

� ROWDIM: the dimension of the row space,

� COLDIM: the dimension of the column space, and

� COLSPERLINE: the desired numbers of columns per line.

When a format specifier is not specified, Aimms will use the system default.

Number of

decimals

All format specifications in a WHERE clause are applied to the entire collection

of data selections printed in the DISPLAY statement. By specifying a DECIMAL for-

mat specifier for a particular data selection in the DISPLAY statement, you can

also override the number of decimals printed for each data selection individu-

ally. You cannot specify other format specifiers for individual data selections.

Chapter 31. Text Reports and Output Listing 505

Obtaining lists

and tables

If you have set the dimension of either the row or column space to zero, Aimms

will print the identifier in list format. If both the dimension of the row and

column space are greater than zero, Aimms will print the identifier as a table.

Aimms will honor your request to print the desired number of columns per line

if the resulting width does not exceed the default page width. In the latter case,

Aimms will reduce the number of columns until they fit within the requested

page width. The default page width can be set as an option within your project.

Outer indices

for slicing

If the sum of the dimensions of the row and column space is less than the

dimension of the parameter or variable to be displayed, Aimms will display

the identifiers as slices of the requested format, where the slices are taken by

fixing the first indices in the domain.

Composite

tables

When all arguments of the DISPLAY statement have the same domain and you

enclose them by braces, Aimms will print their values as a single composite

table. In this case, you can only specify the precision with which each col-

umn must be printed. Aimms will ignore any of the other display options in

combination with the composite table format.

ExampleThe following statements illustrate the use of the DISPLAY statement and its

various display options.

� The following statement will display the data of the variable Transport

with 2 decimals and in the default format.

display Transport where decimals := 2;

The execution of this statement results in the following output being

generated.

Transport :=

data table

Amsterdam Rotterdam ’Den Haag’

! ---------- ---------- ----------

Amsterdam 2.50 2.50 5.00

Rotterdam 2.50 5.00 5.00

’Den Haag’ 2.50 5.00

;

� The following statement displays the subselection of the slice of the

variable Transport consisting of all transports departing from the set

LargeSupplyCities.

display Transport(i in LargeSupplyCities,j) where decimals := 2;

This statement will result in the following table, assuming that Large-

SupplyCities contains only Amsterdam and Rotterdam.

Transport :=

data table

Chapter 31. Text Reports and Output Listing 506

Amsterdam Rotterdam ’Den Haag’

! ---------- ---------- ----------

Amsterdam 2.50 2.50 5.00

Rotterdam 2.50 5.00 5.00

;

� The following DISPLAY statement displays Transport with no rows, two

columns (i.e. in list format), and two entries per line.

display Transport where decimals:=2, rowdim:=0, coldim:=2, colsperline:=2;

The resulting output looks as follows.

Transport := data

{ (Amsterdam , Amsterdam) : 2.50, (Amsterdam , Rotterdam) : 2.50,

(Amsterdam , ’Den Haag’) : 5.00, (Rotterdam , Amsterdam) : 2.50,

(Rotterdam , Rotterdam) : 5.00, (Rotterdam , ’Den Haag’) : 5.00,

(’Den Haag’, Rotterdam) : 2.50, (’Den Haag’, ’Den Haag’) : 5.00 } ;

� In the following DISPLAY statement the row and column display dimen-

sions do not add up to the dimension of Transport.

display Transport where decimals:=2, rowdim:=0, coldim:=1, colsperline:=3;

As a result Aimms considers the indices corresponding to the dimen-

sion deficit as outer, and displays Transport by means of three one-

dimensional displays, each of the requested dimension.

Transport(’Amsterdam’, j) := data

{ Amsterdam : 2.50, Rotterdam : 2.50, ’Den Haag’ : 5.00 } ;

Transport(’Rotterdam’, j) := data

{ Amsterdam : 2.50, Rotterdam : 5.00, ’Den Haag’ : 5.00 } ;

Transport(’Den Haag’, j) := data

{ Rotterdam : 2.50, ’Den Haag’ : 5.00 } ;

� The following DISPLAY statement illustrates how a composite table can be

obtained for identifiers defined over the same domain, with a different

number of decimals for each identifier.

display { Supply decimals := 2, Demand decimals := 3 };

Execution of this statement results in the creation of the following one-

dimensional composite table.

Composite table:

i Supply Demand

! ---------- ------ -------

Amsterdam 10.00 5.000

Rotterdam 12.50 10.000

’Den Haag’ 7.50 15.000

;

Chapter 31. Text Reports and Output Listing 507

31.4 Structuring a page in page mode

Page-based filesIn addition to the continuous stream mode of operation of the PUT statement

discussed in the previous section, Aimms also provides a page-based file for-

mat. Aimms divides a page-based file into pages of a specified length, each

consisting of a header, a body, and a footer. Figure 31.1 gives an overview of a

page in a page-based report.

PUTFT statement

PUT statement

PUTHD statement

.FooterSize suffix

.BodySize suffix

.HeaderSize suffix

.PageSize suffix

.PageWidth suffix

Figure 31.1: Overview of a page in a page based report

Switching to

page mode

You can switch between page and stream by setting the .PageMode suffix of

a file identifier to ’on’ or ’off’ (the elements of the predefined set OnOff),

respectively, as in the statement ResultFile.PageMode := ’on’. The value of the

.PageMode suffix is ’off’ by default. When switching to another mode Aimms

will begin with a new page or close the last page.

Page size and

width

The default page size is 60 lines. You can overwrite this default by setting

the .PageSize suffix of the file identifier to another positive integer value. For

instance, ResultFile.PageSize := 10 will give short pages with only ten lines

per page. The default page width is 132 columns. You can change this default

by setting the .PageWidth suffix of the file identifier.

Chapter 31. Text Reports and Output Listing 508

Headers and

footers

The header and footer of a document can be specified by using the PUTHD and

PUTFT statements. They are equivalent to the PUT statement but write in the

header and footer area instead of in the page body. The size of the header and

footer is not preset, but is determined by the contents of the PUTHD and PUTFT

statements. The header and footer keep their contents from page to page.

MarginsThere are no specific attributes for either the top, bottom, left or right margins

of a page. You essentially control these margins by either resizing the header

or footer of a page, or by positioning the PUT items in a starting column of your

choice using the @ operator of the PUT statement.

Page structureTable 31.5 summarizes the file attributes for structuring pages. With the ex-

ception of the page body size (read only) you can modify their defaults by

using assignment statements.

Suffix Description Default

.PageMode Mode ’off’

.PageSize Page size 60

.PageWidth Page width 132

.PageNumber Current page number 1

.BodyCurrentColumn Body current column –

.BodyCurrentRow Body current row –

.BodySize Body size –

.HeaderCurrentColumn Header current column –

.HeaderCurrentRow Header current row –

.HeaderSize Header size –

.FooterCurrentColumn Footer current column –

.FooterCurrentRow Footer current row –

.FooterSize Footer size –

Table 31.5: Page structure attributes

Positioning in

page mode

The positioning operators @, #, and / explained in Section 31.2 are also appli-

cable in page mode. However, Aimms offers you additional file attributes for

positioning items in a page-based file.

Current row

and column

Whenever you PUT an item into a header, footer, or page body, there is a cur-

rent row and a current column. Aimms keeps track of which row and column

are current through the suffices .BodyCurrentRow and .BodyCurrentColumn of the

File identifier. You can either read or overwrite these values using assignment

statements. Similar suffices also exist for the header and the footer area.

Chapter 31. Text Reports and Output Listing 509

Modifying size

of page sections

After having specified the header, footer, or page body, you may want to

change their size at some stage during the process of writing pages. By specify-

ing the .BodySize, .HeaderSize and .FooterSize suffices you can modify the size

(or empty) the page body, the header, or the footer. The value of the .BodySize

suffix can be at most the value of the .PageSize suffix minus the value of the

.HeaderSize and .FooterSize suffices.

Printing the

page number

Whenever you write the contents of the .PageNumber suffix of a File identifier

in its header or the footer area, Aimms will replace it with the current page

number whenever it prints a page of a page based report. By default, the first

page will be numbered 1, but you can override this by assigning another value

to the .PageNumber suffix.

31.5 The standard output listing

The .lis

extension

Aimms produces a standard output listing file for each run of a procedure

and each solution of a mathematical program. The name of this listing is the

base name of the model file with the extension “.lis”. The listing is optionally

generated during the first execution in a session and, depending on the option

settings, can also be generated during subsequent execution—after updates to

parameters and variables.

Contents of a

listing file

A standard output listing file can contain one or more of the following items:

� a source listing—the source code as compiled,

� a constraint listing—a printout of the generated individual constraints of

a mathematical program,

� a solution listing—the solution values for its variables and constraints,

� a solver status file—a progress report on the solution process, and

� any undirected text output produced from PUT or DISPLAY statements.

Output

activated via

options

By default, the standard output listing will be empty unless you set options

that activate Aimms to print one or more of the items in the list above. By

not setting options, you avoid the creation of lengthy output files every time

you run a model. In addition, you speed up the solution process by avoiding

unnecessary overhead.

Examining the

solution process

Whenever you want to inspect the model at the individual constraint level, or

want to examine the performance of the solver in some detail, then a listing

file is your ultimate source of information. The required options for the pro-

duction of this file can be set from within the model text or from within the

graphical interface of Aimms. They are retained with your project. For more

specific information on each of the available options, please consult the Aimms

help file.

Chapter 31. Text Reports and Output Listing 510

ExampleAfter setting the option constraint listing to 1, Aimms produces the following

standard listing for the transport model used throughout this manual. The

model uses a small example data set containing just a few Dutch cities. A

detailed explanation of the listing format is given at the end.

The constraint

listing

This is the first constraint listing of TransportModel.

---- MeetDemand

MeetDemand(’Amsterdam’) .. [1 | 1 | after]

+ 1 * Transport(’Amsterdam’ ,’Amsterdam’) + 1 * Transport(’Rotterdam’ ,’Amsterdam’)

>= 5.88 ; (lhs=5.88)

MeetDemand(’Rotterdam’) .. [1 | 2 | after]

+ 1 * Transport(’Amsterdam’ ,’Rotterdam’) + 1 * Transport(’Rotterdam’ ,’Rotterdam’)

>= 12.4 ; (lhs=12.4)

MeetDemand(’Den Haag’) .. [1 | 3 | after]

+ 1 * Transport(’Amsterdam’ ,’Den Haag’) + 1 * Transport(’Rotterdam’ ,’Den Haag’)

>= 12.8 ; (lhs=12.8)

---- MeetSupply

MeetSupply(’Amsterdam’) .. [1 | 4 | after]

+ 1 * Transport(’Amsterdam’ ,’Amsterdam’) + 1 * Transport(’Amsterdam’ ,’Rotterdam’)

+ 1 * Transport(’Amsterdam’ ,’Den Haag’)

<= 16 ; (lhs=15.1)

MeetSupply(’Rotterdam’) .. [1 | 5 | after]

+ 1 * Transport(’Rotterdam’ ,’Amsterdam’) + 1 * Transport(’Rotterdam’ ,’Rotterdam’)

+ 1 * Transport(’Rotterdam’ ,’Den Haag’)

<= 16 ; (lhs=16)

---- TotalCost_definition

TotalCost_definition .. [1 | 6 | after]

+ 1 * TotalCost

- 3.34 * Transport(’Amsterdam’,’Amsterdam’) - 11.7 * Transport(’Amsterdam’,’Rotterdam’)

- 13 * Transport(’Amsterdam’,’Den Haag’) - 9 * Transport(’Rotterdam’,’Amsterdam’)

- 2 * Transport(’Rotterdam’,’Rotterdam’) - 3 * Transport(’Rotterdam’,’Den Haag’)

= 0 ; (lhs=0)

ExplanationThe above listing contains all the individual constraints generated by Aimms

on the basis of the model formulation and the particular data set loaded at the

time of the SOLVE statement. Each individual constraint name is followed by

three entries within square brackets.

� The first entry represents the number of times that a SOLVE statement

has been executed.

Chapter 31. Text Reports and Output Listing 511

� The second entry is a consecutive number assigned to each individual

constraint being printed.

� The third entry indicates when the constraint listing is generated (either

“before” or “after” a SOLVE statement has been executed).

Bracketed at the end of each constraint is the value of the left-hand side. You

can compare this with the right-hand side to evaluate the status of the con-

straint. By setting the option constraint variable values to 1 you get a more

extensive listing that also includes the values and bounds of the variables that

are included in each constraint.

Solution listingThe following solution listing results from setting the option solution listing

to 1. Note that the listing includes values for each of the suffices attached to

variables and constraints. The status column for variables indicates whether

or not the variable is basic, frozen, at bound, or bound exceeded. Similarly, the

status column for constraints indicates the same basis and bound information

as for variables.

Example

solution listing

This is the first solution report of TransportModel after a solve.

The 1 scalar variable:

Name Lower level Upper ReducedCost Status

--------- ----- ------- ----- ----------- ------

TotalCost -inf 172.079 inf 0 Basic

The variable "Transport(i,j)" contains the following 6 columns:

i j Lower level Upper ReducedCost Status

---------- ---------- ----- ------ ----- ----------- ------

Amsterdam Amsterdam 0 5.880 inf 0.000 Basic

Amsterdam Rotterdam 0 9.200 inf 0.000 Basic

Amsterdam ’Den Haag’ 0 0.000 inf 0.300 At bound

Rotterdam Amsterdam 0 0.000 inf 15.360 At bound

Rotterdam Rotterdam 0 3.200 inf 0.000 Basic

Rotterdam ’Den Haag’ 0 12.800 inf 0.000 Basic

The 1 scalar constraint:

Name ShadowPrice Status

-------------------- ----------- ------

TotalCost_definition 0

The constraint "MeetDemand(j)" contains the following 3 rows:

j Lower level Upper ShadowPrice Status

---------- ------ ------ ----- ----------- ------

Amsterdam 5.880 5.880 inf 3.340 At bound

Rotterdam 12.400 12.400 inf 11.700 At bound

’Den Haag’ 12.800 12.800 inf 12.700 At bound

The constraint "MeetSupply(i)" contains the following 2 rows:

i Lower level Upper ShadowPrice Status

---------- ----- ------ ----- ----------- ------

Amsterdam -inf 15.080 16 0.000 Basic

Rotterdam -inf 16.000 16 -9.700 At bound

Part VII

Advanced Language

Components

Chapter 32

Units of Measurement

This chapterThis chapter describes how to incorporate dimensional analysis into an Aimms

application. As will be explained, you can define quantities and their cor-

responding units, and associate these units with identifiers in your model.

Aimms automatically checks for unit consistency in all the constraints and

assignment statements. In addition, Aimms allows you to specify unit conven-

tions. With this facility it is possible for end-users around the world to select

their preferred convention, and view the model data in the units associated

with that convention.

32.1 Introduction

Units are

common

Measurement plays a central role in observations of the real world. Most ob-

served quantities are measured in some unit (e.g. dollar, hour, meter, etc.), and

the magnitude of the unit influences the mental picture that you may have

of an object (e.g. ounce, kilogram, ton, etc.). When you combine such objects

in a numerical relationship, the corresponding units must be commensurable.

Without such consistency, the mathematical relationships become meaning-

less.

Why units in

models

There are several good reasons to track units throughout a model. The explicit

mentioning of units can enhance the readability of a model, which is espe-

cially helpful when others read and/or maintain your model. Units provide

the Aimms compiler with additional checking power to find errors in model

formulations. Finally, through the use of units you can let Aimms perform the

job of unit conversion and scaling.

Standard unitsThe model editor in Aimms will give you access to a large number of quanti-

ties and units, and in particular to those of the International System of Units

(referred to as SI from the French “Systeme Internationale”). The SI system

is an improved metric system adopted by the Eleventh General Conference of

Weights and Measures in 1960. The entire SI system of measurement is con-

structed from the atomic base units associated with the following nine basic

quantities.

Chapter 32. Units of Measurement 514

Quantity Atomic Base Unit Text

length m meter

mass kg kilogram

time s second

temperature K kelvin

amount of mass mol mole

electric current A ampere

luminous intensity cd candela

angle rad radian

solid angle sr steradian

Table 32.1: Basic SI quantities and their base units

Derived quan-

tities and units

All quantities which are not one of the nine basic SI quantities are called de-

rived quantities. Each such quantity has a derived base unit which can be

expressed in terms of the atomic base units of the basic SI quantities. Option-

ally, a compound unit symbol can be associated with such a derived base unit,

like the symbol N for the unit kg*m/sˆ2. The following table illustrates some of

the more well-known derived quantities and their corresponding derived base

units. Note that five of them have an associated compound unit symbol. Many

other derived quantities are available in Aimms.

Quantity Derived Base Unit Text

area mˆ2 square meter

volume mˆ3 cubic meter

force N = kg*m/sˆ2 newton

pressure Pa = kg/m*sˆ2 pascal

energy J = kg*mˆ2/sˆ2 joule

power W = kg*mˆ2/sˆ3 watt

charge C = A*s coulomb

density kg/mˆ3 kilogram per cubic meter

velocity m/s meter per second

angular velocity rad/s radian per second

Table 32.2: Selected derived SI quantities and their base units

Related unitsAside from the base unit that must be associated with every quantity, it is

also possible to specify a number of related units. Related units are those

units that can be expressed in terms of their base unit by means of a linear

relationship. A typical example is the unit km which is related to the base unit m

by means of the linear relationship x km = 1000*x m. Similarly, the unit degC

(degree Celsius) is related to the base unit K through the formula x degC = (x

+ 273.15) K.

Chapter 32. Units of Measurement 515

Standard unit

prefix notation

Frequently, related units are a multiple of their own base unit, which is re-

flected through a prefix notation that indicates the level of scaling. Table 32.3

shows the standard SI prefix symbols and their corresponding scaling factor.

Familiar examples are kton, MHz, kJ, etc. Note that any prefix can be applied to

any base unit except the kilogram. The kilogram takes prefixes as if the base

unit were the gram.

Factor Name Symbol Factor Name Symbol

101 deca da 10−1 deci d

102 hecto h 10−2 centi c

103 kilo k 10−3 milli m

106 mega M 10−6 micro mu

109 giga G 10−9 nano n

1012 tera T 10−12 pico p

1015 peta P 10−15 femto f

1018 exa E 10−18 atto a

1021 zetta Z 10−21 zepto z

1024 yotta Y 10−24 yocto y

Table 32.3: Prefixes of the International System

Flexible

specification

To give you maximum freedom to choose your own quantities, units and nam-

ing conventions, Aimms is not exclusively committed to any particular stan-

dard. However, you are encouraged to use the standard SI units and prefix

symbols to make your model as readable and maintainable as possible.

Summary of

terminology

Thus far you have encountered basic quantities (Table 32.1) and derived quan-

tities (Table 32.2). Each quantity has a base unit. The base unit of a basic

quantity is defined through a unit symbol, referred to as an atomic unit. All

other base units are derived base units. Such units are defined through an ex-

pression in terms of other base units, which can eventually be translated into

an expression of atomic base units. You have the option to associate a unit

symbol with any derived base unit, which is referred to as a compound unit

symbol. Whenever you have associated a unit symbol with the base unit of

either a basic or derived quantity, you are also allowed to specify one or more

related unit symbols by specifying the corresponding linear relationship.

32.2 The Quantity declaration

DeclarationIn Aimms, all units are uniquely coupled to declared quantities. For each de-

clared Quantity you must specify an identifier together with one or more of its

attributes listed in Table 32.4.

Chapter 32. Units of Measurement 516

Attribute Value-type Mandatory

BaseUnit [unit-symbol] [=] yes

[unit-expression]

Text string

Conversion unit-conversion-list

Comment comment string

Table 32.4: Quantity attributes

The BaseUnit

attribute

You must always specify a base unit for each quantity that you declare. Its

value is either

� an atomic unit symbol,

� a unit expression, or

� a compound unit symbol with unit expression.

A unit symbol can be any sequence of the characters a–z, the digits 0–9, and

the symbols _, @, &, %, |, as well as a currency symbol not starting with a digit,

or one of the special unit symbols 1 and -. The latter two special unit symbols

allow you, for instance, to declare model identifiers without unit, or to express

unitless numerical data in terms of percentages.

Currency

symbols

Aimms supports the currency symbols as defined by the Unicode committee,

see http://unicode.org/charts/PDF/U20A0.pdf. These currency symbols

include $, e, ç, ¢, £, and ¤.

Separate

namespace

Aimms stores unit symbols in namespaces separate but parallel to the iden-

tifier namespaces. Hence, you are free to choose unit symbols equal to the

names of global identifiers within your model. Namespaces in Aimms are dis-

cussed in full detail in Section 35.4.

Backward

compatibility

Aimms 3.8 and older use only a singleton unit namespace which was a poten-

tial cause of nameclashes when units with the same name are declared from

quantities or unit parameters declared in different namespaces. In order to

obtain the old behaviour one can make sure that all units are declared within

the global namespace or set the option singleton unit namespace to on. This

option can be found in the backward compatibility category.

ExampleThe following example illustrates the three types of base units.

Quantity Length {

BaseUnit : {

m ! atomic unit

}

}

http://unicode.org/charts/PDF/U20A0.pdf

Chapter 32. Units of Measurement 517

Quantity Time {

BaseUnit : {

s ! atomic unit

}

}

Quantity Velocity {

BaseUnit : {

m/s ! unit expression

}

}

Quantity Frequency {

BaseUnit : {

Hz = 1/s ! compound unit symbol with unit expression

}

}

The atomic unit symbols m and s are the base units for the quantities Length

and Time. The unit expression m/s is the base unit for the quantity Velocity.

The compound unit symbol Hz, defined by the unit expression 1/s, is the base

unit of the quantity Frequency.

Derived can be

used as basic

The previous example strictly adheres to the SI standards, and, for example,

defines the base unit of the derived quantity Frequency in terms of the base

unit of Time. In general, this is not necessary. If Time is not used anywhere else

in your model, you can just provide the base unit Hz for Frequency without pro-

viding its translation in SI base units. Frequency then becomes a basic quantity,

and Hz becomes an atomic base unit.

Unit expressionsThe unit expressions that you can enter in the BaseUnit attribute can only

consist of

� unit symbols (base and/or related units),

� constant factors,

� the two operators “*” and “/”,

� parentheses, and

� the power operator “ˆ” with integer exponent.

The common precedence order of the operators “*”, “/” and “ˆ” is as described

in Section 6.3. Unit expressions are discussed in full detail in Section 32.6.

The Conversion

attribute

With the Conversion attribute you can declare and define one or more related

unit symbols by specifying the (linear) transformation to the associated base

unit. The conversion syntax is as follows.

Syntaxunit-conversion-list :

unit-symbol -> unit-symbol : # -> unit-conversion

,

Chapter 32. Units of Measurement 518

Unit conversion

explained

A unit conversion must be defined using a linear expression of the form (# ·
a+b) where # is a special token, and the operator · stands for either multipli-

cation or division. The coefficients a and b can be either numerical constants

or references to scalar parameters. An example in which the use of scalar

parameters is particularly convenient is the conversion between currencies pa-

rameterized by a varying exchange rate.

ExampleQuantity Length {

BaseUnit : m;

Conversions : {

km -> m : # -> # * 1000,

mile -> m : # -> # * 1609

}

}

Quantity Temperature {

BaseUnit : degC;

Conversions : degC -> degF : # -> # * 1.8 + 32;

}

Quantity Energy {

BaseUnit : J = kg * mˆ2 / sˆ2;

Conversions : {

kJ -> J : # -> # * 1000 ,

MJ -> J : # -> # * 1.0e6,

kWh -> J : # -> # * 3.6e6

}

}

Quantity Currency {

BaseUnit : US$;

Conversion : {

DM -> US$: # -> # * ExchangeRate(’DM’) ,

DFl -> US$: # -> # * ExchangeRate(’DFl’)

}

}

Quantity Unitless {

BaseUnit : 1;

Conversions : % -> 1 : # -> # / 100;

}

32.3 Associating units with model identifiers

The Unit

attribute

To associate units with scalar or multi-dimensional identifiers in your model,

you can specify a unit definition for such identifiers through the Unit attribute.

The Unit attribute is only supported for the following identifier types:

� parameters,

� variables,

� constraints,

� arcs,

� nodes,

� function and procedure arguments, and

� internal and external functions.

Chapter 32. Units of Measurement 519

Visibility of the

Unit attribute

Within the Aimms Model Explorer, the Unit attribute is only visible in the at-

tribute forms of the identifier types listed above if your model already contains

the declarations of one or more quantities. If you only want to use the Unit

attribute to specify a scale factor for an identifier (see below), you can make

the Unit attribute visible in all attribute forms by adding a unitless quantity to

your model (i.e. a quantity with base unit 1).

Unit attribute

value

In its simplest form, the unit definition of a parameter, variable or constraint is

just a reference to a base or compound unit symbol. In general, it can be a unit

expression based on the same syntax as described previously for specifying a

derived unit expression in a Quantity declaration. The complete syntax of unit

expressions is discussed in Section 32.6.

ExampleThe declaration

Variable VelocityOfItem

IndexDomain : i;

Unit : km/h;

}

introduces a variable VelocityOfItem(i) with a corresponding unit km/h. This

declaration could also have been written as

Variable VelocityOfItem {

IndexDomain : i;

Unit : 1000*m/h;

}

which contains an explicit scale factor of 1000, instead of using the derived

unit symbol km.

Units also for

scaling

When you do not use unit symbols, you can still use the Unit attribute to

indicate the appropriate scale factor to be used for an identifier. These scale

factors, whether or not in the presence of unit symbols, will be used by Aimms

to scale the corresponding data during various computations, as explained in

Section 32.5.

Use of unitsBy specifying units for some or all the identifiers in your model, Aimms will

perform the following unit-related tasks for you:

� automatic checking of the statements in your model for unit consistency

(see Section 32.4),

� automatic scaling of identifiers in assignments, DISPLAY and READ/WRITE

statements (see Section 32.5), and

� automatic conversion of arguments (and result value) of external proce-

dures and functions (see Section 32.5), and

� automatic scaling of the variables and constraints in a mathematical pro-

gram (see Section 32.5.1).

Chapter 32. Units of Measurement 520

The .Unit suffixFor all identifier types for which you can specify a Unit attribute, there is also

an associated .Unit suffix. The value of the .Unit suffix is a unit expression that

equals the unit specified within the Unit attribute of the identifier at hand.

Use of the .Unit

suffix

The .Unit suffix is most commonly used in the following situations:

� when generating reports by means of the PUT and DISPLAY statements (see

Sections 31.2 and 31.3, respectively),

� when displaying units in strings generated by the %u conversion specifier

of the FormatString function (see Section 5.3.2), and

� when performing sensitivity analysis of mathematical programs in the

presence of variables and constraints which have a non-empty Unit at-

tribute (see Section 32.5.1).

Indices not

always required

If you want to reference the .Unit suffix of a multidimensional identifier, it is

not always necessary to use the corresponding indices of the identifier in its

.Unit suffix reference. The use of indices is only necessary if the Unit attribute

actively depends on the indices, for instance, because it

� contains a multidimensional scale factor, or

� refers to a multidimensional unit parameter (see also Section 32.9).

In all other cases, a reference to just the identifier name is sufficient.

ExampleConsider the declaration of the variable VelocityOfItem(i) above. Its UNIT at-

tribute is the constant unit km/h, whence it can be obtain through the (scalar)

reference

VelocityOfItem.Unit

Unit-valued

parameters are

permitted

When the Unit attribute of an identifier contains references to unit-valued pa-

rameters (see Section 32.9), such references will be evaluated, within the con-

text of the .Unit suffix, to their corresponding unit expressions. Thus, the

.Unit suffix will always result in a unit expression containing only unit sym-

bols declared in one or more Quantity declarations.

32.4 Unit analysis

Unit consistencyBy associating a unit with every relevant identifier in your model, you enable

Aimms to automatically verify whether all terms in the assignments and con-

straints of your model are unit consistent. When Aimms detects unit inconsis-

tencies, this may help you to solve conceptual problems in your model, which

could otherwise have remained undetected for a long time.

Chapter 32. Units of Measurement 521

. . . always in

atomic units

With every derived unit or compound unit symbol, it is possible to associate a

unique unit expression consisting of a constant scale factor and atomic units

only. All assignments and definitions in Aimms are interpreted as formulas

expressed in terms of these atomic unit expressions, and unit consistency check-

ing is based on this interpretation. While ignoring the constant scale factors,

Aimms will verify that the atomic unit expression for every term in either an

assignment statement or a constraint is identical. If the resulting unit check

identifies an inconsistency, an error or warning will be generated.

ExampleConsider the identifiers a, b, and c having units [m], [km], and [10*m] respec-

tively, all with [m] as their corresponding associated atomic unit expression,

and scale factors 1, 1000 and 10, respectively. Then the assignment

c := a + b ;

is unit consistent, because all terms share the same atomic unit expression [m].

Constant

expressions

If an expression on the right-hand side of an assignment consists of a constant

scalar term or a data expression (preceded by the keyword DATA), Aimms will

assume by default that such expressions have the same unit as the identifier

on the left-hand side. If the intended unit of the right-hand side is different

than the declared unit of the identifier on the left, you should explicitly specify

the appropriate unit for this term, by locally overriding the unit as explained

in Section 32.7.

Constant terms

in expressions

On the other hand, if a non-constant expression contains a constant term,

then Aimms will make no assumption about the intended unit of the constant

term. In fact, it is considered unitless. If a unit inconsistency occurs for that

reason, you should explicitly add a unit to the constant term to resolve the

inconsistency, as explained in Section 32.7.

ExampleGiven parameters a ([m] and b ([km]), as well as a 1-dimensional parameter d(i)

with associated unit [m], the following assignments illustrate the interpretation

of constant numbers by Aimms.

a := 10; ! OK: constant number 10 interpreted as [m]

a := 10 [km]; ! OK: constant number 10 interpreted as [km]

d(i) := DATA { 1: 10, 2: 20 }; ! OK: all data interpreted as [m]

a := 10*b; ! OK: constant number 10 considered unitless

a := b + 10; ! ERROR: unit inconsistency, constant term 10 unitless

a := b + 10 [km]; ! OK: unit inconsistency resolved

Automatic unit

checking on or

off

By default, the global Aimms option to perform automatic unit analysis is on

and inconsistencies are detected. Aimms will produce either warning messages

or error messages (the former is the default). You can find the full details on

all unit-related options in the help file that comes with your Aimms system.

Chapter 32. Units of Measurement 522

Automatic scale

consistency

The assignment c := a + b of the first example in this section is unit consis-

tent, but it does not appear to be scale consistent since the units of a, b and

c have different scales. In Aimms, however, a unit consistent assignment is

automatically scale consistent, because Aimms translates and stores all data

in terms of the underlying atomic unit expression. In the example, this im-

plies that the use of the values of a, b, and c as well as the assignment are

in the atomic unit [m]. Consequently, Aimms can now directly execute the as-

signment, and the scale consistency is automatically ensured. Of course, any

display of values of a, b and c will be again in terms of the units associated

with these identifiers.

Advanced

example. . .

This example illustrates a number of identifiers with compound unit defini-

tions. It is based on the SI units for weight, velocity and energy, and uses the

derived units ton, km, h and MJ.

Variable WeightOfItem {

IndexDomain : i;

Unit : ton;

}

Variable VelocityOfItem {

IndexDomain : i;

Unit : Velocity: km/h;

}

Variable KineticEnergyOfItem {

IndexDomain : i;

Unit : MJ;

Definition : 1/2 * WeightofItem(i) * VelocityOfItem(i)ˆ2;

}

Any display of these variables will be in terms of ton, km/h and MJ, respectively,

but internally Aimms uses the units kg, m/s and kg*mˆ2/sˆ2 for storage. The

latter represent the corresponding unique atomic unit expressions associated

with weight, velocity and energy.

. . . is unit

consistent

As a consequence of specifying units, there will be an automatic consistency

check on the defined variable KineticEnergyOfItem(i). Aimms interprets the

definition of KineticEnergyOfItem(i) as a formula expressed in terms of the

atomic units. The relevant unit components are:

� [ton] = 10ˆ3 * [kg],

� [km/h] = (1/3.6) * [m/s], and

� [MJ] = 10ˆ6 * [kg*mˆ2/sˆ2].

The definition of KineticEnergyOfItem(i) as expressed in terms of atomic units

is kg*(m/s)ˆ2, while its own unit in terms of atomic units is kg*mˆ2/sˆ2. These

two unit expressions are consistent.

Chapter 32. Units of Measurement 523

Beware of

non-absolute

units

If the unit conversion between a derived unit and its corresponding atomic

unit not only consists of a scale factor, but also contains a constant term, such

a derived unit is referred to as a non-absolute unit. If an arithmetic expression

in your model refers to identifiers or constants expressed in a non-absolute

unit, you should pay special attention to make sure that the result of the com-

putation is what you intended. The following example makes the point.

ExampleConsider the following quantity declaration.

Quantity Temperature {

BaseUnit : K;

Conversions : degC -> K : # -> # + 273.15;

}

Given this declaration, what is the result of the assignment

x := 1 [degC] + 2 [degC];

where x is a scalar parameter with unit degC? Following the rules explained

above—Aimms stores all data and performs all computations in terms of atom-

ic units— Aimms performs the following computation internally

x := 274.15 [K] + 275.15 [K];

resulting in an assignment to x of 549.3 [K] = 276.15 [degC], which is probably

not the intended answer. The key observation is that in an addition only one

of the operands should be expressed in a non-absolute unit. Similarly, in a

multiplication or division probably none of the operands should be expressed

in a non-absolute unit. The mistake in the above assignment is that the second

argument in fact should be a temperature difference (e.g. between 3 [degC] and

1 [degC]), which precisely yields an expression in terms of the corresponding

absolute unit K:

x := 1 [degC] + (3 [degC] - 1 [degC]); ! equals 274.15 [K] + 2 [K] = 3 [degC]

Using temperature differences is more common in assignments to identifiers

like LengthIncreasePerDegC (expressed in [m/degC]), which probably takes the

form of a difference quotient, as illustrated below.

LengthIncreasePerDegC := (Length1 - Length0) / (Temperature1 - Temperature0);

Units and

intrinsic

functions

When you use an intrinsic Aimms function (see Section 6.1.4) inside an expres-

sion in your model, the unit associated with the corresponding function call

will in general depend on its arguments. The unit relationship between the ar-

guments and the result of the function falls into one of the following function

categories.

� Unitless functions, for which both the arguments and the result are di-

mensionless. Examples are: exp, log, log10, errorf, atan, cos, sin, tan,

degrees, radians, atanh, cosh, sinh, tanh, and the exponential operator

with a non-constant exponent.

Chapter 32. Units of Measurement 524

� Transparent functions that do not alter units. Examples are: abs, max,

min, mod, ceil, floor, precision, round, and trunc.

� Conversion functions that convert units in a predictable way. Examples

are: sqr, sqrt, and the exponential operator with a constant integer ex-

ponent.

Explicit units in

expressions

In some exceptional cases, one or more terms in an expression may not be unit

consistent with the other terms in the expression. To restore unit consistency,

Aimms allows you to explicitly specify a unit for the inconsistent term(s) as

an emergency measure. The syntax for such unit overrides is explained in

Section 32.7. You should make sure, however, that these explicit unit overrides

do not affect the scale consistency of the expression (see Section 32.7).

32.4.1 Unit analysis of procedures and functions

Unit analysis of

procedures and

functions

Once you have associated units of measurement with the global identifiers in

your model, you will also need to associate units of measurement with the

arguments, local identifiers and result values of procedures and functions.

When you do so, you enable Aimms to perform the common unit analysis on

the statements in the bodies of all internal procedures and functions. For

external procedures and functions, Aimms cannot perform a unit analysis on

the function and procedure bodies, but will use the assigned units for scaling

purposes as explained in Section 32.5.

Two procedure

types

In general, one can distinguish two types of procedures and functions, namely

� procedures and functions of a very specific nature, whose arguments and

result values have associated units of measurement that are constant and

known a priori, and

� procedures and functions of a very general nature, whose arguments and

result values can have any associated unit of measurement.

An example of the latter type is a function with a single one-dimensional ar-

gument to compute the average of all values contained in its argument. For

such a function, the specific units associated with the argument and the result

values are not known a priori, but it is known that they must be equal.

Express units

in local unit

parameters

To let you declare procedure and functions of the second type, Aimms allows

you to express the units of measurement of its arguments and the result val-

ues in terms of unit parameters (see also Section 32.9) declared locally within

the procedure or function. At runtime, Aimms will dynamically determine the

value of the unit parameter, based on the actual arguments passed to the pro-

cedure or function. In addition, Aimms will verify that the unit of a function

value is commensurate with the remainder of the statement or expression from

which it was called.

Chapter 32. Units of Measurement 525

ExampleThe function MyAverage in this example computes the average of a general one-

dimensional identifier. It combines Aimms’ ability to define arguments over

local sets (see Section 10.1), with a unit expressed in term of a local unit pa-

rameter. Its declaration is given by

Function MyAverage {

Arguments : (Ident);

Unit : LocalUnit;

Body : {

MyAverage := sum(i, Ident(i)) / Card(LocalSet)

}

}

The single argument Ident(i) of the function MyAverage is defined by

Parameter Ident {

IndexDomain : i;

Unit : LocalUnit;

}

Set LocalSet {

Index : i;

}

UnitParameter LocalUnit;

Note that Ident(i) is defined over a local set LocalSet and that its unit is ex-

pressed in terms of a local unit parameter LocalUnit, both of which are de-

termined at runtime. Because the unit of the function MyAverage itself is also

equal to LocalUnit, the assignment in the body of MyAverage is unit consistent.

32.5 Unit-based scaling

Scaled versus

unscaled values

With each identifier for which you have specified a Unit attribute, Aimms asso-

ciates two values:

� the scaled value (i.e. expressed in terms of the unit specified), and

� the unscaled value (i.e. expressed in terms of the associated atomic unit

expression).

The transformation between scaled and nonscaled values is completely deter-

mined by the product of explicit and implicit scale factors associated with the

various quantity and unit definitions.

When usedAs mentioned in Section 32.4, Aimms uses internally unscaled values for all

storage and arithmetic computations. This guarantees automatic scale consis-

tency. However, for external use, scaled values are more natural when exchang-

ing data with components outside the Aimms execution system. Specifically,

Aimms uses scaled values when

� displaying the data of an identifier in the (end-)user interface,

� exchanging data for a particular identifier with files and databases using

the READ and WRITE statements,

Chapter 32. Units of Measurement 526

� passing arguments to external procedures and functions,

� storing the result value(s) of an external function, and

� communicating the variables and constraints of a mathematical program

to a solver.

Units in displaysWhen displaying data in either the graphical user interface or in PUT and DIS-

PLAY statements, Aimms will transfer data using the scaled unit specified in the

definition of the identifier. For example, if you have specified kton as the unit

attribute of an identifier while the underlying atomic unit is kg, Aimms will still

display the identifier values in kton.

. . . and data

entry

Similarly, when reading data from or writing data to scalar numerical con-

stants, lists, tables, composite tables (either graphical or in data files), or tables

(in databases) using the READ and WRITE statements, Aimms assumes that this

data is provided in the (scaled) units that you have specified in the identifier

declarations in your model, and will transform all data to the corresponding

unscaled values for internal storage.

Override default

scaling

You can override the default scaling based on the content of the Unit attribute

either locally within the graphical end-user interface or model source, or glob-

ally using Conventions. Local and global overrides are discussed in complete

detail in Sections 32.7 and 32.8.

32.5.1 Unit-based scaling of mathematical programs

Automatic

scaling for

solvers

During communications with a solver, Aimms will scale all variables and con-

straints (including variable definitions) in accordance with the scale factor as-

sociated with the Unit attribute in their declaration. This choice is based on the

assumption that the specified units reflect the expected order of magnitude of

the numbers associated with the variables, parameters and constraints, and

that these numbers will neither be very large nor very small. As a result, the

values of all rows and columns in the generated mathematical program are ex-

pected to be of the same, reasonable, order of magnitude. Especially nonlinear

solvers may greatly benefit from this choice.

Main example

revisited

In the main example of Section 32.4, the scale factors are 103 for the identi-

fier WeightOfItem(i), 1/3.6 for VelocityOfItem(i), and 106 for KineticEnergy-

OfItem(i). The entire constraint associated with the defined variable is then

scaled according to the scale factor of the unit of the definition variable Kinet-

icEnergyOfItem(i), MJ. This corresponds with dividing the left- and right-hand

side of the constraint by 106. Thus, the resulting expression communicated to

the solver by Aimms will be:

KineticEnergyOfItemColumn(i) =

1/2 * (1/10ˆ3) * WeightofItemColumn(i) * ((1/3.6) * VelocityOfItemColumn(i))ˆ2 ;

Chapter 32. Units of Measurement 527

Notice that each variable shown in this expression has a suffix “Column” to indi-

cate that it corresponds to a column in the matrix underlying the mathematical

program.

Units of reduced

cost and

shadow price

Some care is needed when you have requested sensitivity information asso-

ciated with a mathematical program, such as the reduced costs of variables

and shadow prices of constraints. The basic rules with respect to retrieving

sensitivity information are as follows:

� All sensitivity suffices in Aimms, such as the .ReducedCost and .Shadow-

Price suffix, are unitless.

� All sensitivity suffices hold the exact numerical value as computed by the

solver, i.e. expressed with respect to the scaled values that are commu-

nicated to the solver by Aimms.

Motivating the

choice of

unitless

The reason for not associating units with the sensitivity suffices is that a single

variable or constraint may be used in multiple mathematical programs, each

with its own objective. As each objective may have a different associated unit,

and the reduced costs and shadow prices express properties of a variable or

constraint with respect to the objective, it is inherently impossible to associate

a single unit with the .ReducedCost and .ShadowPrice suffices.

Unit- and scale

consistent

sensitivity data

You may encounter scaling problems when you want to perform direct com-

putations with the sensitivity suffices of variables and constraints. Using the

.Unit suffix and Aimms’ capabilities to override units of subexpressions (see

Sections 32.6 and 32.7), however, it is easy to formulate expressions that

� result in the correct unscaled numerical values that can be used directly

in Aimms computations, and

� have an associated unit that is consistent with their interpretation.

Example with

unit overrides

Assuming that ExampleVariable and ExampleConstraint are part of a mathemat-

ical program, with ObjectiveVariable as its objective function, one can ob-

tain the correct values by locally overriding the units of the .ReducedCost and

.ShadowPrice suffices through the expressions:

(ExampleVariable.ReducedCost) [ObjectiveVariable.Unit / ExampleVariable.Unit]

(ExampleConstraint.ShadowPrice) [ObjectiveVariable.Unit / ExampleConstraint.Unit]

Example with

unit functions

Alternatively, you can use the function EvaluateUnit (see Section 32.6.2) to

obtain the same result

ExampleVariable.ReducedCost *

EvaluateUnit(ObjectiveVariable.Unit / ExampleVariable.Unit)

ExampleConstraint.ShadowPrice *

EvaluateUnit(ObjectiveVariable.Unit / ExampleConstraint.Unit)

Chapter 32. Units of Measurement 528

Introducing new

parameters

If you need to perform multiple computations with these expressions, or want

to display them in the graphical end-user interface, you are advised to assign

these expressions to additional parameters in your model with the appropriate

associated units.

Example with

convention

When you have used a Convention to override the default scaling during the

SOLVE statement, the expressions above should be augmented by applying the

functions ConvertUnit and EvaluateUnit (see Section 32.6.1):

ExampleVariable.ReducedCost *

EvaluateUnit(ConvertUnit(ObjectiveVariable.Unit, ConventionUsed) /

ConvertUnit(ExampleVariable.Unit, ConventionUsed))

ExampleConstraint.ShadowPrice *

EvaluateUnit(ConvertUnit(ObjectiveVariable.Unit, ConventionUsed) /

ConvertUnit(ExampleConstraint.Unit, ConventionUsed))

This will result in a scaling factor that is consistent with the variable and con-

straint scaling convention passed to the solver. You cannot obtain the same

result by locally overriding the units of the .ReducedCost and .ShadowPrice

suffices, as unit local overrides only accept simple unit expressions (see Sec-

tion 32.6).

Use of unit

parameters

If your model contains multiple computations concerning the .ReducedCost and

.ShadowPrice suffices, each with identical scale factors, you may consider as-

signing the unit expressions required for scaling these suffices to unit param-

eters (see Section 32.9). You can then directly use such unit parameters in a

local unit override, rather than having to repeat possibly complex unit expres-

sions time and again. For instance, if ScaledUnit is a unit parameter defined by

ScaledUnit := ConvertUnit(ObjectiveVariable.Unit, ConventionUsed) /

ConvertUnit(ExampleVariable.Unit, ConventionUsed) ;

then the correctly scaled expression for the reduced cost of ExampleVariable

can be simplified to

(ExampleVariable.ReducedCost) [ScaledUnit]

You can use a local override, because a reference to a scalar unit parameter

again forms a valid simple unit expression (see Section 32.6).

32.6 Unit expressions

Unit expressionsUnit expressions can be used at various places in an Aimms model, such as:

� the BaseUnit attribute of a Quantity declaration (defined in Section 32.2),

� in a local unit override of a numerical (sub-)expression (discussed in Sec-

tion 32.7)

� in a convention list of the PerUnit, PerQuantity or PerIdentifier attributes

of a Convention (see also Section 32.8), or

Chapter 32. Units of Measurement 529

� on the right hand side of an assignment to a unit parameter (see Sec-

tion 32.9).

The syntax of a unit expression is straightforward, and given below.

Syntaxunit-expression :

(unit-expression)

unit-symbol

unit-reference

operator-expression

function-call

conditional-expression

Unit symbols

and references

The simplest form of unit expression is just a unit symbol, as defined in either

the BaseUnit or the Conversion attribute of a Quantity declaration. A reference

to either a (scalar or indexed) unit parameter (see Section 32.9) or to the .Unit

suffix of any identifier with an associated unit (see Section 32.3), is a second

form of unit expression.

Unit operators

and functions

More complex unit expressions can be obtained by applying the binary unit

operators *, / and ˆ, with the usual left-to-right evaluation order. The following

rules apply:

� the operand on the right of the * operator must be a unit expression,

while the operand on the left can either be a unit expression or a numer-

ical expression (expressing a numeric scale factor),

� both operands of the / operator must be unit expressions, and

� the operand on the left of the ˆ operator must be a unit expression, while

the exponent operand must be an integer numerical expression.

In addition, Aimms supports a number of unit functions, which can create new

unit values or construct associated unit values from a given unit expression

(see Section 32.6.1).

Three types of

unit expressions

However, Aimms requires that any unit expressions uniquely falls into one of

the three categories

� unit constant,

� simple unit expression, or

� computed unit expression.

Chapter 32. Units of Measurement 530

Unit constantsUnit constants are unit expressions which consist solely of unit symbols, scalar

constants and the three unit operators *, / and ˆ. Unit constants can be used

in

� the BaseUnit attribute of a Quantity,

� the lists associated with a Convention, and

� the unit-valued function Unit.

In addition, unit constants can be

� displayed and entered via the Aimms graphical user interface,

� assigned to unit parameters through data statements (see Chapter 28),

and

� exchanged with external data sources via the READ and WRITE statements

(see Chapter 26).

Simple unit

expressions

Simple unit expressions are an extension of unit constants. They are unit ex-

pressions which consist solely of unit symbols, unit references without in-

dexing, scalar constants and the three unit operators *, / and ˆ. Simple unit

expressions can be used in

� local unit overrides, and

� assignments to unit parameters.

Computed unit

expressions

Computed unit expression can use the full range of unit expressions, with the

exception of unit constants. If you want to refer to unit constants within the

context of a computed unit expression, you must embed it within a call to the

function Unit, discussed in the next section. Computed unit expressions can

be used

� in assignments to unit parameters, and

� as an argument of the functions ConvertUnit, AtomicUnit and EvaluateUnit

(see Sections 32.6.1 and 32.6.2).

32.6.1 Unit-valued functions

Unit-valued

functions

Aimms supports the following unit-valued functions:

� Unit(unit-constant)

� StringToUnit(unit-string)

� AtomicUnit(unit-expr)

� ConvertUnit(unit-expr, convention)

Chapter 32. Units of Measurement 531

The function

Unit

The function Unit simply returns its argument, which must be a unit constant.

The function Unit is available to allow the usage of unit constants within com-

puted unit expressions (as discussed in the previous section).

The function

StringToUnit

The function StringToUnit converts a string, which represents a unit expres-

sion, to the corresponding unit value. You can use this function, for instance,

after reading external string data that needs to be converted to real unit values

for further use in your model.

The function

AtomicUnit

With the function AtomicUnit you can retrieve the atomic unit expression corre-

sponding to the unit expression passed as the argument to the function. Thus,

the unit expression

AnIdentifier.Unit / AtomicUnit(AnIdentifier.Unit)

will result in a (unitless) unit value that exactly represents the scale factor be-

tween the unit of an identifier and its associated atomic unit expression. You

can obtain the corresponding numerical value, to be used in numerical expres-

sions, by applying the function EvaluateUnit discussed in the next section.

The function

ConvertUnit

The function ConvertUnit returns the unit value corresponding to the unit ex-

pression of the first argument, but taking into consideration the convention

specified in the second argument. If the first argument contains a reference to

a .Unit suffix, Aimms will apply the full range of conversions including those

specified in the PerIdentifier attribute of the convention.

ExamplesThe expression

ConvertUnit(AnIdentifier.Unit, ConventionUsed)

returns the associated unit of the identifier AnIdentifier as if the conven-

tion ConventionUsed were active. A further example of the use of the function

ConvertUnit is given in Section 32.5.1.

32.6.2 Converting unit expressions to numerical expressions

Numeric value

of a unit

expression

Although numerical values and unit values are two very distinct data types in

Aimms, the distinction between the two in real life applications is not always

as strict. For instance, in the previous section the computation of the ratio

between a unit and its associated atomic unit expression returned a unit value,

which represents nothing more than a (unitless) scale factor. In practice, how-

ever, it is the numeric scale factor value that is of interest, and can be used in

numerical computations.

Chapter 32. Units of Measurement 532

The function

EvaluateUnit

Using the function EvaluateUnit you can compute the numerical value associ-

ated with a computed unit expression. Its syntax is:

� EvaluateUnit(computed-unit-expression)

The numeric function value precisely corresponds to one unit of the specified

computed unit expression, measured in the evaluated unit of its argument.

ExampleThe following assignment to the scalar parameter ScaleFactor computes the

(unitless) scale factor between the unit of an identifier and its associated atom-

ic unit expression.

ScaleFactor := EvaluateUnit(AnIdentifier.Unit / AtomicUnit(AnIdentifier.Unit));

Extension of

local overrides

As you will see in the next section, the function EvaluateUnit offers extension

the local unit override capability. The argument of EvaluateUnit can be a com-

puted unit expression (see Section 32.6), whereas local unit overrides can only

accept simple unit expressions.

32.7 Locally overriding units

Locally

overriding units

In some rare occasions the unit specified in the declaration of a particular

identifier does not necessarily have to match with the unit of the data for

that identifier. In that case, Aimms allows you just to override the unit of

a particular expression locally. Such a local unit override of an expression

always takes the simple form

(expression) [simple-unit-expression]

where expression is some Aimms expression, and simple-unit-expression is a

simple unit expression as explained in Section 32.6. If expression solely con-

sists of a numeric constant, Aimms allows you to omit the parentheses around

it.

Where to useYou can use local unit overrides in a variety of data I/O related situations.

� In a WRITE, DISPLAY or PUT statement, you can use a local unit override

to specify the particular unit in which data must be written to a file,

database table or window.

� In the FormatString function, you can use a local unit override to spec-

ify the unit in which a numeric argument corresponding to a %n format

specifier must be formatted.

� On the left side of a data assignment, in the header of a composite table,

or in a READ statement, you can use a local unit override to specify the

unit in which the supplied data to be provided.

Chapter 32. Units of Measurement 533

Commensurate

requirement

In all these data I/O statements and expressions, Aimms requires that the unit

provided in the override is commensurate with the original unit that can be

associated with the expression.

ExampleGiven the declarations of the examples in the Section 32.4, the following data

I/O statements locally override the default unit [km/h] of the identifier Veloci-

tyOfItem with the commensurate unit [mph].

� Override per identifier:

(VelocityOfItem) [mph] := DATA { car: 55, truck: 45 };

read (VelocityOfItem) [mph] from table VelocityTable;

display (VelocityOfItem) [mph];

� Override per individual entry:

put (VelocityOfItem(’car’)) [mph];

StringVal := FormatString("Speed in [mph]: %n", (VelocityOfItem(’car’)) [mph]);

Recall that parentheses are always required when you want to override the

default unit in expressions and statements, unless the overridden expression

is a simple numeric constant.

Override for

consistency

In addition to overriding units during a data exchange, you can also override

the unit of a (sub)expression in an assignment with the purpose of enforcing

unit consistency of all terms in the assignment. This is especially useful when

there are numeric constants inside your expressions. Aimms will add the ap-

propriate scale factor if the specified unit override does not match with the

corresponding atomic unit expression.

ExamplesThe following examples illustrate unit overrides with the purpose of enforcing

unit consistency.

� Consider the assignment

SoundIntensity := (10 * log10(SoundLevel / ReferenceLevel)) [dB];

If SoundIntensity has an associated unit of [dB], the right hand side of

the assignment, which by itself is unitless, must be locally overridden to

make the entire assignment unit consistent.

� Consider the assignment

a := b + 10 [km];

where both a and b are measured in terms of length. As discussed in

Section 32.4, Aimms will make no assumption about the unit associated

with the numerical constant 10 in the expression on the right-hand side

of the assignment. In order to make the assignment unit consistent, an

explicit unit override of the constant term is required. If the associated

base unit is [m], Aimms will automatically add a scale factor of 1000,

whence the assignment will numerically evaluate to a := b + 10*1000.

Chapter 32. Units of Measurement 534

Caution is

needed

If you explicitly associate a unit with an expression which already contains

one or more identifiers with associated units, the numerical result can be un-

expected. This is due to fact that Aimms, during expression evaluation, uses

the unscaled numerical values with respect to the associated atomic units of

each identifier. To illustrate, reconsider the assignment

a := (b * c) [km];

but now assume that the identifiers a, b, and c have units [km], [km], and [10*m].

If the values of b and c are 1 [km](=1000 [m]) and 50 [10*m](=500 [m]), respec-

tively, the numerical result of a after the assignment will amount to (500 *

1000)*1000 [m]= 500000 [km], which may not be the result that you intended.

32.8 Globally overriding units through Conventions

Unit

conventions

In addition to locally overriding the unit definition of an identifier in a par-

ticular statement, you can also globally override the default format for data

exchange using READ and WRITE, DISPLAY and SOLVE statements by selecting an

appropriate unit convention. A convention offers a global medium to specify

alternative (scaled) units for multiple quantities, units, and identifiers. In addi-

tion, one can specify alternative representations for a calendar in a convention.

Effect of

conventions

Once you have selected a convention, Aimms will interpret all data transfer

with an external component according to the units that are specified in the

convention. When no convention has been selected for a particular external

component, Aimms will use the default convention, i.e. apply the unit as speci-

fied in the declaration of an identifier. For a compound quantity not present in

a convention, Aimms will apply the convention to all composing atomic units

used in the compound quantity.

Convention

attributes

Conventions must be declared before their use. The list of attributes of a

Convention declaration are described in Table 32.5.

Attribute Value-type See also

page

Text string

Comment comment string

PerIdentifier convention-list/reference

PerQuantity convention-list

PerUnit convention-list

TimeslotFormat timeslot-format-list 570

Table 32.5: Simple Convention attributes

Chapter 32. Units of Measurement 535

Convention listA convention list is a simple list associating single quantities, units and identi-

fiers with a particular (scaled) unit expression. The specified unit expressions

must be consistent with the base unit of the quantity, the specified unit, or the

identifier unit, respectively.

Syntaxconvention-list :

identifier

unit-symbol

quantity

: unit-expression

,

Customizable

conventions

In addition to a fixed convention list, the PerIdentifier attribute also accepts

a reference to a unit-valued parameter defined over the set AllIdentifiers or

a subset thereof. In that case, the convention will dynamically construct a

convention list based on the contents of the unit-valued parameter.

ExampleThe following declaration illustrates the use of a Convention to define the more

common units in the Anglo-American unit system at the quantity level, the

unit level and the identifier level.

Convention AngloAmericanUnits {

PerIdentifier : {

GasolinePurchase : gallon,

PersonalHeight : feet

}

PerQuantity : {

Velocity : mph,

Temperature : degF,

Length : mile

}

PerUnit : {

cm : inch,

m : yard,

km : mile

}

}

Customizable

example

Assuming that IdentifierUnits is a unit-valued parameter defined over All-

Identifiers, the following Convention declaration illustrates a convention that

can be customized at runtime by modifying the contents of the unit parameter

IdentifierUnits.

Convention CustomizableConvention {

PerIdentifier : IdentifierUnits;

}

Chapter 32. Units of Measurement 536

Application

order

For a particular identifier, Aimms will select a unit from a convention in the

following order.

� If a unit has been specified for the identifier, Aimms will use it.

� If the identifier can be associated with a specific quantity in the conven-

tion, Aimms will use the unit specified for that quantity.

� In all other cases Aimms will apply the convention to an atomic unit

directly, or to all composing atomic units used in a compound unit.

Timeslot format

list

In addition to globally overriding units, Conventions can also be used, through

the TimeslotFormat attribute, to override the time slot format of calendars. You

may need to specify alternative time slot formats, for instance, when you are

reading data from an external database or file, in which all dates are not speci-

fied in the same time zone as the one your model assumes. The TimeslotFormat

attribute of a Convention is discussed in full detail in Section 33.10.

The Convention

attribute

You can declare more than one convention in your model. A Convention at-

tribute can be specified for the following node types in the model tree, which

all correspond to an external component:

� the main model (used for the end-user interface or as default for all other

external components),

� a mathematical program,

� a file (also when used to refer to a DLL containing a library of external

procedures and functions used by Aimms), and

� a database table or procedure.

The value of the Convention attribute can be a specific convention declared in

your model, or a string or element parameter referring to a particular unit

convention.

Convention

semantics

For data exchange with all aforementioned external components Aimms will

select a unit convention in the following order.

� If an external component has a nonempty Convention attribute, Aimms

will use that convention.

� For display in the user interface, or for data exchange with external com-

ponents without a Convention attribute, Aimms will use the convention

specified for the main model (see also Section 35.2), if present.

� If the main model and external components have no Convention attribute,

Aimms will use the default convention, i.e. use the unit as specified in the

declaration of each identifier.

Chapter 32. Units of Measurement 537

ExampleThe following declaration of a File identifier shows the use of the Convention

attribute. All the output to the file ResultFile will be displayed in Anglo-

American units.

File ResultFile {

Name : "Output\\result.dat";

Convention : AngloAmericanUnits;

}

32.9 Unit-valued parameters

Parametrized

units

In some cases not all entries of an indexed identifier have the same associated

unit. An example is the diet model where the nutritive value of each nutrient

for a single serving of a particular food type is measured in a different unit.

Unit-valued

parameters

In order to deal with such situations, Aimms allows the declaration of (indexed)

unit-valued parameters which you can use in the unit definition of the other

parameters and variables in your model. In the model tree, unit-valued param-

eters are available as a special type of parameter declaration, with attributes

as given in Table 32.6.

Attribute Value-type See also

page

IndexDomain index-domain

Quantity quantity

Default unit-expression

Property NoSave 45

Text string 19

Comment comment string 19, 32

Definition unit-expression

Table 32.6: UnitParameter attributes

The Quantity

attribute

You should specify the Quantity attribute if all unit values stored in the unit

parameter can be associated with a single quantity declared in your model.

The effect of specifying a quantity in the Quantity attribute of a unit parameter

is twofold:

� during assignments to the unit parameter, Aimms will verify whether the

assigned unit values are commensurate with the base unit of specified

quantity, and

� Aimms will modify its (compile-time) unit analysis to use the specified

quantity rather than an artificial quantity based on the name of the unit

parameter (see below).

Chapter 32. Units of Measurement 538

The Default and

Definition

attributes

The Default and Definition attributes of a unit parameter have the same pur-

pose as the Default and Definition attribute of ordinary parameters, except

that the resulting values must be unit expressions (see Section 32.6). If you

have specified a quantity in the Quantity attribute, Aimms will verify that these

unit expressions are commensurate with the specified quantity.

Allowed unit

values

All unit values read from an external data source, or assigned to a unit parame-

ter, either via an assignment or through its Definition attribute, must evaluate

to existing unit symbols only. A compile- or runtime error will occur, when

a unit value refers to a unit symbol that is not defined in any of the Quantity

declarations contained in your model.

Use of unit

parameters

With unit parameters you can create, store and manipulate scalar or multidi-

mensional collections of unit values. The unit values stored in a unit parameter

can be used, for instance:

� to associate a parametrized (i.e. multidimensional) collection of units

with a single multidimensional identifier (through its Unit attribute), or

� to specify a local unit override based on a unit (or collection of units)

that is not known a priori.

Unit analysis. . .When a Unit attribute of an identifier contains a reference to a unit parameter,

this can, but need not, modify the way in which Aimms conducts its usual unit

analysis. There are two distinct scenarios, both described below.

. . . with

associated

quantity

If the unit parameter has an associated quantity (specified through its Quantity

attribute), all units stored in the unit parameter are known to be commensu-

rate with the base unit of the quantity, although the individual scale factors

may be different if the unit parameter is multidimensional. In this case, Aimms

will base its unit analysis on the associated quantity.

. . . without

associated

quantity

If there is no associated quantity, Aimms will introduce an artificial quantity

solely on the basis of the symbolic name of the unit parameter (i.e. without

consideration of its dimension), and base all further unit analysis on this ar-

tificial quantity only. If there is unit consistency at the level of these artificial

quantities, this automatically ensures, for multidimensional unit parameters,

unit consistency at the individual level as well, regardless of the specific indi-

vidual unit values stored in it.

Chapter 32. Units of Measurement 539

ExampleConsider the following declarations of unit-valued parameters, where f is an

index into the set Foods and n an index into the set Nutrients.

UnitParameter NutrientUnit {

IndexDomain : n;

}

UnitParameter FoodUnit {

IndexDomain : f;

}

With these unit-valued parameters you can specify meaningful indexed unit

expressions for the Unit attribute of the following parameters.

Parameter NutritiveValue {

IndexDomain : (f,n);

Unit : NutrientUnit(n)/FoodUnit(f);

}

Parameter NutrientMinimum {

IndexDomain : n;

Unit : NutrientUnit(n);

}

Variable Serving {

IndexDomain : f,

Unit : FoodUnit(f);

}

With these declarations, you can now easily verify that all terms in the defini-

tion of the following constraint are unit consistent at the symbolic level.

Constraint NutrientRequirement {

IndexDomain : n;

Unit : NutrientUnit(n);

Definition : sum[f, Servings(f)*NutritiveValue(f,n)] >= NutrientMinimum(n);

}

Indexed scalingWhen the Unit attribute of an identifier is parametrized by means of indexed

unit parameter, Aimms will correctly scale all data exchange with external com-

ponents (see Section 32.5). During data exchange with an external component,

Aimms considers the specified units at the individual (indexed) level, and will

determine the proper scaling for every individual index position. In addition,

when a unit convention is active, Aimms will scale all individual entries ac-

cording to that convention, as applied to the corresponding individual en-

tries of the indexed unit parameter. As usual, all data of an identifier with

a parametrized associated unit will be stored internally in the corresponding

atomic unit of every individual index value.

Example

revisited

When Aimms generates mathematical program which contains the variable

Serving(f), each column corresponding to this variable will be scaled accord-

ing to the scale factor of the particular unit stored in FoodUnit(f) with respect

to their corresponding atomic unit expressions. Similarly, Aimms will scale the

columns corresponding to the constraint NutrientRequirement(n) according the

scale factors of the units stored in NutrientUnit(n) with respect to their corre-

sponding atomic unit expressions.

Chapter 32. Units of Measurement 540

Initializing

unit-valued

parameters

You can initialize a unit-valued parameter through lists, tables, and composite

tables like you can initialize any other Aimms parameter (see Chapter 28). The

values of the individual entries must be valid unit constants (see Section 32.6),

and must be surrounded by square brackets. For compound units constants

you can optionally indicate the associated quantity in a similar way as in the

unit definition of a parameter.

ExampleThe following list initializes the unit-valued parameter NutrientUnit for a par-

ticular set of Nutrients.

NutrientUnit := DATA { Energy : [kJ] ,

Protein : [mg] ,

Iron : [%RDA] };

Unit parameters

and databases

In addition, Aimms allows you to read the initial data of a unit parameter from

a database table, and write the values of a unit parameter to a database table.

The unit values in the database table must be unit constants, and must be

stored without square brackets.

Simultaneous

unit and data

initialization

When a composite table in a data file, or a table in a database contains both

the values of a multidimensional unit parameter, and a corresponding numeric

parameter whose Unit attribute references that unit parameter, Aimms allows

you to read both identifiers in a single pass. When reading both identifiers,

Aimms will make sure that the numeric values are interpreted with respect to

the corresponding unit value that is read simultaneously.

Constant versus

parametrized

units

Aimms even allows you to make assignments from identifiers with a constant

unit to identifier slices of identifiers with a parametrized unit and vice versa.

If Aimms detects this special situation during compilation of your model, it

will postpone the compile unit consistency check whenever necessary, and

replace it with a runtime consistency check which is performed every time

the assignment is executed. Because all data is stored by Aimms with respect

to atomic units internally, unit consistency again automatically implies scale

consistency.

ExampleGiven the declarations of the previous example, assume the existence of an ad-

ditional parameter EnergyContent(f) with a constant associated unit, say Kcal.

Then, Aimms will postpone the compile unit consistency check for the follow-

ing two statements, and replace it with a runtime check.

NutritiveValue(f,’Energy’) := EnergyContent(f);

EnergyContent(f) := NutritiveValue(f,’Energy’);

The runtime unit consistency check will only succeed, whenever the unit value

of the unit parameter NutrientUnit(’Energy’) is commensurate with the con-

stant unit Kcal.

Chapter 32. Units of Measurement 541

RestrictionsAimms will only replace a compile time with a runtime unit consistency check

if a unique unit can be associated with the right-hand side of the assignment

at compile time. If the assigned expression consists of subexpressions which

have different associated unit expressions at compile time, a compile time

error will result. This is even the case when, at runtime, these unit expressions

evaluate to units that are commensurate with the unit of the left-hand side of

the assignment.

Chapter 33

Time-Based Modeling

This chapterIn Aimms there are three fundamental building blocks for time-based modeling

namely horizons, calendars and timetable-based aggregation and disaggrega-

tion. These concepts coincide with your natural view of time, but there are

associated details that need to be examined. Using these building blocks, you

can develop time-dependent model-based applications with substantially less

effort than would otherwise be required.

33.1 Introduction

Time and

models

Time plays an important role in various real-life modeling applications. Typical

examples are found in the areas of planning, scheduling, and control. The time

scale in control models is typically seconds and minutes. Scheduling models

typically refer to hours and days, while the associated time unit in planning

models is usually expressed in terms of weeks, months, or even years. To

facilitate time-based modeling, Aimms provides a number of tools to relate

model time and calendar time.

Use of time

periods

Time-dependent data in a model is usually associated with time periods. Some

data items associated with a period index can be interpreted as taking place

during the period, while others take place at a particular moment. For instance,

the stock in a tank is usually measured at, and associated with, a specific mo-

ment in a period, while the flow of material into the tank is usually associated

with the entire period.

Use of time as a

continuous

quantity

Time-dependent data in a model can also represent continuous time values.

For instance, consider a parameter containing the starting times of a number

of processes. Even though this representation is not ideal for constructing

most time-based optimization models, it allows time to be expressed to any

desired accuracy.

Chapter 33. Time-Based Modeling 543

Calendar

periods versus

model periods

A large portion of the data in time-dependent models originates from the real

world where quantities are specified relative to some calendar. Optimization

models usually refer to abstract model periods such as p1, p2, p3, etc., allow-

ing the optimization model to be formulated independent of real time. This

common distinction makes it essential that quantities associated with real cal-

endar time can be converted to quantities associated with model periods and

vice versa.

Rolling horizonIn many planning and scheduling applications, time-dependent models are

solved repeatedly as time passes. Future data becomes present data and even-

tually becomes past data. Such a moving time span is usually referred to as a

“rolling horizon”. By using the various features discussed in this chapter, it is

fairly straightforward to implement models with a rolling horizon.

Calendars and

Horizons

Aimms offers two special data types for time-based modeling applications,

namely Calendar and Horizon. Both are index sets with special features for

dealing with time. Calendars allow you to create a set of time slots of fixed

length in real time, while Horizons enable you to distinguish past, planning

and beyond periods in your model.

TimetablesIn addition, Aimms offers support for automatically creating timetables (rep-

resented through indexed sets) which link model periods in a Horizon to time

slots in a Calendar in a flexible manner. Based on a timetable, Aimms provides

functions to let you aggregate data defined over a Calendar to data defined over

the corresponding Horizon and vice versa. Figure 33.1 illustrates an example

of a timetable relating a horizon and a calendar.

calendar (divided into time slots)

horizon (divided into periods)

current date

current period

conversion rules

} } } } }p1 p2 p3 p4 p5

past planning interval beyond time blocks

Figure 33.1: Timetable relating calendar and horizon

Chapter 33. Time-Based Modeling 544

ExplanationThe horizon consists of periods divided into three time blocks, namely a past,

the planning interval, and beyond. There is a current period in the horizon

which can be linked to a current date in the calendar. The calendar consists of

time slots and its range is defined by a begin date and an end date. When you

construct your mathematical program, it will typically be in terms of periods

in the planning interval of the horizon. However, the input data of the model

will typically be in terms of calendar periods. The conversion of calendar data

into horizon data and vice versa is done on request by Aimms in accordance

with pre-specified conversion rules.

33.2 Calendars

CalendarsA calendar is defined as a set of consecutive time slots of unit length covering

the complete time frame from the calendar’s begin date to its end date. You

can use a calendar to index data defined in terms of calendar time.

Calendar

attributes

Calendars have several associated attributes, which are listed in Table 33.1.

Some of these attributes are inherited from sets, while others are new and

specific to calendars. The new ones are discussed in this section.

Attribute Value-type See also Mandatory

page

BeginDate string yes

EndDate string yes

Unit unit yes

TimeslotFormat string yes

Index identifier-list 32 yes

Parameter identifier-list 32

Text string 19

Comment comment string 19

Table 33.1: Calendar attributes

UnitThe Unit attribute defines the length of a single time slot in the calendar. It

must be specified as one of the following time units or an integer multiple

thereof:

� century,

� year,

� month,

� day,

� hour,

� minute,

Chapter 33. Time-Based Modeling 545

� second, and

� tick (i.e. sec/100).

Thus, 15*min and 3*month are valid time units, but the equivalent 0.25*hour and

0.25*year are not. Besides a constant integer number it is also allowed to use

an Aimms parameter to specify the length of the time slots in the calendar (e.g.

NumberOfMinutesPerTimeslot*min).

Not predefinedAlthough you can only use the fixed unit names listed above to specify the

Unit attribute of a calendar, Aimms does not have a predefined Quantity for

time (see also Chapter 32). This means that the units of time you want to

use in your model, do not have to coincide with the time units required in

the calendar declaration. Therefore, prior to specifying the Unit attribute of a

calendar, you must first specify a quantity defining both your own time units

and the conversion factors to the time units required by Aimms. In the Model

Explorer, Aimms will automatically offer to add the relevant time Quantity to

your model when the calendar unit does not yet exist in the model tree.

BeginDate and

EndDate

The mandatory BeginDate and EndDate attributes of a calendar specify its range.

Aimms will generate all time slots of the specified length, whose begin time lies

between the specified BeginDate and EndDate. As a consequence, the end time

of the last time slot may be after the specified EndDate. An example of this

behavior occurs, for instance, when the requested length of all time slots is 3

days and the EndDate does not lie on a 3-day boundary from the BeginDate. Any

period references that start outside this range will be ignored by the system.

This makes it easy to select all relevant time-dependent data from a database.

Reference date

format

Any set element describing either the BeginDate or the EndDate must be given

in the following fixed reference date format which contains the specific year,

month, etc. up to and including the appropriate reference to the time unit

associated with the calendar.

YYYY-MM-DD hh:mm:ss

All entries must be numbers with leading zeros present. The hours are ex-

pressed using the 24-hour clock. You do not need to specify all entries. Only

those fields that refer to time units that are longer or equal to the predefined

Aimms time unit in your calendar are required. All time/date fields beyond the

requested granularity are ignored. For instance, a calendar expressed in hours

may have a BeginDate such as

� “1996-01-20 09:00:00”, or

� “1996-01-20 09:00”, or

� “1996-01-20 09”,

which all refer to exactly the same time, 9:00 AM on January 20th, 1996.

Chapter 33. Time-Based Modeling 546

Time zone and

DST offsets

Aimms always assumes that reference dates are specified according to the local

time zone without daylight saving time. However, for calendars with granular-

ity day Aimms will ignore any timezone and daylight saving time offsets, and

just take the day as specified. In the example above, a daily calendar with the

above BeginDate will always start with period “1996-01-20”, while an hourly cal-

endar may start with a period “1996-01-19 23:00” if the difference between the

local time zone, and the time zone specification in the timeslot format is 10

hours.

Format of

time-related

attributes

Set elements and string-valued parameters capturing time-related information

must deal with a variety of formatting possibilities in order to meet end-user

requirements around the globe (there are no true international standards for

formatting time slots and time periods). The flexible construction of dates and

date formats using the TimeslotFormat is presented in Section 33.7.

ExampleThe following example is a declaration of a daily calendar and a monthly cal-

endar

Calendar DailyCalendar {

Index : d;

Parameter : CurrentDay;

Text : A work-week calendar for production planning;

BeginDate : "1996-01-01";

EndDate : "1997-06-30";

Unit : day;

TimeslotFormat : {

"%d/%m/%y" ! format explained later

}

}

Calendar MonthlyCalendar {

Index : m;

BeginDate : CalendarBeginMonth;

EndDate : CalendarEndMonth;

Unit : month;

TimeslotDormat : {

"%m/%y" ! format explained later

}

}

Varying number

of time slots

The calendar DailyCalendar thus declared will be a set containing the elements

’01/01/96’,. . . ,’06/30/97’ for every day in the period from January 1, 1996

through June 30, 1997. When the BeginDate and EndDate attributes are speci-

fied as string parameters containing the respective begin and end dates (as in

MonthlyCalendar), the number of generated time slots can be changed dynami-

cally. In order to generate zero time slots, leave one of these string parameters

empty.

Chapter 33. Time-Based Modeling 547

Time zones and

daylight saving

time

By default, Aimms assumes that a calendar uses the local time zone without

daylight saving time, in accordance with the specification of the BeginDate

and EndDate attributes. However, if this is not the case, you can modify the

TimeslotFormat attribute in such a manner, that Aimms

� will take daylight saving time into account during the construction of the

calendar slots, or,

� will generate the calendar slots according to a specified time zone.

In both cases, Aimms still requires that the BeginDate and EndDate attributes

be specified as reference dates in the local time zone without daylight saving

time, as already indicated. Support for time zones and daylight saving time is

explained in full detail in Section 33.7.4.

33.3 Horizons

HorizonsA horizon in Aimms is basically a set of planning periods. The elements in

a horizon are divided into three groups, also referred to as time blocks. The

main group of elements comprise the planning interval. Periods prior to the

planning interval form the past, while periods following the planning interval

form the beyond. When variables and constraints are indexed over a horizon,

Aimms automatically restricts the generation of these constraints and variables

to periods within the planning interval.

Effect on

constraints and

assignments

Whenever you use a horizon to construct a time-dependent model, Aimms has

the following features:

� constraints are excluded from the past and beyond periods,

� variables are assumed to be fixed for these periods, and

� assignments and definitions to variables and parameters are, by default,

only executed for the periods in the planning interval.

Horizon

attributes

Horizons, like calendars, have a number of associated attributes, some of

which are inherited from sets. They are summarized in Table 33.2.

Horizon

attributes

explained

The CurrentPeriod attribute denotes the first period of the planning interval.

The periods prior to the current period belong to the past. The integer value

associated with the attribute IntervalLength determines the number of periods

in the planning interval (including the current period). Without an input value,

all periods from the current period onwards are part of the planning interval.

Chapter 33. Time-Based Modeling 548

Attribute Value-type See also Mandatory

page

SubsetOf subset-domain 32

Index identifier-list 32 yes

Parameter identifier-list 32

Text string 19

Comment comment string 19

Definition set-expression 34 yes

CurrentPeriod element yes

IntervalLength integer-reference

Table 33.2: Horizon attributes

Definition is

mandatory

Aimms requires you to specify the contents of a Horizon uniquely through its

Definition attribute. The ordering of the periods in the horizon is fully de-

termined by the set expression in its definition. You still have the freedom,

however, to specify the Horizon as a subset of another set.

ExampleGiven a scalar parameter MaxPeriods, the following example illustrates the dec-

laration of a horizon.

Horizon ModelPeriods {

Index : h;

Parameter : IntervalStart;

CurrentPeriod : IntervalStart;

Definition : ElementRange(1, MaxPeriods, prefix: "p-");

}

If, for instance, the scalar MaxPeriods equals 10, this will result in the cre-

ation of a period set containing the elements ’p-01’,. . . ,’p-10’. The start of the

planning interval is fully determined by the value of the element parameter

IntervalStart, which for instance could be equal to ’p-02’. This will result in

a planning interval consisting of the periods ’p-02’,. . . ,’p-10’.

Example of useConsider the parameter Demand(h) together with the variables Production(h)

and Stock(h). Then the definition of the variable Stock can be declared as

follows.

Variable Stock {

IndexDomain : h;

Range : NonNegative;

Definition : Stock(h-1) + Production(h) - Demand(h);

}

When the variable Stock is included in a mathematical program, Aimms will

only generate individual variables with their associated definition for those

values of h that correspond to the current period and onwards. The reference

Stock(h-1) refers to a fixed value of Stock from the past whenever the index h

Chapter 33. Time-Based Modeling 549

points to the current period. The values associated with periods from the past

(and from the beyond if they were there) are assumed to be fixed.

Accessing past

and beyond

To provide easy access to periods in the past and the beyond, Aimms offers

three horizon-specific suffices. They are:

� the Past suffix,

� the Planning suffix, and

� the Beyond suffix.

These suffices provide access to the subsets of the horizon representing the

past, the planning interval and the beyond.

Horizon binding

rules

When you use a horizon index in an index binding operation (see Chapter 9),

Aimms will, by default, perform that operation only for the periods in the

planning interval. You can override this default behavior by a local binding

using the suffices discussed above.

ExampleConsider the horizon ModelPeriods of the previous example. The following

assignments illustrate the binding behavior of horizons.

Demand(h) := 10; ! only periods in planning interval (default)

Demand(h in ModelPeriods.Planning) := 10; ! only periods in planning interval

Demand(h in ModelPeriods.Past) := 10; ! only periods in the past

Demand(h in ModelPeriods.Beyond) := 10; ! only periods in the beyond

Demand(h in ModelPeriods) := 10; ! all periods in the horizon

Use of lag and

lead operators

When you use one of the lag and lead operators +, ++, - or -- (see also Sec-

tion 5.2.3) in conjunction with a horizon index, Aimms will interpret such ref-

erences with respect to the entire horizon, and not just with respect to the

planning period. If the horizon index is locally re-bound to one of the subsets

of periods in the Past or Beyond, as illustrated above, the lag or lead operation

will be interpreted with respect to the specified subset.

ExampleConsider the horizon ModelPeriods of the previous example. The following

assignments illustrate the use of lag and lead operators in conjuction with

horizons.

Stock(h) := Stock(h-1) + Supply(h) - Demand(h);

Stock(h | h in ModelPeriods.Planning) := Stock(h-1) + Supply(h) - Demand(h);

Stock(h in ModelPeriods.Planning) := Stock(h-1) + Supply(h) - Demand(h);

Stock(h in ModelPeriods.Planning) := Stock(h--1) + Supply(h) - Demand(h);

The first two assignments are completely equivalent (in fact, the second as-

signment is precisely the way in which Aimms interprets the default binding

behavior of a horizon index). For the first element in the planning interval,

Chapter 33. Time-Based Modeling 550

the reference h-1 refers to the last element of the past interval. In the third

assignment, h-1 refers to a non-existing element for the first element in the

planning interval, completely in accordance with the default semantics of lag

and lead operators. In the fourth assignment, h--1 refers to the last element

of the planning interval.

Data transfer

on entire

domain

Operations which can be applied to identifiers without references to their in-

dices (such as the READ, WRITE or DISPLAY statements), operate on the entire

horizon domain. Thus, for example, during data transfer with a database,

Aimms will retrieve or store the data for all periods in the horizon, and not

just for the periods in the planning interval.

33.4 Creating timetables

TimetablesA timetable in Aimms is an indexed set, which, for every period in a Horizon,

lists the corresponding time slots in the associated Calendar. Timetables play

a central role during the conversion from calendar data to horizon data and

vice versa.

The procedure

CreateTimeTable

Through the predefined procedure CreateTimeTable, you can request Aimms to

flexibly construct a timetable on the basis of

� a time slot in the calendar and a period in the horizon that should be

aligned at the beginning of the planning interval,

� the desired length of each period in the horizon expressed as a number

of time slots in the calendar,

� an indication, for every period in the horizon, whether the length domi-

nates over any specified delimiter slots,

� a set of inactive time slots, which should be excluded from the timetable

and, consequently, from the period length computation, and

� a set of delimiter time slots, at which new horizon periods should begin.

SyntaxThe syntax of the procedure CreateTimeTable is as follows:

� CreateTimeTable(timetable, current-timeslot, current-period,

period-length, length-dominates,

inactive-slots, delimiter-slots)

The (output) timetable argument of the procedure CreateTimeTable must, in

general, be an indexed set in a calendar and defined over the horizon to be

linked to the calendar. Its contents is completely determined by Aimms on the

basis of the other arguments. The current-timeslot and current-period argu-

ments must be elements of the appropriate calendar and horizon, respectively.

Chapter 33. Time-Based Modeling 551

Element

parameter as

timetable

In the special case that you know a priori that each period in the timetable

is associated with exactly one time slot in the calendar, Aimms also allows

the timetable argument of the CreateTimeTable procedure to be an element

parameter (instead of an indexed set). When you specify an element parame-

ter, however, a runtime error will result if the input arguments of the call to

CreateTimeTable give rise to periods consisting of multiple time slots.

Several

possibilities

You have several possibilities of specifying your input data which influence

the way in which the timetable is created. You can:

� only specify the length of each period to be created,

� only specify delimiter slots at which a new period must begin, or

� flexibly combine both of the above two methods.

Period lengthThe period-length argument must be a positive integer-valued one-dimensional

parameter defined over the horizon. It specifies the desired length of each

period in the horizon in terms of the number of time slots to be contained in

it. If you do not provide delimiter slots (explained below), Aimms will create a

timetable solely on the basis of the indicated period lengths.

Inactive slotsThe inactive-slots argument must be a subset of the calendar that is specified

as the range of the timetable argument. Through this argument you can specify

a set of time slots that are always to be excluded from the timetable. You can

use this argument, for instance, to indicate that weekend days or holidays are

not to be part of a planning period. Inactive time slots are excluded from the

timetable, and are not accounted for in the computation of the desired period

length.

Delimiter slotsThe delimiter-slots argument must be a subset of the calendar that is specified

as the range of the timetable argument. Aimms will begin a new period in the

horizon whenever it encounters a delimiter slot in the calendar provided no

(offending) period length has been specified for the period that is terminated

at the delimiter slot.

Combining

period length

and delimiters

In addition to using either of the above methods to create a timetable, you can

also combine them to create timetables in an even more flexible manner by

specifying the length-dominates argument, which must be a one-dimensional

parameter defined over the horizon. The following rules apply.

� If the length-dominates argument is nonzero for a particular period, meet-

ing the specified period length prevails over any delimiter slots that are

possibly contained in that period.

� If the length-dominates argument is zero for a particular period and the

specified period length is 0, Aimms will not restrict that period on the

basis of length, but only on the basis of delimiter slots.

Chapter 33. Time-Based Modeling 552

� If the length-dominates argument is zero for a particular period and the

specified period length is positive, Aimms will try to construct a period of

the indicated length, but will terminate the period earlier if it encounters

a delimiter slot first.

Timetable

creation

In creating a timetable, Aimms will always start by aligning the current-timeslot

argument with the beginning of the current-period. Periods beyond current-

period are determined sequentially by moving forward time slot by time slot,

until a new period must be started due to hitting the period length criterion

of the current period (taking into account the inactive slots), or by hitting a

delimiter slot. Periods prior to current-period are determined sequentially by

moving backwards in time starting at current-timeslot.

Adapting

timetables

As a timetable is nothing more than an indexed set, you still have the oppor-

tunity to make manual changes to a timetable after its contents have been

computed by the Aimms procedure CreateTimeTable. This allows you to make

any change to the timetable that you cannot, or do not want to, implement

directly using the procedure CreateTimeTable.

ExampleConsider a timetable which links the daily calendar declared in Section 33.2

and the horizon of Section 33.3, which consists of 10 periods named p-01

. . . p-10. The following conditions should be met:

� the planning interval starts at period p-02, i.e. period p-01 is in the past,

� periods p-01. . . p-05 have a fixed length of 1 day,

� periods p-06. . . p-10 should have a length of at most a week, with new

periods starting on every Monday.

To create the corresponding timetable using the procedure CreateTimeTable,

the following additional identifiers need to be added to the model:

� an indexed subset TimeTable(h) of DailyCalendar,

� a subset DelimiterDays of DailyCalendar containing all Mondays in the

calendar (i.e. ’01-01-96’, ’08-01-96’, etc.),

� a subset InactiveDays of DailyCalendar containing all days that you want

to exclude from the timetable (e.g. all weekend days),

� a parameter PeriodLength(h) assuming the value 1 for the periods p-01

. . . p-05, and zero otherwise,

� a parameter LengthDominates(h) assuming the value 1 for the periods p-01

. . . p-05, and zero otherwise.

To compute the contents of the timetable, aligning the time slot pointed at by

CurrentDay and period IntervalStart, one should call

CreateTimeTable(TimeTable, CurrentDay, IntervalStart,

PeriodLength, LengthDominates,

InactiveDays, DelimiterDays);

Chapter 33. Time-Based Modeling 553

Period Calendar slots Period Calendar slots

p-01 23/01/96 (Tue) p-06 30/01/96 - 02/02/96 (Tue-Fri)

p-02 24/01/96 (Wed) p-07 05/01/96 - 09/02/96 (Mon-Fri)

p-03 25/01/96 (Thu) p-08 12/01/96 - 16/02/96 (Mon-Fri)

p-04 26/01/96 (Fri) p-09 19/01/96 - 23/02/96 (Mon-Fri)

p-05 29/01/96 (Mon) p-10 26/01/96 - 01/03/96 (Mon-Fri)

If all weekend days are inactive, and CurrentDay equals ’24/01/96’ (a Wednes-

day), then TimeTable describes the following mapping.

The function

Timeslot-

Characteristic

The process of initializing the sets used in the delimiter-slots and inactive-slots

arguments can be quite cumbersome when your model covers a large time

span. For that reason Aimms offers the convenient function TimeslotCharacter-

istic. With it, you can obtain a numeric value which characterizes the time

slot, in terms of its day of the week, its day in the year, etc. The syntax of the

function is straightforward:

� TimeslotCharacteristic(timeslot, characteristic[, timezone[, ignoredst]])

The characteristic argument must be an element of the predefined set Time-

slotCharacteristics. The elements of this set, as well as the associated func-

tion values are listed in Table 33.3.

Characteristic Function value First

range

century 0, . . . , 99

year 0, . . . , 99

quarter 1, . . . , 4

month 1, . . . , 12 January

weekday 1, . . . , 7 Monday

yearday 1, . . . , 366

monthday 1, . . . , 31

week 1, . . . , 53

weekyear 0, . . . , 99

weekcentury 0, . . . , 99

hour 0, . . . , 23

minute 0, . . . , 59

second 0, . . . , 59

tick 0, . . . , 99

dst 0, 1

Table 33.3: Elements of the set TimeslotCharacteristics

Chapter 33. Time-Based Modeling 554

Day and week

numbering

Internally, Aimms takes Monday as the first day in a week, and considers week

1 as the first week that contains at least four days of the new year. This is

equivalent to stating that week 1 contains the first Thursday of the new year.

Through the ’week’, ’weekyear’ and ’weekcentury’ characteristics you obtain

the week number corresponding to a particular date and its corresponding

year and century. For instance, Friday January 1, 1999 is day 5 of week 53 of

year 1998.

ExampleConsider a daily calendar DailyCalendar with index d. The following assign-

ment to a subset WorkingDays of a DailyCalendar will select all non-weekend

days in the calendar.

WorkingDays := { d | TimeslotCharacteristic(d,’weekday’) <= 5 } ;

Calendar-

calendar

linkage

You can also use the function TimeslotCharacteristic to create a timetable

linking two calendars (e.g. to create monthly overviews of daily data). As an

example, consider the calendars DailyCalendar and MonthlyCalendar declared

in Section 33.2, as well as an indexed set MonthDays(m) of DailyCalendar, which

can serve as a timetable. MonthDays can be computed as follows.

MonthDays(m) := { d | TimeslotCharacteristic(d,’year’) =

TimeslotCharacteristic(m,’year’) and

TimeslotCharacteristic(d,’month’) =

TimeslotCharacteristic(m,’month’) };

A check on the ’year’ characteristic is not necessary if both calendars are

contained within a single calendar year.

Time zone

support

Through the optional timezone argument of the function TimeslotCharacteris-

tic, you can specify with respect to which time zone you want to obtain the

specified characteristic. The timezone argument must be an element of the pre-

defined set AllTimeZones (see also Section 33.7.4). By default, Aimms assumes

the local time zone without daylight saving time.

Daylight saving

time

When you specify a time zone with daylight saving time, you can retrieve

whether daylight saving time is active through the ’dst’ characteristic. With

the optional argument ignoredst (default 0) of the function TimeSlotCharacter-

istic, you can specify whether you want daylight saving time to be ignored.

With ignoredst set to 1, or in a time zone without daylight saving time, the

outcome for the ’dst’ characteristic will always be 0.

Chapter 33. Time-Based Modeling 555

33.5 Data conversion of time-dependent identifiers

Time-dependent

data

When you are working with time-dependent data, it is usually not sufficient to

provide and work with a single fixed-time scale. The following examples serve

as an illustration.

� Demand data is available in a database on a day-by-day basis, but is

needed in a mathematical program for each horizon period.

� Production quantities are computed per horizon period, but are needed

on a day-by-day basis.

� For all of the above data weekly or monthly overviews are also required.

The procedures

Aggregate and

Disaggregate

With the procedures Aggregate and Disaggregate you can instruct Aimms to

perform an aggregation or disaggregation step from one time scale to another.

Both procedures perform the aggregation or disaggregation of a single iden-

tifier in one time scale to another identifier in a second time scale, given a

timetable linking both time scales and a predefined aggregation type. The syn-

tax is as follows.

� Aggregate(timeslot-data, period-data, timetable, type[, locus])

� Disaggregate(period-data, timeslot-data, timetable, type[, locus])

Time slot and

period data

The identifiers (or identifier slices) passed to the Aggregate and Disaggregate

procedures holding the time-dependent data must be of equal dimension. All

domain sets in the index domains must coincide, except for the time domains.

These must be consistent with the domain and range of the specified timetable.

Different

conversions

As was mentioned in Section 33.1, time-dependent data can be interpreted as

taking place during a period or at a given moment in the period. Calendar

data, which takes place during a period, needs to be converted into a period-

based representation by allocating the data values in proportion to the overlap

between time slots and horizon periods. On the other hand, calendar data

which takes place at a given moment, needs to be converted to a period-based

representation by linearly interpolating the original data values.

Aggregation

types

The possible values for the type argument of the Aggregate and Disaggregate

procedures are the elements of the predefined set AggregationTypes given by:

� summation,

� average,

� maximum,

� minimum, and

� interpolation.

Chapter 33. Time-Based Modeling 556

Reverse

conversion

All of the above predefined conversion rules are characterized by the following

property.

The disaggregation of period data into time slot data, followed by im-

mediate aggregation, will reproduce identical values of the period data.

Aggregation followed by disaggregation does not have this property. Fortu-

nately, as the horizon rolls along, disaggregation followed by aggregation is

the essential conversion.

The summation

rule

The conversion rule summation is the most commonly used aggregation/dis-

aggregation rule for quantities that take place during a period. It is appropriate

for such typical quantities as production and arrivals. Data values from a

number of consecutive time slots in the calendar are summed together to form

a single value for a multi-unit period in the horizon. The reverse conversion

takes place by dividing the single value equally between the consecutive time

slots.

The average,

maximum, and

minimum rules

The conversion rules average, maximum, and minimum are less frequently used ag-

gregation/disaggregation rules for quantities that take place during a period.

These rules are appropriate for such typical quantities as temperature or ca-

pacity. Aggregation of data from a number of consecutive time slots to a single

period in the horizon takes place by considering the average or the maximum

or minimum value over all time slots contained in the period. The reverse con-

version consists of assigning the single value to each time slot contained in

the period.

Illustration of

aggregation

Table 33.4 demonstrates the aggregation and disaggregation taking place for

each conversion rule. The conversion operates on a single period consisting of

3 time slots in the calendar.

Conversion rule Calendar to horizon Horizon to calendar

3 1 2 3

summation 6 1 1 1

average 2 3 3 3

maximum 3 3 3 3

minimum 1 3 3 3

Table 33.4: Conversion rules for “during” quantities

Chapter 33. Time-Based Modeling 557

InterpolationThe interpolation rule should be used for all quantities that take place at a

given moment in a period. For the interpolation rule you have to specify one

additional argument in the Aggregate and Disaggregate procedures, the locus.

The locus of the interpolation defines at which moment in a period—as a value

between 0 and 1—the quantity at hand is to be measured. Thus, a locus of 0

means that the quantity is measured at the beginning of every period, a locus

of 1 means that the quantity is measured at the end of every period, while a

locus of 0.5 means that the quantity is measured midway through the period.

Interpolation for

disaggregation

When disaggregating data from periods to time slots, Aimms interpolates lin-

early between the respective loci of two subsequent periods. For the outermost

periods, Aimms assigns the last available interpolated value.

Interpolation for

aggregation

Aimms applies a simple rule for the seemingly awkward interpolation of data

from unit-length time slots to variable-length horizon periods. It will simply

take the value associated with the time slot in which the locus is contained,

and assign it to the period. This simple rule works well for loci of 0 and 1,

which are the most common values.

Illustration of

interpolation

Table 33.5 demonstrates aggregation and disaggregation of a horizon of 3 pe-

riods, each consisting of 3 time slots, for loci of 0, 1, and 0.5. The underlined

values are the values determined by the reverse conversion.

Horizon data

Locus 0 3 9

0 0 1 2 3 5 7 9 9 9

1 0 0 0 1 2 3 5 7 9

0.5 0 0 1 2 3 5 7 9 9

Table 33.5: Conversion rules for interpolated data

ExampleConsider the calendar DailyCalendar, the horizon ModelPeriods and the time-

table TimeTable declared in Sections 33.2, 33.3 and 33.4, along with the identi-

fiers

� DailyDemand(d),

� Demand(h),

� DailyStock(d), and

� Stock(h).

The aggregation of DailyDemand to Demand can then be accomplished by the

statement

Aggregate(DailyDemand, Demand, TimeTable, ’summation’);

Chapter 33. Time-Based Modeling 558

Assuming that the Stock is computed at the end of each period, the disaggre-

gation (by interpolation) to daily values is accomplished by the statement

Disaggregate(Stock, DailyStock, TimeTable, ’interpolation’, locus: 1);

User-defined

conversions

If your particular aggregation/disaggregation scheme is not covered by the

predefined aggregation types available in Aimms, it is usually not too difficult

to implement a custom aggregation scheme yourself in Aimms. For instance,

the aggregation by summation from DailyDemand to Demand can be implemented

as

Demand(h) := sum(d in TimeTable(h), DailyDemand(d));

while the associated disaggregation rule becomes the statement

DailyDemand(d) := sum(h | d in TimeTable(h), Demand(h)/Card(TimeTable(per)));

33.6 Implementing a model with a rolling horizon

Rolling horizonsThe term rolling horizon is used to indicate that a time-dependent model is

solved repeatedly, and in which the planning interval is moved forward in

time during each solution step. With the facilities introduced in the previous

sections setting up such a model is relatively easy. This section outlines the

steps that are required to implement a model with a rolling horizon, without

going into detail regarding the contents of the underlying model.

Two strategiesIn this section you will find two strategies for implementing a rolling horizon.

One is a simple strategy that will only work with certain restrictions. It requires

just a single aggregation step and a single disaggregation step. The other is

a generic strategy that will work in all cases. This strategy, however, requires

that aggregation and disaggregation steps be performed between every two

subsequent SOLVE statements.

Simple strategyThe simple strategy will work provided that

� all periods in the horizon are of equal length, and

� the horizon rolls from period boundary to period boundary.

It is then sufficient to make the horizon sufficiently large so as to cover the

whole time range of interest.

Algorithm

outline

The algorithm to implement the rolling horizon can be outlined as follows.

1. Select the current time slot and period, and create the global timetable.

2. Aggregate all calendar-based data into horizon-based data.

3. Solve the optimization model for a planning interval that is a subset of

the complete horizon.

Chapter 33. Time-Based Modeling 559

4. Move the current period to the next period boundary of interest, and

repeat from steps until the time range of interest has passed.

5. Disaggregate the horizon-based solution into a calendar-based solution.

AssumptionsThe examples below that illustrate both the simple and generic strategy make

the following assumptions.

� The model contains the daily calendar DailyCalendar, the horizon Model-

Periods and the timetable TimeTable declared in Sections 33.2, 33.3 and

33.4, respectively.

� The model contains a time-dependent mathematical program TimeDe-

pendentModel, which produces a plan over the planning interval associ-

ated with ModelPeriods.

� The planning horizon, for which the model is to be solved, rolls along

from FirstWeekBegin to LastWeekBegin in steps of one week. Both identi-

fiers are element parameters in DailyCalendar.

Code outlineThe outline of the simple strategy can be implemented as follows.

CurrentDay := FirstWeekBegin;

CreateTimeTable(TimeTable , CurrentDay , IntervalStart,

PeriodLength, LengthDominates,

InactiveDays, DelimiterDays);

Aggregate(DailyDemand, Demand, TimeTable, ’summation’);

! ... along with any other aggregation required

repeat

solve TimeDependentModel;

CurrentDay += 7;

IntervalStart += 1;

break when (not CurrentDay) or (CurrentDay > LastWeekBegin);

endrepeat;

Disaggregate(Stock , DailyStock , TimeTable, ’interpolation’, locus: 1);

Disaggregate(Production, DailyProduction, TimeTable, ’summation’);

! ... along with any other disaggregation required

Generic strategyThe simple strategy will not work

� whenever the lengths of periods in the horizon (expressed in time slots

of the calendar) vary, or

� when the start of a new planning interval does not align with a future

model period.

In both cases, the horizon-based solution obtained from a previous solve will

not be accurate when you move the planning interval. Thus, you should follow

a generic strategy which adds an additional disaggregation and aggregation

step to every iteration.

Chapter 33. Time-Based Modeling 560

Algorithm

outline

The generic strategy for implementing a rolling horizon is outlined as follows.

1. Select the initial current time slot and period, and create the initial time-

table.

2. Aggregate all calendar-based data into horizon-based data.

3. Solve the mathematical program.

4. Disaggregate all horizon-based variables to calendar-based identifiers.

5. Move the current time slot forward in time, and recreate the timetable.

6. Aggregate all identifiers disaggregated in step 4 back to the horizon us-

ing the updated timetable.

7. Repeat from step 2 until the time range of interest has passed.

Code outlineThe outline of the generic strategy can be implemented as follows.

CurrentDay := FirstWeekBegin;

CreateTimeTable(TimeTable , CurrentDay , IntervalStart,

PeriodLength, LengthDominates,

InactiveDays, DelimiterDays);

repeat

Aggregate(DailyDemand, Demand, TimeTable, ’summation’);

! ... along with any other aggregation required

solve TimeDependentModel;

Disaggregate(Stock , DailyStock , TimeTable, ’interpolation’, locus: 1);

Disaggregate(Production, DailyProduction, TimeTable, ’summation’);

! ... along with any other disaggregation required

CurrentDay += 7;

break when (not CurrentDay) or (CurrentDay > LastWeekBegin);

CreateTimeTable(TimeTable , CurrentDay , IntervalStart,

PeriodLength, LengthDominates,

InactiveDays, DelimiterDays);

Aggregate(DailyStock , Stock , TimeTable, ’interpolation’, locus: 1);

Aggregate(DailyProduction, Production, TimeTable, ’summation’);

! ... along with any other aggregation required

endrepeat;

33.7 Format of time slots and periods

Flexible time slot

and period

formats

While the BeginDate and EndDate attributes have to be specified using the fixed

reference date format (see Section 33.2), Aimms provides much more flexible

formatting capabilities to describe

� time slots in a Calendar consisting of a single basic time unit (e.g. 1-day

time slots),

� time slots in a Calendar consisting of multiple basic time units (e.g. 3-day

time slots), and

� periods in a timetable consisting of multiple time slots.

Chapter 33. Time-Based Modeling 561

The formatting capabilities described in this section are quite extensive, and

allow for maximum flexibility.

Wizard supportIn the Model Explorer, Aimms provides a wizard to support you in constructing

the appropriate formats. Through this wizard, you can not only select from a

number of predefined formats (including some that use the regional settings of

your computer), you also have the possibility of constructing a custom format,

observing the result as you proceed.

Basic and

extended format

Aimms offers both a basic and an extended format for the description of time

slots and periods. The basic format only refers to the beginning of a time slot

or period. The extended format allows you to refer to both the first and last

basic time unit contained in a time slot or period. Both the basic and extended

formats are constructed according to the same rules.

Care is neededThe TimeslotFormat used in a Calendar must contain a reference to either its

beginning, its end, or both. As the specified format is used to identify calen-

dar elements when reading data from external data sources such as files and

databases, you have to ensure that the specified format contains sufficient date

and time references to uniquely identify each time slot in a calendar.

ExampleFor instance, the description “January 1” is sufficient to uniquely identify a

time slot in a calendar with a range of one year. However, in a two-year cal-

endar, corresponding days in the first and second year are identified using

exactly the same element description. In such a case, you must make sure that

the specified format contains a reference to a year.

Building blocksA format description is a sequence of four types of components. These are

� predefined date components,

� predefined time components,

� predefined period references (extended format), and

� ordinary characters.

Ordinary

characters

Predefined components begin with the % sign. Components that begin oth-

erwise are interpreted as ordinary characters. To use a percent sign as an

ordinary character, escape it with another percent sign, as in %%.

33.7.1 Date-specific components

Date-specific

components

The date-specific components act as conversion specifiers to denote portions

of a date description. They may seem rather cryptic at first, but you will find

them useful and constructive when creating customized references to time.

They are summarized in Table 33.6.

Chapter 33. Time-Based Modeling 562

Conversion Meaning Possible

specifier entries

%d day 01, . . . ,31

%m month 01, . . . ,12

%Am|set-identifier| month element

%y year 00, . . . ,99

%q quarter 01, . . . ,04

%Y weekyear 00, . . . ,99

%c century 00, . . . ,99

%C weekcentury 00, . . . ,99

%w day of week 1, . . . ,7

%Aw|set-identifier| day of week element

%W week of year 01, . . . ,53

%j day of year 001, . . . ,366

Table 33.6: Conversion specifiers for date components

Custom

date-specific

references

All date conversion specifiers allow only predefined numerical values, except

for the specifiers %Am and %Aw. These allow you to specify references to sets.

You can use %Am and %Aw to denote months and days by the elements in a spec-

ified set. These are typically the names of the months or days in your native

language. Aimms will interpret the elements by their ordinal number. The pre-

defined identifiers AllMonths, AllAbbrMonths, AllWeekdays and AllAbbrWeekdays

hold the full and abbreviated English names of both months and days.

Week year and

century

The %Y and %C specifiers refer to the weekyear and weekcentury values of a

specific date, as explained on page 554. You can use these if you want to refer

to weekly calendar periods by their week number and year.

Omitting

leading zeros

Aimms can interpret numerical date-specific references with or without leading

zeros when reading your input data. When writing data, Aimms will insert all

leading zeros to ensure a uniform length for date elements. If you do not want

leading zeros for a specific component, you can insert the ’s’ modifier directly

after the % sign. For instance, the string “%sd” will direct Aimms to produce

single-digit numbers for the first nine days.

Omitting

trailing blanks

When using the %Am and %Aw specifiers, Aimms will generate uniform length

elements by adding sufficient trailing blanks to the shorter elements. As with

leading zeros, you can use the s modifier to override the generation of these

trailing blanks.

Chapter 33. Time-Based Modeling 563

ExampleThe format “%Am|AllMonths| %sd, %c%y” will result in the generation of time

slots such as ’January 1, 1996’. The date portion of the fixed reference date

format used to specify the Begin and EndDate attributes of a calendar can be

reproduced using the format “%c%y-%m-%d”.

33.7.2 Time-specific components

Time-specific

components

The conversion specifiers for time components are listed in Table 33.7. There

are no custom time-specific references in this table, because the predefined

numerical values are standard throughout the world.

Conversion Meaning Possible

specifier entries

%h hour 01, . . . ,12

%H hour 00, . . . ,23

%M minute 00, . . . ,59

%S second 00, . . . ,59

%t tick 00, . . . ,99

%p before or after noon AM, PM

Table 33.7: Conversion specifiers for time components

Omitting

leading zeros

Aimms can interpret numerical time-specific references with or without leading

zeros when reading your input data. When writing data, Aimms will insert

leading zeros to ensure a uniform length for time elements. If you do not want

leading zeros for a specific component, you can insert the ’s’ modifier directly

after the % sign. For instance, the string “%sh” will direct Aimms to produce

single-digit numbers for the first nine hours.

ExampleThe time slot format “%sAw|WeekDays| %sh:%M %p” will result in the generation

of time slots such as ’Friday 11:00 PM’, ’Friday 12:00 PM’ and ’Saturday 1:00

AM’. The full reference date format is given by “%c%y-%m-%d %H:%M:%S”.

33.7.3 Period-specific components

Use of period

references

With period-specific conversion specifiers in either a time slot format or a pe-

riod format you can indicate that you want Aimms to display both the begin

and end date/time of a time slot or period. You only need to use period-

specific references in the following cases.

� The Unit attribute of your calendar consists of a multiple of one of the

basic time units known to Aimms (e.g. each time slot in your calendar

Chapter 33. Time-Based Modeling 564

consists of 3 days), and you want to refer to the begin and end day of

every time slot.

� You want to provide a description for a period in a timetable consist-

ing of multiple time slots in the associated calendar using the function

PeriodToString (see also Section 33.8), referring to both the first and last

time slot in the period.

Period-specific

components

By including a period-specific component in a time slot or period format, you

indicate to Aimms that any date, or time, specific component following it refers

to either the beginning or the end of a time slot or period. The list of available

period-specific conversion specifiers is given in Table 33.8.

Conversion specifier Meaning

%B begin of unit period

%b begin of time slot

%I end of period (inclusive)

%i end of period (inclusive), but omitted

when equal to begin of period

%E end of period (exclusive)

%e end of time slot

Table 33.8: Period-specific conversion specifiers.

Inclusive or

exclusive

Through the “%I” and “%E” specifiers you can indicate whether you want any

date/ time components used in the description of the end of a period (or time

slot) to be included in that period or excluded from it. Inclusive behavior

is common for date references, e.g. the description “Monday – Wednesday”

usually means the period consisting of Monday, Tuesday and Wednesday. For

time references exclusive behavior is used most commonly, i.e. “1:00 – 3:00

PM” usually means the period from 1:00 PM until 3:00 PM.

Limited

resolution

After a conversion specifier that refers to the end of a period or time slot (i.e.

“%E”, “%I” or “%i”) you should take care when using other date, or time, specific

specifiers. Aimms will only be able to discern time units that are larger than

the basic time unit specified in the Unit attribute of the calendar at hand (or,

when you use the function PeriodToString, of the calendar associated with the

timetable at hand). For instance, when the time slots of a calendar consists of

periods of 2 months, Aimms will be able to distinguish the specific months at

the beginning and end of each time slot, but will not know the specific week

number, week day or month day at the end of each time slot. Thus, in this

case you should avoid the use of the “%W”, the “%w” and the “%d” specifiers after

a “%E”, “%I” or “%i” specifier.

Chapter 33. Time-Based Modeling 565

The %i specifierWith the “%i” specifier you indicate inclusive behavior, and additionally you

indicate that Aimms must omit the remaining text when the basic time units

(w.r.t. the underlying calendar) of begin and end slot of the period to which the

specifier is applied, coincide. In practice, the “%i” specifier only makes sense

when used in the function PeriodToString (see also Section 33.8), as time slots

in a calendar always have a fixed length.

First exampleThe period description “Monday 12:00-15:00” contains three logical references,

namely to a day, to the begin time in hours, and to the end time in hours. The

day reference is intended to be shared by the begin and end times.

� The day reference is based on the elements of the (predefined) set All-

Weekdays. The corresponding conversion specifier is “%Aw|AllWeekDays|”

� The descriptions of the begin and end times both use the conversion

specifier “%H:%M”. To denote the begin time of the period you must use

the “%B” period reference. For the end time of the period, which is not

included in the period, you must use “%E”.

By combining these building blocks with a few ordinary characters you get the

complete format string “%Aw|AllWeekDays| %B%H:%M-%E%H:%M”. With this string

Aimms can correctly interpret the element “Monday 12:00-15:00” within a calen-

dar covering no more than one week.

Second exampleConsider the format “%B%Aw|AllWeekDays|%I - %Aw|AllWeekDays|” within a calen-

dar with day as its basic time unit, and covering at most a week. Using this

format string Aimms will interpret the element “Monday - Wednesday” as the

three-day period consisting of Monday, Tuesday, and Wednesday.

33.7.4 Support for time zones and daylight saving time

Support for day-

light saving time

When your time zone has daylight saving time, and you are working with time

slots or periods on an hourly basis, you may want to include an indicator

into the time slot or period format to indicate whether daylight saving time is

active during a particular time slot or period. Such an indicator enables you,

for instance, to distinguish between the duplicate hour when the clock is set

back at the end of daylight saving time.

Support for time

zones

In addition, when your application has users located in different time zones,

you may wish to present each user with calendar elements corresponding

to their particular time zone. Or, when time-dependent data is stored in

a database using UTC time (Universal Time Coordinate, or Greenwich Mean

Time), a translation may be required to your own local time representation.

Chapter 33. Time-Based Modeling 566

Aimms supportTo support you in scenarios as described above, Aimms provides

� a special time zone conversion specifier, which can modify the represen-

tation of calendar elements based on specified time zone and daylight

saving time, and

� a TimeslotFormat attribute in unit Conventions (see also Section 32.8),

which you can use to override the time slot format of every calendar

when the Convention is active.

Time zone

specifier

With the conversion specifier %TZ, described in Table 33.9, you can accomplish

the following Calendar-related tasks:

� create the Calendar elements between the given BeginDate and EndDate

relative to a specified time zone, and

� specify the indicators that must be added to the Calendar elements when

standard or daylight saving time is active.

Conversion specifier Meaning

%TZ(TimeZone) translation of calendar element to spe-

cified TimeZone, ignoring daylight sav-

ing time

%TZ(TimeZone)|Std|Dst| translation of calendar element to spe-

cified TimeZone, plus string indicator

for standard time (Std) and daylight

saving time (Dst)

Table 33.9: Time zone conversion specifier

Specifying the

time zone

The TimeZone component of the %TZ conversion specifier that you must spec-

ify, is a time zone corresponding to the elements in your Calendar. You must

specify the time zone as an explicit and quoted element of the predefined set

AllTimeZones (explained below), or through a reference to an element parame-

ter into that set. If you do not specify the Std and Dst indicators, Aimms will

ignore daylight saving time when generating the time slots, regardless whether

daylight saving time is defined for that time zone. If you do not use the %TZ

specifier to specify a time zone, Aimms assumes that you intend to use the

local time zone without daylight saving time.

The set

AllTimeZones

Aimms provides you access to all time zones defined by your operating system

through the predefined set AllTimeZones. The set AllTimeZones contains

� the fixed element ’Local’, representing the local time zone without day-

light saving time,

� the fixed element ’LocalDST’, representing the local time zone with day-

light saving time (if applicable),

Chapter 33. Time-Based Modeling 567

� the fixed element ’UTC’, representing the Universal Time Coordinate (or

Greenwich Mean Time) time zone, and

� all time zones defined by your operating system.

Daylight saving

time indicators

The remaining components of the %TZ specifier are two string indicators Std

and Dst, which are displayed in all generated Calendar slots or period strings

when standard time (i.e. no daylight saving time) or daylight saving time is ac-

tive, respectively. Both indicators must be either quoted strings, or references

to scalar string parameters. In addition, a run time error will occur when both

indicators evaluate to the same string.

Effect on time

slots

When you use the %TZ specifier, the date and time components of the generated

time slots of a calendar may differ when you specify different time zones,

but do not modify the reference dates specified in the BeginDate and EndDate

attributes of the calendar. Aimms always assumes that reference dates are

specified in local time without daylight saving time (i.e. in the ’Local’ time

zone). Hence, all time slots will be shifted by the time differences between the

specified time zone and the ’Local’ time zone, plus any additional difference

caused by daylight saving time.

ExamplesConsider the following four Calendar declarations.

Calendar HourCalendarLocal {

Index : hl;

Unit : hour;

BeginDate : "2001-03-25 00";

EndDate : "2001-03-25 06";

TimeslotFormat : "%c%y-%m-%d %H:00";

}

Calendar HourCalendarLocalIgnore {

Index : hi;

Unit : hour;

BeginDate : "2001-03-25 00";

EndDate : "2001-03-25 06";

TimeslotFormat : "%c%y-%m-%d %H:00%TZ(’LocalDST’)";

}

Calendar HourCalendarLocalDST {

Index : hd;

Unit : hour;

BeginDate : "2001-03-25 00";

EndDate : "2001-03-25 06";

TimeslotFormat : "%c%y-%m-%d %H:00%TZ(’LocalDST’)|\"\"|\" DST\"|";

}

Calendar HourCalendarUTC {

Index : hc;

Unit : hour;

BeginDate : "2001-03-25 00";

EndDate : "2001-03-25 06";

TimeslotFormat : "%c%y-%m-%d %H:00%TZ(’UTC’)|\"\"|\" DST\"|";

}

Assuming that the ’Local’ time zone has an offset of +1 hours compared to

the ’UTC’ time zone, this will result in the generation of the following time

Chapter 33. Time-Based Modeling 568

slots for each of the calendars

! HourCalendarLocal HourCalendarIgnore HourCalendarLocalDST HourCalendarUTC

! ------------------ ------------------ ---------------------- ------------------

’2001-03-25 00:00’ ’2001-03-25 00:00’ ’2001-03-25 00:00’ ’2001-03-24 23:00’

’2001-03-25 01:00’ ’2001-03-25 01:00’ ’2001-03-25 01:00’ ’2001-03-25 00:00’

’2001-03-25 02:00’ ’2001-03-25 02:00’ ’2001-03-25 03:00 DST’ ’2001-03-25 01:00’

’2001-03-25 03:00’ ’2001-03-25 03:00’ ’2001-03-25 04:00 DST’ ’2001-03-25 02:00’

’2001-03-25 04:00’ ’2001-03-25 04:00’ ’2001-03-25 05:00 DST’ ’2001-03-25 03:00’

’2001-03-25 05:00’ ’2001-03-25 05:00’ ’2001-03-25 06:00 DST’ ’2001-03-25 04:00’

’2001-03-25 06:00’ ’2001-03-25 06:00’ ’2001-03-25 07:00 DST’ ’2001-03-25 05:00’

Note that the time slots generated for HourCalendarLocal and HourCalendar-

Ignore are identical (although ’LocalDST’ supports daylight saving time). This

is because daylight saving time is ignored when the %TZ specifier has no Std and

Dst indicators. The time slots generated for HourCalendarUTC do not contain the

specified daylight saving time indicator, because the ’UTC’ time zone has no

daylight saving time.

33.8 Converting time slots and periods to strings

Converting time

slots to strings

The following functions enable conversion between calendar slots and free for-

mat strings using the conversion specifiers discussed in the previous section.

Their syntax is

� TimeSlotToString(format-string, calendar, time-slot)

� StringToTimeSlot(format-string, calendar, moment-string).

The result of the function TimeSlotToString is a description of the specified

time-slot according to format-string. The result of StringToTimeSlot is the

time slot in calendar in which the string moment-string, specified according

to format-string, is contained.

Converting

timetable

periods to

strings

With the function PeriodToString you can obtain a description of a period in a

timetable that consists of multiple calendar slots.

� PeriodToString(format-string, timetable, period)

The result of the function is a description of the time span covered by a pe-

riod in a horizon according to the specified timetable and format-string. The

format-string argument can use period-specific conversion specifiers to gener-

ate a description referring to both the beginning and end of the period.

Obtaining the

current time

The functions CurrentToString and CurrentToTimeSlot can be used to obtain the

current time. Their syntax is

� CurrentToString(format-string)

� CurrentToTimeSlot(calendar)

Chapter 33. Time-Based Modeling 569

The function CurrentToString will return the current time according to the

specified format string. If you do not use the %TZ specifier in the format

string of the CurrentToString function, Aimms assumes daylight saving time

by default. You can change this default behavior by setting the global op-

tion current_time_in_LocalDST to 0. The function CurrentToTimeSlot returns

the time slot in calendar containing the current moment.

33.9 Working with elapsed time

Use of elapsed

time

Sometimes you may find it easier to formulate your model in terms of (contin-

uous) elapsed time with respect to some reference date rather than in terms

of discrete time periods. For example, for a task in a schedule it is often more

natural to store just the start and end time rather than to specify all of the

time slots in a calendar during which the task will be executed. In addition,

working with elapsed time allows you to store time references to any desired

accuracy.

Input-output

conversion

For data entry or for the generation of reports, however, elapsed time may not

be your preferred format. In this event Aimms offers a number of functions for

the conversion of elapsed time to calendar strings (or set elements) and vice

versa, using the conversion specifiers described in section 33.7.

Conversion to

calendar

elements

The following functions allow conversion between elapsed time and time slots

in an existing calendar. Their syntax is

� MomentToTimeSlot(calendar, reference-date, elapsed-time)

� TimeSlotToMoment(calendar, reference-date, time-slot).

The reference-date argument must be a time slot in the specified calendar. The

elapsed-time argument is the elapsed time from the reference-date measured

in terms of the calendar’s unit. The result of the function MomentToTimeSlot is

the time slot containing the moment represented by the reference date plus

the elapsed time. The result of the function TimeSlotToMoment is the elapsed

time from the reference date to the value of the time-slot argument (measured

in the calendar’s unit).

Conversion to

calendar strings

The following functions enable conversion between elapsed time and free for-

mat strings. Their syntax is

� MomentToString(format-string, unit, reference-date, elapsed-time)

� StringToMoment(format-string, unit, reference-date, moment-string).

The reference-date argument must be provided in the fixed format for refer-

ence dates, as described in Section 33.2. The moment-string argument must

be a period in the format given by format-string. The elapsed-time argument

is the elapsed time in unit with respect to the reference-date argument. The

Chapter 33. Time-Based Modeling 570

result of the function MomentToString is a description of the corresponding

moment according to format-string. Strictly spoken, the unit argument in

MomentToString is only required when the option elapsed time is unitless (see

below) is set to on, and, consequently, elapsed-time is unitless. In the case

that elapsed time is unitless is set to off (the default), you are advised to set

the unit argument equal to the associated unit of the elapsed-time argument.

The result of the function StringToMoment is the elapsed time in unit between

reference-date and moment-string.

Examplemoment := MomentToString("%c%y-%Am|AllAbbrMonths|-%d (%sAw|AllWeekdays|) %H:%M",

[hour], "1996-01-01 14:00", 2.2 [hour]);

! result : "1996-Jan-01 (Monday) 16:12"

elapsed := StringToMoment("%c%y-%Am|AllAbbrMonths|-%d (%sAw|AllWeekdays|) %H:%M",

[hour], "1996-01-01 14:00", "1996-Jan-01 (Monday) 16:12");

! result : 2.2 [hour]

Obtaining the

current time

The function CurrentToMoment can be used to obtain the elapsed time since

reference-date in the specified unit of the current time. Its syntax is

� CurrentToMoment(unit, reference-date).

Unitless resultBy default, the result of the functions TimeSlotToMoment, StringToMoment and

CurrentToMoment will have an associated unit, namely the unit specified in the

unit argument. In addition, Aimms expects the elapsed-time argument in the

function MomentToTimeSlot and MomentToString to be of the same unit as its as-

sociated unit argument. If you want the result or arguments of these functions

to be unitless, you can accomplish this by setting the compile time option

elapsed time is unitless to on. Note, however, that any change to this option

affects all calls to these function throughout your model.

33.10 Working in multiple time zones

Multiple time

zones

If your application uses external time-dependent data supplied by users world-

wide, you are faced with the problem of converting all dates and times to the

calendar in which your application is set up to run. The facilities described in

this section help you with that task.

Obtaining time

zone info

With the functions TimeZoneOffset, DaylightSavingStartDate and DayLightSa-

vingEndDate you can obtain various time zone specific characteristics.

� TimeZoneOffset(FromTimeZone, ToTimeZone)

� DaylightSavingStartDate(year, TimeZone)

� DaylightSavingEndDate(year, TimeZone)

The function TimeZoneOffset returns the offset in minutes between the time

zones FromTimeZone and ToTimeZone. You can use the function DaylightSa-

Chapter 33. Time-Based Modeling 571

vingStartDate and DaylightSavingEndDate to retrieve the reference dates, within

a particular time zone, corresponding to the begin and end date of daylight

saving time.

Exampleoffset := TimeZoneOffset(’UTC’, ’Eastern Standard Time’);

! result: -300 [min]

startdate := DaylightSavingStartDate(’2001’, ’Eastern Standard Time’);

! result: "2001-04-01 02"

Converting

reference dates

With the function ConvertReferenceDate you can convert reference dates to dif-

ferent time zones. Its syntax is:

� ConvertReferenceDate(ReferenceDate, FromTimeZone,

ToTimeZone[, IgnoreDST])

With the function you can convert a reference date ReferenceDate, within

the time zone FromTimeZone, to a reference date within the time zone To-

TimeZone. If the optional argument IgnoreDST is set to 1, Aimms will ignore

daylight saving time for both input and output reference dates (see also Sec-

tion 33.7.4). By default, Aimms will not ignore daylight saving time.

ExampleUTCdate := ConvertReferenceDate("2001-05-01 12", ’Local’, ’UTC’);

! result: "2001-05-01 11"

Conventions and

time zones

When your application needs to read data from or write data to a database

or file with dates not specified in local time, some kind of conversion of all

dates appearing in the data source is required during the data transfer. To

support you with such date conversions, Aimms allows you to override the

default timeslot format of one or more calendars in your model through a unit

Convention (see also Section 32.8).

The

TimeslotFormat

attribute

In the TimeslotFormat attribute of a Convention you can specify the time slot for-

mat (see also Section 33.7) to be used for each Calendar while communicating

with an external source. The syntax of the TimeslotFormat attribute is:

Syntaxtimeslot-format-list :

calendar : timeslot-format

,

Use in graphical

user interface

When an active Convention overrides the time slot format for a particular calen-

dar, all calendar elements will be displayed according to the time slot format

specified in the Convention. The time slot format specified in the calendar itself

is then ignored.

Chapter 33. Time-Based Modeling 572

Reading and

writing to file

If you use a Convention to override the time slot format while writing data to a

data file, report file or listing file, Aimms will convert all calendar elements to

the format specified in the TimeslotFormat for that calendar in the Convention

prior to writing the data. Similarly, when reading data from a data file, Aimms

will interpret the calendar slots present in the file according to the specified

time slot format, and convert them to the corresponding calendar elements in

the model.

Database com-

munication. . .

When communicating calendar data to a database, there is one additional issue

that you have to take into account, namely the data type of the column in which

the calendar data is stored in the database table. If calendar data is stored in

a string column, Aimms will transfer data according to the exact date-time

format specified in the TimeslotFormat attribute of the Convention, including

any indicators for specifying the time zone and/or daylight saving time.

. . . for date-

time columns

However, if the data type of the column is a special date-time data type, Aimms

will always communicate calendar slots as reference dates, which is the stan-

dard date-time string representation used by ODBC. In translating calendar

slots to reference dates, Aimms will adhere to the format specified in the

TimeslotFormat attribute of either the Calendar itself, or as overridden in the

currently active Convention.

Generated

reference dates

The reference dates are generated according to the time zone specified in the

%TZ specifier of the currently active TIMESLOT SPECIFIER. These dates always ig-

nore daylight saving time (i.e. shift back by one hour if necessary), as daylight

saving time cannot be represented in the fixed reference date format. Spec-

ifiers in the TIMESLOT FORMAT other than the %TZ specifier are not used when

mapping to date-time values in a database. If you do not specify a %TZ speci-

fier in the TIMESLOT FORMAT, Aimms will assume that all date-time columns in a

database are represented in the ’Local’ time zone (the default).

ExampleConsider the calendar HourCalendarLocalDST defined below.

Calendar HourCalendarLocalDST {

Index : hd;

Unit : hour;

BeginDate : "2001-03-25 00";

EndDate : "2001-03-25 06";

TimeslotFormat : "%c%y-%m-%d %H:00%TZ(’LocalDST’)|\"\"|\" DST\"|";

}

If you want to transfer data defined over this calendar with a database table in

which all dates are represented in UTC time, you should define a convention

defined as follows.

Chapter 33. Time-Based Modeling 573

Convention UTCConvention {

TimeslotFormat : {

HourCalendarLocalDST : "%c%y-%m-%d %H:00%TZ(’UTC’)"

}

}

When this convention is active, Aimms will represent all calendar slots of the

calendar HourCalendarLocalDST as reference dates according to the UTC time

zone, by shifting as many hours as dictated by the local time zone and/or day-

light saving time if applicable. Hence, when you use the convention UTCConven-

tion during data transfer with the database, all calendar data slots will be in

the expected format.

Chapter 34

The Aimms Programming Interface

This chapterIn addition to the capability to call external procedures and functions from

within an Aimms application, Aimms also provides a generic Application Pro-

gramming Interface (API). This chapter describes the semantics of the com-

plete Aimms API, and provides an extended example to familiarize you with

its use. In addition, it discusses the concurrency aspects when multiple exter-

nal applications are controlling a single Aimms session. Note that this chapter

assumes that you have some basic knowledge of the C programming language.

34.1 Introduction

Communication

scenario’s

One can think of several scenario’s in which a path of communication needs to

be set up between Aimms and an external software component. The two most

common scenario’s are listed below.

� You have a collection of functions within an external DLL which you want

to use to perform certain data manipulations within your Aimms model

through calls to an ExternalProcedure or ExternalFunction.

� From within your own application you want to open an Aimms project,

pass input data to it, solve an optimization model, and retrieve the solu-

tion.

Exchanging

data

The most straightforward method to set up communication between Aimms

and an external DLL is by calling an external procedure or function from within

your model. If, during such a call, the data of one or more scalar or low-

dimensional indexed identifiers need to be passed to the DLL, the easiest way

to exchange this data is by passing either a single scalar value or a (dense) array

of scalar values as arguments to the corresponding DLL function. For higher-

dimensional identifiers, however, the memory requirements for passing array

arguments may grow out of hand, and additional control may be needed.

Application-

controlled

execution

With only the possibility to call external procedures and functions from within

an Aimms model, however, you have no possibility, from within an external

application, to

� open an Aimms project,

Chapter 34. The Aimms Programming Interface 575

� initiate the exchange of data, or

� execute one or more procedures in your model.

The Aimms APIThe Aimms Application Programming Interface (API) described in this chap-

ter addresses both the drawbacks associated with dense data transfer, and

the need to control the execution of an Aimms model from within an external

application. Figure 34.1 provides a schematic overview of the capabilities to

communicate using both the concept of external procedures and functions and

the Aimms API. Left-to-right arrows are implemented through external proce-

Aimms

project

External

DLL

Open Aimms project

Call to DLL function

Request identifier handle

Sparse data request

Request procedure handle

(A)synchronous execution request

Figure 34.1: Interaction between Aimms and an external DLL

dure and function calls within your model, while all right-to-left arrows are

provided for by the Aimms API.

HandlesCentral to the Aimms API is the concept of handles. Handles are represented by

unique integer numbers, and provide indirect access to named identifiers and

procedures within an Aimms model. Access to the associated objects within

the model is through the functions of the API. With every identifier or pro-

cedure in the model, multiple handles can be associated, each of which may

behave differently when passed to a function in the Aimms API depending on

its declaration or on the sequency of API functions previously applied to it (e.g.

during sparse data retrieval). Handles can be created by Aimms and passed as

arguments to a DLL function, or can be created from within an external appli-

cation.

API functionsThrough the functions in the Aimms API, you can initiate further actions on a

given identifier or procedure handle from within an external application. More

specifically, the API functions allow you to

� obtain information about identifiers in the model, such as domain, range

and type,

Chapter 34. The Aimms Programming Interface 576

� set up sparse data communication between an identifier in the Aimms

model and an external application, and

� request either synchronous or asynchronous execution of a procedure

within the Aimms model.

C interfaceAimms only provides a C interface to the functions in its API. When you are

using a different language which requires a different interface, you should im-

plement the required interface yourself in C/C++ or in a compatible language.

Single exampleThis remainder of this section will provide you with a simple ExternalProcedure

declaration and the associated C function that illustrates the basic use of the

Aimms API and further familiarizes you with the basic concepts. Because of the

many API functions and their interdependence, it is practically impossible to

provide illustrative examples for each API function separately in the context

of the this language reference. Therefore, the subsequent sections will only

explain the semantics of each separate API function.

Example:

printing

identifier info

The following C function accepts the name of an Aimms identifier with double-

valued values. It queries Aimms for a handle to that identifier, the correspond-

ing domain and all associated values. For the sake of conciseness, the DLL

function does not check all return values passed by the Aimms API functions.

#include <stdio.h>

#include <string.h>

#include <aimmsapi.h>

DLL_EXPORT(void) print_double_aimms_identifier_info(char *name) {

int handle, full, sliced, domain[AIMMSAPI_MAX_DIMENSION],

tuple[AIMMSAPI_MAX_DIMENSION], storage, i;

char file[256], buffer[256];

FILE *f;

AimmsValue value;

AimmsString strvalue;

/* Create a handle associated with the identifier name passed */

AimmsIdentifierHandleCreate(name, NULL, NULL, 0, &handle);

/* Get the dimension, domain and storage type of the identifier

associated with the handle */

AimmsAttributeDimension (handle, &full, &sliced);

AimmsAttributeRootDomain(handle, domain);

AimmsAttributeStorage (handle, &storage);

if (storage != AIMMSAPI_STORAGE_DOUBLE) return;

/* Open a file consisting of the identifier name with the extension .def,

and print the identifier’s name and dimension */

strcpy(file, name); strcat(file, ".def");

if (! (f = fopen(file, "w"))) return;

fprintf(f, "Identifier name: %s\n", name);

fprintf(f, "Dimension : %d\n", full);

Chapter 34. The Aimms Programming Interface 577

/* Prepare strvalue to hold the locally declared buffer */

strvalue.String = buffer;

/* Print a header containing the names of the domain sets */

fprintf(f, "\nData values : \n");

for (i = 0; i < full; i++) {

strvalue.Length = 256;

AimmsAttributeName(domain[i], &strvalue); fprintf(f, "%17s", buffer);

}

fprintf(f,"%16s\n","Double value");

for (i = 0; i < full; i++) fprintf(f, "%17s", "----------------");

fprintf(f,"\n");

/* Print all tuples with nondefault data values */

AimmsValueResetHandle(handle);

while (AimmsValueNext(handle, tuple, &value)) {

for (i = 0; i < full; i++) {

strvalue.Length = 256;

AimmsSetElementToName(domain[i], tuple[i], &strvalue);

fprintf(f,"%17s", buffer);

}

fprintf(f,"%17.5f\n", value.Double);

}

fclose(f);

}

If the DLL function is part of a DLL "Userfunc.dll", then it can be called from

within Aimms by the following ExternalProcedure declaration.

ExternalProcedure PrintParameterInfo {

Arguments : (param);

DLLName : "Userfunc.dll";

BodyCall : print_double_aimms_identifier_info(string scalar: param);

}

Its only argument is an element parameter into the predefined set AllIdenti-

fiers. It can therefore be called with any identifier name.

ElementParameter param {

Range : AllIdentifiers;

Property : input;

}

Call exampleConsider a two-dimensional parameter TransportCost(i,j) which contains the

following data.

TransportCost := DATA TABLE

Rotterdam Antwerp Berlin

! --------- --------- ---------

Amsterdam 1.00 2.50 10.00

Rotterdam 1.20 10.00

Antwerp 11.00

;

Then the procedure call PrintParameterInfo(’TransportCost’) will result in the

creation of a file TransportCost.def with the following contents.

Chapter 34. The Aimms Programming Interface 578

Identifier name: TransportCost

Dimension : 2

Data values :

Cities Cities Double value

----------------- ---------------- ---------------

Amsterdam Rotterdam 1.00000

Amsterdam Antwerp 2.50000

Amsterdam Berlin 10.00000

Rotterdam Antwerp 1.20000

Rotterdam Berlin 10.00000

Antwerp Berlin 11.00000

aimmsapi.h

header file

The prototypes of all the available Aimms API functions, as well as all C macro

definitions that are relevant for the execution of the API functions are provided

in a single header file aimmsapi.h. You should include this header file in all your

source files that make use of the Aimms API functions.

Two flavors of

API

The Aimms API functions are provided in two flavors: ASCII and Unicode.

For each of the functions mentioned in this chapter, there is an implemen-

tation postfixed with A for the ASCII flavor, and an implementation postfixed

with W for the Unicode flavor. For instance, when UNICODE is defined, a call

to AimmsIdentifierHandleCreate will be mapped to the implemented function

AimmsIdentifierHandleCreateW. For the Unicode flavor, on Windows, double-

byte character arrays are used to communicate strings corresponding to the

UTF-16LE character encoding. For the Unicode flavor, on Linux, quadruple-byte

character arrays are used to communicate strings corresponding to the UTF-

32LE character encoding. This corresponds to the wchar t* type on both plat-

forms. Please make sure that the option external string character encoding is

set to corresponding encoding. For the ASCII flavor, both on Windows and on

Linux, multibyte character arrays are used, and the encoding is determined by

the option external string character encoding.

libaimms3.lib

import library

The Aimms API functions are provided in the form of a Visual C/C++ import

library libaimms3.lib to the libaimms3.dll DLL, which can be included in the

link step of your external Aimms DLL. When you are using the Visual C/C++

compiler, this import library will take care that all the relevant API functions

are imported from the Aimms executable when your Aimms application loads

the external DLL. For other compilers, you should consult the compiler docu-

mentation on how to import the functions in libaimms3.dll into your program.

Return valuesAll Aimms API functions provide an integer return value. When the requested

operation has succeeded, the value AIMMSAPI SUCCESS is returned. When the

operation has failed, Aimms will return the value AIMMSAPI FAILURE. In the latter

case, you can obtain an error code and string through the API function Aimms-

APILastError (see also Section 34.7).

Chapter 34. The Aimms Programming Interface 579

Only identifiers

with data

Aimms will only allow you to pass or create handles for identifier types with

which data is associated, i.e. sets, parameters and variables. In addition, you

can pass or create handles to suffices of identifiers as long as the resulting

suffix results in a set or parameter.

34.2 Obtaining identifier attributes

Obtaining

attributes

For every identifier handle passed to (or created from within) an external func-

tion, Aimms can provide additional attributes that are either related to the

declaration of the identifier associated with the handle, or to the particular

identifier slice that was passed as an argument in the external function call.

Table 34.1 lists all Aimms API functions which can be used to obtain these

additional attributes.

int AimmsAttributeName(int handle, AimmsString *name)

int AimmsAttributeType(int handle, int *type)

int AimmsAttributeStorage(int handle, int *storage)

int AimmsAttributeDefault(int handle, AimmsValue *value)

int AimmsAttributeSetUnit(int handle, char *unit, char *convention)

int AimmsAttributeGetUnit(int handle, AimmsString *unitName)

int AimmsAttributeDimension(int handle, int *full, int *slice)

int AimmsAttributeRootDomain(int handle, int *domain)

int AimmsAttributeDeclarationDomain(int handle, int *domain)

int AimmsAttributeCallDomain(int handle, int *domain)

int AimmsAttributeRestriction(int handle, int *domainhandle)

int AimmsAttributeSlicing(int handle, int *slicing)

int AimmsAttributePermutation(int handle, int *permutation)

int AimmsAttributeFlagsSet(int handle, int flags)

int AimmsAttributeFlagsGet(int handle, int *flags)

int AimmsAttributeFlags(int handle, int *flags)

int AimmsAttributeElementRange(int handle, int *sethandle)

Table 34.1: Aimms API functions for obtaining handle attributes

Identifier name

and type

With the functions AimmsAttributeName and AimmsAttributeType you can request

the name and identifier type of the identifier associated with a handle. Aimms

passes the name of an identifier through an AimmsString structure (explained

below). Aimms only allows handles for identifier types with which data can

be associated. More specifically, Aimms distinguishes the following identifier

types:

� simple root set,

� simple subset,

� relation,

� indexed set,

� numeric parameter,

� element parameter,

� string parameter,

Chapter 34. The Aimms Programming Interface 580

� unit parameter,

� variable,

� element variable.

When the handle refers to a suffix of an identifier, the suffix type is appended

to the identifier name separated by a dot.

Storage typeIn addition to the identifier type, Aimms also associates a storage type with

each handle. It is the data type in which Aimms expects the data values associ-

ated with the handle to be communicated. The function AimmsAttributeStorage

returns the storage type. The possible storage types are:

� double (double),

� integer (int),

� binary (int, but only assuming 0-1 values),

� string (char *).

The complete list of identifier and storage type values returned by these func-

tions can be found in the header file aimmsapi.h.

Default valueWith the function AimmsAttributeDefault you can obtain the default value of

the identifier associated with a handle. The default value can either be a dou-

ble, integer or string value, depending on the storage type associated with the

handle. Below you will find the convention used by Aimms to pass such storage

type dependent values back and forth.

Setting and

getting units

Through the functions AimmsAttributeGetUnit and AimmsAttributeSetUnit you

can get and set the units of measurement (see also Chapter 32) that will be

used when passing data from and to Aimms. When setting the unit to be used,

you can specify both a unit and a convention. Aimms will parse the given

unit expression and use the specified convention to compute the appriopriate

multiplication factors between the internal and external representation of the

data of the identifier at hand.

Passing integer,

double or string

values

All transfer of integer, double or string values takes place through the record

structures AimmsString and AimmsValue defined as follows.

typedef struct AimmsStringRecord {

int Length;

char *String;

} AimmsString;

Chapter 34. The Aimms Programming Interface 581

typedef union AimmsValueRecord {

double Double;

int Int;

struct {

int Length;

char *String;

}

} AimmsValue;

When value is such a structure, you can obtain an integer, double or string

value through value.Int, value.Double or value.String, respectively.

Passing string

lengths

For strings, you must set value.Length to the length of the string buffer passed

through value.String before calling the API function. When Aimms fills the

value.String buffer, the actual length of the string passed back is assigned to

value.Length. When the actual string length exceeds the buffer size, Aimms

truncates the string passed back through value to the indicated buffer size,

and assigns the length of the actual string to value.Length.

Identifier

dimensions

For each handle you can obtain the dimension of the associated identifier by

calling the function AimmsAttributeDimension. The function returns:

� the full dimension of the identifier as given in its declaration, and

� the slice dimension, i.e. the resulting dimension of the actual identifier

slice associated with the handle.

Aimms uses tuples of length equal to the full dimension whenever information

is communicated regarding the index domain of a handle or its slicing. When

explicit data values associated with a handle are passed using the Aimms API

functions discussed in Section 34.4, Aimms communicates such values using

tuples of length equal to the slice dimension.

Set dimensionsFor all data communication with external DLLs Aimms considers sets to be

represented by binary indicator parameters indexed over their respective root

sets. For all elements in these root sets, such an indicator parameter assumes

the value 1 if a root set element (or tuple of root set elements) is contained in

the set at hand, or 0 otherwise. Since the default of these indicator parameters

is 0, Aimms only needs to communicate the nonzero values, i.e. exactly the

tuples that are actually contained in the set. In connection with this represen-

tation, Aimms returns the following (full or slice) dimensions for sets:

� the dimension of a simple set is 1,

� the dimension of a relation is the dimension of the Cartesian product of

which the relation is a subset,

� the dimension of an indexed set is the dimension of the index domain of

the set plus 1.

Chapter 34. The Aimms Programming Interface 582

Identifier

domains

The functions AimmsAttributeRootDomain, AimmsAttributeDeclarationDomain and

AimmsAttributeCallDomain can be used to obtain an integer array containing

handles to domain sets for every dimension of the identifier at hand. These

domains play a different role in the sparse data communication, as explained

below.

Root domain

handles

The function AimmsAttributeRootDomain returns an array of handles to the re-

spective root sets associated with the index domain specified in the identifier’s

declaration. You need these handles, for instance, to obtain a string represen-

tation of the element numbers returned by the data communication Aimms API

functions discussed in Section 34.4.

Declaration

domain handles

The function AimmsAttributeDeclarationDomain returns an array of handles to

the respective domain sets specified in the identifier’s declaration. These do-

main sets can be equal to their corresponding root sets, or to subsets thereof.

Aimms will only pass data values for element tuples in the declaration domain,

unless you have specified the raw translation modifier (see also Section 11.2)

for a handle argument, or have created the handle yourself with the raw flag

set (see also Section 34.3).

Call domain

handles

The function AimmsAttributeCallDomain returns an array of handles to the par-

ticular subsets of the root sets (as returned in the root domain of the handle)

to which data communication is restricted for this handle. The call domain

can be different from the global domain if an actual external argument has

been restricted to a subdomain of the root set in an external call (see also

Section 10.3), or if you have created the handle with an explicit call domain

yourself (see also Section 34.3). Aimms will only pass data values associated

with element tuples in just the call domain (raw flag set), or in the intersection

of the call and declaration domain (raw flag not set).

Domain

restriction

With the function AimmsAttributeRestriction you can obtain a handle to the

global domain restriction of an indexed identifier as specified in its declara-

tion and (dynamically) maintained by Aimms as necessary. You may want to

use this handle in conjunction with raw handles (explained in Section 34.4) to

verify whether a particular element satisfies its domain restriction.

ExampleConsider the following set and parameter declarations.

Set S_0 {

Index : i_0;

}

Set S_1 {

SubsetOf : S_0;

Index : i_1, j_1;

}

Chapter 34. The Aimms Programming Interface 583

Set S_2 {

SubsetOf : S_1;

Index : i_2;

}

Parameter p {

IndexDomain : i_0;

}

Parameter q {

IndexDomain : (i_1, j_1) | p(i_1);

}

A handle to (in Aimms notation) q(i_1, i_2) will return handles to

� S_0 and S_0 for the respective root domains,

� S_1 and S_1 for the respective declaration domains,

� S_1 and S_2 for the respective call domains, and

� p(i_1) for the domain restriction.

SlicingAs discussed in Section 10.3, the actual arguments in a procedure or function

call can be slices of higher-dimensional identifiers within your model. When

the slice dimension of a handle in an external call is less then its full dimen-

sion, you can use use the function AimmsAttributeSlicing to find out which

dimensions of the associated Aimms identifier have been sliced, and to which

elements. The function returns an integer array containing, for every dimen-

sion, the element number (within the associated root set) to which the cor-

responding domain has been sliced, or the number AIMMSAPI NO ELEMENT if no

slicing took place.

Domain

permutations

Through the function AimmsAttributePermutation you can obtain the permu-

tation of a permuted handle created with the function AimmsAttributeHandle-

CreatePermuted. The output permutation argument must be an integer array of

length equal to the full dimension of the identifier. Aimms returns the follow-

ing values:

� if a dimension of the handle is sliced, the corresponding position in the

permutation array will be 0,

� if a dimension is not sliced, the corresponding position in the permutation

array will contain the sliced position (starting at 1, and numbered from

1 to the handle’s slice dimension)

– in which Aimms will store elements of the corresponding dimen-

sion in a tuple returned by the functions AimmsValueNext and Aimms

ValueNextMulti, or

– in which Aimms expects such elements in calls to the functions

AimmsValueSearch and AimmsValueRetrieve.

Chapter 34. The Aimms Programming Interface 584

Getting ordered,

special, raw and

read-only flags

By specifying the input-output type and the ordered, retainspecials, elements-

asordinals or raw translation modifiers for arguments in an external call (see

also Section 11.2), you can influence the manner in which data is passed to

an external function. With the Aimms API function AimmsAttributeFlagsGet you

obtain the active set of flags indicating whether

� the data associated with a handle is passed ordered (ordered flag),

� special values are passed unchanged or are translated (retainspecials

flag),

� element tuples are passed by their element numbers (elementsasordinals

flag),

� inactive data is passed (raw flag), and

� you can make assignments to the handle (input-output type).

The result is the bitwise or function of the individual flag values as defined in

the aimmsapi.h header file.

Setting flagsThrough the function AimmsAttributeFlagSet you can modify the flag settings

for an existing handle. Note that the result of calls to AimmsValueNext may

become unpredictable after modifying the ordered flag. In such a case, you are

advised to reset the handle through the function AimmsHandleReset.

Element rangeWhen a handle is associated with an element parameter within your applica-

tion, you can use the function AimmsAttributeElementRange to obtain a handle

to the set constituting the element range of the element parameter. You need

this handle, for instance, when you want to obtain a string representation of

the element numbers within the element range communicated by Aimms in the

Aimms API functions discussed Section 34.4.

34.3 Managing identifier handles

Creation and

data control

Aimms offers the capability to dynamically create and delete handles to any

desired identifier slice over any desired local subdomain from within a DLL. In

addition, a subset of the Aimms data control operators (as discussed in Sec-

tion 25.3) can be called from within external DLLs. Table 34.2 lists all available

Aimms API functions for creating handles and performing data control opera-

tions.

Creating a

handle

You can use the function AimmsIdentifierHandleCreate to dynamically create a

handle to (a slice of) an Aimms identifier or a suffix thereof within an external

function or procedure. You can restrict the scope of a handle by

� specifying a call domain to which you want to restrict the handle, or

� by slicing one or more dimensions of the identifier.

Chapter 34. The Aimms Programming Interface 585

int AimmsIdentifierHandleCreate(char *name, int *domain, int *slicing,

int flags, int *handle)

int AimmsIdentifierHandleCreatePermuted(char *name, int *domain, int *slicing,

int *permutation, int flags, int *handle)

int AimmsIdentifierHandleDelete(int handle)

int AimmsIdentifierEmpty(int handle)

int AimmsIdentifierCleanup(int handle)

int AimmsIdentifierUpdate(int handle)

int AimmsIdentifierDataVersion(int handle, int *version)

Table 34.2: Aimms API functions for handle management

Obtaining a

suffix

If you want a handle to an identifier itself, the name passed to AimmsIdentifier-

HandleCreate should just be the identifier name. If you want a handle to a

suffix of an identifier, you should pass the name of the identifier followed

by a dot and the suffix name. Thus, for instance, you should pass the name

"Transport.ReducedCost" if you want a handle to the reduced costs of the vari-

able Transport.

Specifying a call

domain

When you want to create a handle over the full root domain, you can simply

pass a null pointer for the domain argument. If you want to specify an addi-

tional call domain, you must pass an integer array of length equal to the iden-

tifier’s full dimension, each element containing a handle to the set to which you

want to restrict the domain. If the raw flag is not set, passing a null pointer for

the domain handle will effectively restrict the declaration domain of the iden-

tifier at hand, because of the semantics of the raw flag (see also Sections 34.2

and 34.4).

Specifying a

slice

When you want to create a handle over the full dimension of an identifier,

you can simply pass a null pointer for the slicing argument. If you want to

create a handle to a slice, you must pass an integer array of length equal to the

identifier’s full dimension, each element containing either a null element for

all the domains that you do not want to slice, or the element number of the

element to which you want to slice.

Modification

flags

With the flags argument in a call to AimmsIdentifierHandleCreate you can spec-

ify which modification flags should be set for the handle to be created. The for-

mat of the flags argument is the same as in the function AimmsAttributeFlags

discussed in the previous section.

Creating a

permuted

handle

With the function AimmsIdentifierHandleCreatePermuted you can obtain a han-

dle to a multidimensional identifier, for which the order in which element

tuples are returned is permuted. Handles created by AimmsIdentifierHandle

CreatePermuted are always read-only, i.e. cannot be used in the functions Aimms-

ValueAssign and AimmsValueAssignMulti. The permutation argument must be

Chapter 34. The Aimms Programming Interface 586

specified according to the rules explained for the function AimmsAttributePer-

mutation.

ExampleConsider an identifier p(i,j,k,l) for which you want to retrieve the values as

if the identifier were defined as p(k,i,l,j). To retrieve all values of p in this

order, the permutation array must be specified as [2,4,1,3].

Deleting

handles

With the function AimmsIdentifierHandleDelete you can delete a dynamically

created handle that is no longer needed. The function fails when you try to

delete a handle that was passed as an argument to the DLL. After deletion the

handle can no longer be used in conjunction with any Aimms API function.

Empty, cleanup

and update

handles

The Aimms API functions

� AimmsIdentifierEmpty,

� AimmsIdentifierCleanup, and

� AimmsIdentifierUpdate

can be called to perform the identical actions on a set or identifier (slice)

from within an external DLL as can be accomplished by the data control op-

erators EMPTY, CLEANUP and UPDATE from within Aimms, respectively. The func-

tion AimmsIdentifierEmpty will empty the particular slice and subdomain of the

identifier associated with the handle. The other two functions will cleanup or

update the entire data set of the identifier associated with the handle, regard-

less of the specified slicing and local domain.

Data versionFor every identifier within your model Aimms maintains a version number of

the data associated with the identifier. This number is incremented each time

a data value of the identifier has been changed. You can use the function

AimmsIdentifierDataVersion to retrieve this version number, for instance, to

verify whether the data has changed relative to the last time you retrieved it.

Checking for

global data

changes

When you apply the function AimmsIdentifierDataVersion to the predefined

handle value AIMMSAPI MODEL HANDLE, Aimms will return a data version number

based on the cases and datasets currently active within the model. Aimms will

update this number as soon as the combined configuration of the active case

and/or datasets within the model has changed, as well as after a call to the

CLEANDEPENDENTS operator. A change in this global data version number is a

good indication that the contents of all or a number of domain sets may have

changed, and must be retrieved again.

Chapter 34. The Aimms Programming Interface 587

34.4 Communicating individual identifier values

Communicating

identifier values

With every identifier handle Aimms lets you retrieve all associated nondefault

data values on an element-by-element basis. In addition, Aimms lets you search

whether a nondefault value exists for a particular element tuple, and make

assignments to individual element tuples. Table 34.3 lists all the available

Aimms API functions for this purpose.

int AimmsValueCard(int handle, int *card)

int AimmsValueResetHandle(int handle)

int AimmsValueSearch(int handle, int *tuple, AimmsValue *value)

int AimmsValueNext(int handle, int *tuple, AimmsValue *value)

int AimmsValueNextMulti(int handle, int *n, int *tuples, AimmsValue *values)

int AimmsValueRetrieve(int handle, int *tuple, AimmsValue *value)

int AimmsValueAssign(int handle, int *tuple, AimmsValue *value)

int AimmsValueAssignMulti(int handle, int n, int *tuples, AimmsValue *values)

int AimmsValueDoubleToMapval(double value, int *mapval)

int AimmsValueMapvalToDouble(int mapval, double *value)

Table 34.3: Aimms API functions for sparse data communication

CardinalityThe function AimmsValueCard returns the cardinality of a handle, i.e. the number

of nondefault elements of the associated identifier slice. You can call this func-

tion, for instance, when you need to allocate memory for the data structures

in your own code before actually retrieving the data.

Retrieving

nondefault

values

The functions AimmsValueResetHandle, AimmsValueSearch and AimmsValueNext re-

trieve nondefault values associated with a handle on an element-by-element

basis.

� The function AimmsValueResetHandle resets the handle to the position just

before the first nondefault element.

� The function AimmsValueSearch expects an input tuple of element num-

bers (in the slice domain), and returns the first tuple for which a nonde-

fault value exists on or following the input tuple.

� The function AimmsValueNext returns the first nondefault element directly

following the element returned by the last call to AimmsValueNext or Aimms-

ValueSearch, or the first element if the function AimmsValueResetHandle

was called last. The function fails when there is no such element.

By calling AimmsValueResetHandle and subsequently AimmsValueNext it is possi-

ble to retrieve all nondefault values. By calling the function AimmsValueSearch

you can directly skip to a particular element tuple if you have found that the

intermediate tuples are not interesting anymore, and continue from there.

Chapter 34. The Aimms Programming Interface 588

No scalar

handles

The functions AimmsValueResetHandle, AimmsValueNext and AimmsValueSearch do

not accept handles to scalar (i.e. 0-dimensional) identifier slices. To retrieve

and assign scalar values you should use the functions AimmsValueRetrieve and

AimmsValueAssign explained below.

Unordered

versus ordered

retrieval

The particular element returned by the functions AimmsValueSearch and Aimms-

ValueNext may differ depending on the setting of the ordered flag for the han-

dle. If the handle has been created unordered (default), the values returned

successively are ordered by increasing element number in a right-to- left tu-

ple order. If the handle has been created ordered, Aimms will return values in

accordance with the ordering principles imposed on all local tuple domains.

Raw data

retrieval

By default, Aimms will only pass values for element tuples that lie within the

current contents of the intersection of the call domain and declaration domain

of an identifier. Thus, the values that get passed may depend on a dynamically

changing domain restriction that is part of the index domain in the declaration

of an identifier. When the raw modification flag is set for a handle, Aimms will

pass all available data values in the call domain, regardless of the domain

restrictions.

Return tuple

and value

All data retrieval functions return a tuple and the associated nondefault value.

The interpretation of the value argument for all possible storage types was

discussed on page 580. The tuple argument must be an integer array of length

equal to the slice dimension of the handle. Upon success, the tuple contains

the element numbers in the global domain sets for every non-sliced dimension.

Element or

ordinal

numbers

By setting the flag elementsasordinals during the creation of a handle, you can

modify the default tuple representation. If this flag is set, the tuples returned

by Aimms will contain ordinal numbers corresponding to the respective call

domains associated with the handle. Similarly, Aimms expects tuples that are

passed to it, to contain ordinal numbers as well, when this flag is set.

RationaleWhile at first sight the choice for representing tuples by their element num-

bers in the global domain of a handle may seem less convenient than ordinal

numbers in its call domain, you must be aware that the latter representation is

not invariant under changes in the contents of the call domain. Alternatively

to setting the flag elementsasordinals, you can also convert the returned ele-

ment numbers into these formats using the Aimms API functions discussed in

Section 34.5.

Value typesThe expected storage type of the data values returned by the data retrieve func-

tions can be obtained using the function AimmsAttributeStorage. The possible

storage types for the various identifier types are listed below:

� numeric parameters and variables return double or integer values,

Chapter 34. The Aimms Programming Interface 589

� all set types return binary values,

� element parameters return integer element numbers, and

� string and unit parameters return string values.

Element

parameter

values

The element numbers returned for element parameters are relative to the set

handle returned by the function AimmsAttributeElementRange. You can use the

Aimms API functions of Section 34.5 to obtain the associated ordinal numbers

or string representations.

Set valuesFor sets (either simple, relation or indexed), the data retrieval functions re-

turn the binary value 1 for just those elements (or element tuples) that are

contained in the set. For indexed sets, Aimms returns tuples for which the

last component is the element number of an element contained in the set slice

associated with all but the last tuple components.

Converting

special numbers

When a handle to a numeric parameter or variable has been created with the

special flag set, the data retrieval functions will pass any special number value

associated with the handle as is (see also Sections 11.2 and 34.2). Aimms rep-

resents special numbers as double precision floating point numbers outside

Aimms’ ordinary range of computation. The function AimmsValueDoubleToMapval

returns the MapVal value associated with any double value (see also Table 6.1),

while the function AimmsValueMapvalToDouble returns the double representation

associated with any type of special number.

Retrieving

specific values

The function AimmsValueRetrieve returns the value for a specific element tuple

in the slice domain. This value can be either the default value or a nondefault

value. The tuple must consist of element numbers in the corresponding do-

main sets. When the raw flag is not set, the function fails (but still returns the

default value of the associated identifier) for any tuple outside of the index

domain of the handle. When the raw flag is set, the function fails only when

there is no data for the tuple.

Assigning

values

The function AimmsValueAssign lets you assign a new value to a particular el-

ement tuple in the slice domain. If you want to assign the default value you

can either pass a null pointer for value, or a pointer to the appropriate default

value. The function fails if you try to assign a value to an element tuple outside

the contents of the call domain of the handle. When the raw flag is not set, the

function will also fail if the assigned tuple lies outside of the current (active)

contents of the declaration domain.

Exchanging

multiple values

When a particular identifier handle requires the exchange of a large amount of

values, you are strongly encouraged to use the functions AimmsValueNextMulti

and AimmsValueAssignMulti instead of the functions AimmsValueNext and Aimms-

ValueAssign. In general, Aimms can perform the simultaneous exchange of

Chapter 34. The Aimms Programming Interface 590

multiple values much more efficient than the equivalent sequence of single

exchanges. For both functions, the tuples array must be an integer array of

length n times the slice dimension of the handle, while the values array must

be the corresponding AimmsValue array of length n.

� In the function AimmsValueNextMulti, Aimms will fill the tuples array with

the respective tuples for which nondefault values are returned in the

values array. Upon return, the n argument will contain the actual number

of values passed.

� In the function AimmsValueAssignMulti, the tuples array must be filled

sequentially with the respective tuples to which the assignments take

place via the values array.

When your data transfer involves the addition of a large amount of set el-

ements to an Aimms set as well, you may also want to consider using the

function AimmsSetAddElementMulti (see Section 34.5).

Communicating

scalar values

When a handle corresponds to a 0-dimensional (i.e. scalar) identifier slice, you

can still use the AimmsValueRetrieve and AimmsValueAssign to retrieve its value

or assign a value to it. In this case, the tuple argument is ignored.

Assigning set

values

When you want to delete or add an existing element or element tuple to a set,

you must assign the value 0 or 1 to the associated tuple respectively. If you

want to add a tuple of nonexisting simple elements, you must first add these

elements to the corresponding global simple domain sets using the function

AimmsSetAddElement discussed below.

34.5 Accessing sets and set elements

Accessing setsThe Aimms API functions discussed in the previous section allow you to re-

trieve and assign individual values of (slices of) indexed identifiers associated

with tuples of set element numbers used by Aimms internally. The Aimms

API functions discussed in this section allow you to add elements to simple

sets, and let you convert element numbers into ordinal numbers and element

names, or vice versa. Table 34.4 presents all set related API functions.

Adding

elements to

simple sets

The function AimmsSetAddElement allows you to add new element names to a

simple set. Aimms will return with the internal element number assigned to

the element, which you can use for further references to the element. The

function fails if an element with the specified name already exists, but still

sets element to the corresponding element number.

Chapter 34. The Aimms Programming Interface 591

int AimmsSetAddElement(int handle, char *name, int *element)

int AimmsSetAddElementMulti(int handle, int n, int *elementNumbers)

int AimmsSetAddElementRecursive(int handle, char *name, int *element)

int AimmsSetRenameElement(int handle, int element, char *name)

int AimmsSetDeleteElement(int handle, int element)

int AimmsSetElementNumber(int handle, char *name, int allowCreate,

int *elementNumber, int *isCreated)

int AimmsSetAddElementMulti(int handle, int n, int *elementNumbers)

int AimmsSetAddElementRecursiveMulti(int handle, int n, int *elementNumbers)

int AimmsSetElementToOrdinal(int handle, int element, int *ordinal)

int AimmsSetElementToName(int handle, int element, AimmsString *name)

int AimmsSetOrdinalToElement(int handle, int ordinal, int *element)

int AimmsSetOrdinalToName(int handle, int ordinal, AimmsString *name)

int AimmsSetNameToElement(int handle, char *name, int *element)

int AimmsSetNameToOrdinal(int handle, char *name, int *ordinal)

Table 34.4: Aimms API functions for passing set data

Adding element

to subsets

If the set is a subset, Aimms will add the element to that subset only. Thus, the

function will fail and return no element number if the corresponding element

does not already exist in the associated root set. If the element is present in

the root set, but not in the domain of the subset, the functions will fail but

still return the element number corresponding to the presented string. With

the function AimmsSetAddElementRecursive you can add an element to a subset

itself as well as to all its supersets, up to the associated root set.

Renaming set

elements

Through the function AimmsSetRenameElement you can provide a new name for

an element number associated with an existing element in a set. The change

in name does not imply any change in the data previously defined over the

element. However, the element will be displayed according to its new name in

the graphical user interface, or in data exchange with external data sources.

Deleting set

elements

With the function AimmsSetDeleteElement you can delete the element with the

given element number from a simple set. If the set is a root set, any remaining

data defined over the element in subsets parameters and variables will become

inactive. To remove such inactive references to the deleted element, you can

use the API function AimmsIdentifierCleanup (see also Section 34.3).

Modifying

subset contents

Alternatively to applying the functions AimmsSetAddElement and AimmsSetDe-

leteElement to subsets, you can also use the function AimmsValueAssign to mod-

ify the contents of a subset. In that case, you should assign the value 1 to the

tuple that should be added to the subset, or 0 to a tuple that should be re-

moved (as discussed in the previous section). The function AimmsValueAssign

will also work on indexed sets and relations.

Chapter 34. The Aimms Programming Interface 592

Adding multiple

set elements to

a simple set. . .

When, as part of a large data transfer from an external data source to Aimms,

you have to add a large amount of (non-existing) set elements to a simple

Aimms set, the use of the functions AimmsSetElement and AimmsSetElementRecur-

sive may become a performance bottleneck compared to any bulk data trans-

fer of multidimensional data defined over these set elements. The reason for

this is that the function AimmsSetElementAdd adds elements one at a time, and

may need to extend the internal data structures used to store set data many

times, which is a relatively expensive action.

. . . in an

efficient manner

As an alternative, Aimms offers a different set of functions that combined allow

you to add multiple set elements much more efficiently, at the expense of a

slightly more complex sequence of actions. The functions are:

� the function AimmsSetElementNumber, which retrieves an existing, or cre-

ates a new, set element number for a given element name, but does not

add it yet to any set, and

� the functions AimmsSetAddElementMulti and AimmsSetAddElementRecursive-

Multi, which add multiple elements to a set or a hierarchy of sets simul-

taneously by passing an array of set element numbers created through

the function AimmsSetElementNumber.

Set element

representations

The functions

� AimmsSetElementToOrdinal,

� AimmsSetElementToName,

� AimmsSetOrdinalToElement,

� AimmsSetOrdinalToName,

� AimmsSetNameToElement, and

� AimmsSetNameToOrdinal

allow you to convert Aimms’ element numbers into ordinal numbers within a

particular subset, and element names and vice versa. The functions will fail

when the input representation does not correspond to an existing element.

Ordinal

numbers may

change

In working with ordinal numbers, you should be aware that ordinal numbers

are not invariant under changes to a set. When an element is added to or

deleted from a set, or when the ordering of the set has changed, the ordinal

numbers of some or all of its elements may have changed. In contrast, the

element numbers and names of elements remain constant as long as the case

used by the Aimms model has not changed, or when the CLEANDEPENDENTS oper-

ator has not been applied to one or more root sets. You can verify the latter

condition with a call to the function AimmsIdentifierDataVersion (see also Sec-

tion 34.3).

Chapter 34. The Aimms Programming Interface 593

34.6 Executing Aimms procedures

Running Aimms

procedures

The Aimms API allows you to execute procedures contained in the Aimms

model from within an external application. Both procedures with and without

arguments can be executed, and scalar output results can be directly passed

back to the external application. Table 34.5 lists the Aimms API functions of-

fered to obtain procedure handles, to execute Aimms procedures or to schedule

Aimms procedures for later execution.

int AimmsProcedureHandleCreate(char *procedure, int *handle, int *nargs, int *argtype)

int AimmsProcedureHandleDelete(int handle)

int AimmsProcedureRun(int handle, int *argtype, AimmsValue *arglist, int *result)

int AimmsProcedureArgumentHandleCreate(int prochandle, int argnumber, int *arghandle)

int AimmsProcedureAsyncRunCreate(int handle, int *argtype,

AimmsValue *arglist, int *request)

int AimmsProcedureAsyncRunDelete(int request)

int AimmsProcedureAsyncRunStatus(int request, int *status, int *result)

int AimmsExecutionInterrupt(void)

Table 34.5: Aimms API functions for execution requests

Obtaining

procedure

handles

With the function AimmsProcedureHandleCreate you can obtain a handle to a pro-

cedure with the given name within the model. In addition, Aimms will return

the number of arguments of the procedure, as well as the type of each argu-

ment. The possible argument types are:

� one of the storage types double, integer, binary or string (discussed in

Section 34.2) for scalar formal arguments, or

� a handle for non-scalar formal arguments.

In addition to indicating the storage type of each argument, the argtype argu-

ment will also indicate whether an argument is input, output, or input- out-

put. Through the function AimmsProcedureHandleDelete you can delete proce-

dure handles created with AimmsProcedureHandleCreate.

Calling

procedures

You can use the function AimmsProcedureRun to run the Aimms procedure as-

sociated with a given handle. If the Aimms procedure has arguments, then

you have to provide these, together with their types, through the arglist

and argtype arguments. The (integer) return value of the procedure (see also

pages 139 and 147) is returned through the result argument. If Aimms is

already executing another procedure (started by another thread), the call to

AimmsProcedureRun blocks until the other execution request has finished. Sec-

tion 34.10 explains how to prevent this blocking behavior by obtaining exclu-

sive control over Aimms.

Chapter 34. The Aimms Programming Interface 594

Passing

arguments

For each argument of the Aimms procedure you have to provide both the type

and value through the argtype and arglist arguments in the call to AimmsProce-

dureRun. You have the following possibilities.

� If the argument is scalar, the argument type can be

– the storage type returned by the function AimmsProcedureHandle-

Create, in which case the argument value must be a pointer to a

buffer of the indicated type containing the argument, or

– a handle, in which case the argument value must be a handle asso-

ciated with a scalar Aimms identifier (slice) that you want to pass.

� If the argument is non-scalar, the argument type can only be a handle,

and the argument value must be a handle corresponding to the identifier

(slice) that you want to pass.

If you pass an argument as an identifier handle, this can either be a handle to a

global identifier defined within the model, or a local argument handle obtained

through a call to the function AimmsProcedureArgumentHandleCreate (see below).

Output valuesWhen the input-output type of one or more of the arguments is inout or output,

Aimms will update the values associated with any handle argument, or, if a

buffer containing a scalar value was passed, fill the buffer with the new value

of the argument.

Obtaining

argument

handles

Through the function AimmsProcedureArgumentHandleCreate you can obtain a

handle to the local arguments of procedures within your model. After creating

these handles you can pass them as arguments to the function AimmsProcedure-

Run. The following rules apply.

� After creation, handles created by AimmsProcedureArgumentHandleCreate

have no associated data.

� If the handle corresponds to an Input argument of the procedure, you

can supply data prior to calling the procedure, and Aimms will empty the

handle after the execution of the procedure has completed.

� If the handle corresponds to an InOut or Output argument of the proce-

dure, Aimms will not empty the handle after completion of the procedure.

If you want to supply data to a handle corresponding to an InOut argu-

ment in subsequent calls, you have to make sure to empty the handle

(through the function AimmsIdentifierEmpty) prior to supplying the input

data.

Requesting

asynchronous

execution

With the function AimmsProcedureAsyncRunCreate you can request asynchronous

execution of a particular Aimms procedure. The function returns an integer re-

quest handle for further reference. Aimms will execute a requested procedure

as soon as there are no other execution requests currently being executed or

waiting to be executed. Note that you should make sure that the AimmsValue

array passed to Aimms stays alive during the asynchronous execution of the

Chapter 34. The Aimms Programming Interface 595

procedure. Failure to do so, may result in illegal memory references during

the actual execution of the Aimms procedure. This is especially true when the

array contains references to scalar integer, double or string InOut or Output

buffers within your application to be filled by the Aimms procedure.

Obtaining the

status

Through the function AimmsProcedureAsyncRunStatus you can obtain the status

of an outstanding asynchronous execution request. The status of such a re-

quest can be

� pending,

� running,

� finished,

� deleted, or

� unknown (for an invalid request handle).

When the request is in the finished state, the return value of the Aimms proce-

dure will be returned via the result argument.

Deleting a

request

You should make sure to delete all asynchronous execution handles requested

during a session using the function AimmsProcedureAsyncRunDelete. Failure to

delete all finished requests may result in a serious memory leak if your external

DLL generates many small asynchronous execution requests. If you delete a

pending request, Aimms will remove the request from the current execution

queue. The function will fail if you try to delete a request that is currently

being executed.

Interrupting an

existing run

When an Aimms procedure has been started by a separate thread in your pro-

gram you can interrupt it using the function AimmsExecutionInterrupt. This

function returns AIMMSAPI SUCCESS when Aimms was idle and AIMMSAPI FAILURE

was executing a procedure.

34.7 Passing errors and messages

Passing errors

and messages

The Aimms API functions in Table 34.6 let you send error and warning mes-

sages to Aimms and get the current Aimms status. In addition, you can obtain

the error number and description of the last Aimms API error.

int AimmsAPIPassMessage(int severity, char *message)

int AimmsAPIStatus(int *status)

int AimmsAPILastError(int *code, char *message)

Table 34.6: Aimms API functions for error messages

Chapter 34. The Aimms Programming Interface 596

Passing errors

and messages

With the function AimmsAPIPassMessage you can send error and warning mes-

sages to the end-user of your DLL in Aimms. Such errors and warnings are

displayed to the end-user in the Aimms message window. For every message

you must indicate a severity code, the complete list of which is included in the

aimmsapi.h header file. When Aimms receives a message with error severity, a

run-time error is generated. The end-user of an application can set execution

options to filter out those warning messages which are below a certain severity

threshold.

Setting

CurrentEr-

rorMessage

If a function in your DLL is called from within an Aimms project, and you want

to pass back an error message to the model without automatically opening the

Aimms message window, you should not use the function AimmsAPIPassMessage,

but instead assign the message to the predefined Aimms string parameter

CurrentErrorMessage. To assign a value to it, you should create a handle to

it via the function AimmsIdentifierHandleCreate and assign the message using

the function AimmsValueAssign. It is then up to the model developer calling

your function, whether the message stored in CurrentErrorMessage should be

displayed (e.g. in the Aimms message window).

Obtaining the

execution status

Through the function AimmsAPIStatus you can obtain the current status of the

Aimms execution engine, such as executing, solving, ready, etc. The complete

list of possible status codes and their meaning is included in the aimmsapi.h

header file.

Obtaining API

errors

Whenever a call to an Aimms API function fails, the function returns AIMMS-

API FAILURE as its return value. In such a case, you can obtain the precise error

code and a message describing the error through the function AimmsAPILast-

Error. The complete list of error codes is contained in the aimmsapi.h header

file. By modifying the API-related execution options, you can also enforce that

every API error is listed in the Aimms message window.

34.8 Raising and handling errors

Raising and

handling errors

The error passing described in the previous section is retained in Aimms 3 in

order not to break existing applications. The use of the error handling de-

scribed in this section, however, is encouraged as it is more in line with the

error handling framework described in Section 8.4. In addition, all errors, in-

cluding all their parts, can be retrieved. The Aimms API functions in Table 34.7

enable the raising and handling of errors and retrieving the current Aimms

status.

Chapter 34. The Aimms Programming Interface 597

int AimmsErrorStatus(void)

int AimmsErrorCount(void)

char *AimmsErrorMessage(int errNo)

int AimmsErrorSeverity(int errNo)

char *AimmsErrorCode(int errNo)

char *AimmsErrorCategory(int errNo)

int AimmsErrorNumberOfLocations(int errNo)

char *AimmsErrorFilename(int errNo)

char *AimmsErrorNode(int errNo, int pos)

char *AimmsErrorAttributeName(int errNo, int pos)

int AimmsErrorLine(int errNo, int pos)

int AimmsErrorColumn(int errNo)

time_t AimmsErrorCreationTime(int errNo)

int AimmsErrorDelete(int errNo)

int AimmsErrorClear(void)

int AimmsErrorRaise(int severity, char *message, char *code)

Table 34.7: Aimms Raising and handling errors in the Aimms API

Global error

collector

manipulation

The functions AimmsErrorStatus, AimmsErrorCount, AimmsErrorGet, AimmsErrorDe-

lete and AimmsErrorClear all manipulate the global error collector. The global

error collector is described in Section 8.4. The function AimmsErrorStatus scans

the contents of the global error collector and returns

� AIMMSAPI SEVERITY CODE NEVER: if the global error collector is empty,

� AIMMSAPI SEVERITY CODE WARNING: if it contains only warnings, or

� AIMMSAPI SEVERITY CODE ERROR: if it contains at least one error.

The function AimmsErrorCount does not return a status code, instead it di-

rectly returns the number of errors and warnings in the global error collector.

With the functions AimmsErrorMessage, AimmsErrorSeverity, AimmsErrorCategory,

AimmsErrorCode, AimmsErrorNumberOfLocations, AimmsErrorLine, AimmsErrorNode,

AimmsErrorAttributeName, AimmsErrorFilename, AimmsErrorColumn, and AimmsErr-

orCreationTime actual error information is obtained. In these functions the

errNo argument should be in the range {1..AimmsErrorCount()} and the pos ar-

gument should be in the range {1..AimmsErrorNumberOfLocations(errNo)}.

Example for API

calls

None of the Aimms API functions throws an exception, nor do any of them let

an exception pass through. The example below serves as a simple template

to call AimmsProcedureRun and handle all errors occurring during that execution

run.

int ErrCount, errNo, apr_stat ;

apr_stat = AimmsProcedureRun(procHandle, ...);

ErrCount = AimmsErrorCount();

if (ErrCount) {

for (errNo = 1 ; errNo <= ErrCount ; errNo ++) {

// Handle the error; replace the next line as

// appropriate for the application at hand.

printf("Error %d: %s\n", errNo, AimmsErrorMessage(errNo));

Chapter 34. The Aimms Programming Interface 598

}

AimmsErrorClear();

} else if (apr_stat == AIMMSAPI_FAILURE) {

printf("Aimms failed for an unknown reason.\n");

}

Raising an errorThe function AimmsErrorRaise(severity, message, code) can raise errors and

warnings. These errors will be handled by the currently active error handler

as described in Section 8.4. If there is no currently active error handler, the

error is directly placed in the global error collector. The call to this function is

similar to the RAISE statement, see Section 8.4.2. The code argument is optional.

The severity argument should be either

� AIMMSAPI SEVERITY CODE WARNING: indicating a warning or

� AIMMSAPI SEVERITY CODE ERROR: indicating an error.

The category of an error raised by AimmsErrorRaise is fixed to ’User’.

34.9 Opening and closing a project

Opening and

closing a project

The Aimms API functions in Table 34.8 allow you to open and close an Aimms

project from within your own application.

int AimmsProjectOpen(char *commandline, int *handle)

int AimmsServerProjectOpen(char *commandline, int *handle)

int AimmsProjectClose(int handle, int interactive)

int AimmsProjectWindow(HWND *window)

Table 34.8: Aimms API functions for opening and closing projects

Opening a

project

If you want to use Aimms as an optimization engine from within an external

program, you can use the function AimmsProjectOpen to open the Aimms project

which contains the model that you want to connect to. To open an Aimms

project you must specify the command line containing the project file name as

well as any other command line options with which you want to run Aimms, but

without the name of the Aimms executable. If the project is not in the current

working directory, the directory in which the project is contained must be

appended to the project file name. On success, you obtain a project handle

which must be used to close the project. Because a single Aimms instance can

only run a single project, the function fails if a project is already running in

this Aimms instance.

Chapter 34. The Aimms Programming Interface 599

Opening a

server project

When you are running an Aimms project as a server application, you do not

want windows or message boxes to appear on the server desktop under any cir-

cumstances. Although you can open an Aimms project in a minimized or hid-

den fashion through commandline arguments passed to the AimmsProjectOpen

function, Aimms can still present some message boxes, e.g. to report licensing

problems during startup. With the function AimmsServerProjectOpen you can

open an Aimms project absolutely without any windowing support. If Aimms

encounters any problems during startup, the function will fail and you can

retrieve the error message through the function AimmsAPILastError.

License requiredWhen you open an Aimms project from within your own application through

the Aimms API, the normal Aimms licensing arrangements apply. When no valid

Aimms license is available on the host computer, a call to either AimmsProject-

Open or AimmsServerProjectOpen will fail.

Closing a

project

With the function AimmsProjectClose you can request Aimms to close the cur-

rent project, and, subsequently, to terminate itself. With the interactive ar-

gument you can indicate whether the project must be closed in an interactive

manner (i.e. whether the user must be able to answer any additional dialog

box that may appear), or that the default response is assumed. The request

will fail if the project handle is not equal to the project handle returned by the

function AimmsProjectOpen, thus disallowing you to close a project that was not

opened by yourself.

... and MainTer-

mination();

Obtaining the

Aimms window

Through the function AimmsProjectWindow you can obtain the Win32 window

handle associated with the current Aimms project. You can use the window

handle in any Win32 function call inside your DLL that requires the Aimms

window handle to function properly.

34.10 Thread synchronization

Multiple threadsThe Aimms API allows multiple DLLs to be active within the context of a single

project. While some of these DLLs may only be useful when called from within

your Aimms project itself, you may want other DLLs to run independently in

a separate thread of execution. Such behavior may be necessary, for instance,

when

� you want to link Aimms to an online data source, where an independent

DLL collects the online data and passes it on to Aimms whenever appro-

priate, or

� you want to call Aimms as an independent optimization engine from

within your own program and need to pass data to Aimms whenever

necessary.

Chapter 34. The Aimms Programming Interface 600

Aimms threadWhen you open an Aimms project by calling the function AimmsProjectOpen from

within your own application, Aimms will create a new thread. This Aimms

thread will deal with

� all end-user interaction initiated from within the Aimms end-user inter-

face (which is created as part of opening the project), and

� all asynchronous execution requests that are initiated either from within

your application, another external DLL linked to your Aimms project, or

from within the model itself.

Thread

initialization

Whenever you want to call Aimms API functions from within a thread started

by yourself, you must make sure that the thread is well-equipped to do so by

calling the Aimms thread (un)initialization functions listed in Table 34.9.

int AimmsThreadAttach(void)

int AimmsThreadDetach(void)

Table 34.9: Aimms API functions for thread initialization

Initializing

threads. . .

Prior to calling any other Aimms API function from within a newly created

thread, you should call the function AimmsThreadAttach. It will make sure that

any thread-specific initialization required for calling the Aimms execution en-

gine is performed properly. Similarly, you should call the function Aimms-

ThreadDetach just prior to exiting the thread.

. . . includes

COM

initialization

Among others, a call to AimmsThreadAttach will initialize the Microsoft COM li-

brary in a manner compatible with the COM apartment model employed by

Aimms. Therefore, if you are using COM interfaces within your thread, you

should not call the COM SDK functions CoInitialize (or CoInitializeEx) and

CoUninitialize directly to initialize the COM library, but rather call Aimms-

ThreadAttach and AimmsThreadDetach.

Thread

synchronization

Whenever an Aimms project runs in a multi-threaded environment, synchro-

nization of the execution and data retrieval requests becomes of the utmost

importance. By default, Aimms will make sure that no two execution or data re-

trieval requests initiated from different threads are dealt with simultaneously.

However, this default synchronization scheme does not preclude that the exe-

cution of two subsequent requests from one thread is interrupted by a request

from another thread.

Chapter 34. The Aimms Programming Interface 601

Obtaining

exclusive control

When the proper functioning of your application requires that your execution

and data retrieval requests to Aimms are not interrupted by requests from

competing threads, you can use the functions listed in Table 34.10 to obtain

exclusive control over the Aimms execution engine.

int AimmsControlGet(int timeout)

int AimmsControlRelease(void)

Table 34.10: Aimms API functions for obtaining exclusive control

Obtaining and

releasing

control

With the function AimmsControlGet you can restrict control over the current

Aimms session exclusively to the thread calling AimmsControlGet. Execution

and data retrieval requests from any thread other than this controlling thread

(including the Aimms thread itself) will block until the controlling thread has

released the control. The function AimmsControlRelease releases the exclusive

control over the Aimms session. Note that every successful call to AimmsCon-

trolGet must be followed by a corresponding call to AimmsControlRelease, or

Aimms will be inaccessible to all other threads for the remainder of the ses-

sion. AimmsControlRelease fails when the calling thread does not have exclusive

control.

Waiting for the

control

When another thread has exclusive control over Aimms, either obtained explic-

itly through a call to AimmsControlGet or implicitly through an execution or data

retrieval request, the function AimmsControlGet will block timeout milliseconds

before returning with a failure. By choosing a timeout of WAIT INFINITE, the

function AimmsControlGet will block until it gets exclusive control.

Nonblocking

execution

If you want to make sure that a subsequent execution request will never block,

you can

� call AimmsControlGet with a timeout of 0 milliseconds,

� perform the execution request when successful, and

� subsequently release the control.

The call to AimmsControlGet has the effect of verifying that no other thread is

using Aimms at the moment. If you cannot get exclusive control, you must

store the request for later execution.

34.11 Interrupts

InterruptsDuring the execution of a procedure in your model, the Aimms thread will

block. This effectively prevents you from interrupting the Aimms execution, for

instance, to update data in the model, or just to abort the current procedure

execution. Likewise, while a function in your DLL that was executed from

Chapter 34. The Aimms Programming Interface 602

within an Aimms procedure is still running, Aimms cannot service any end-

user requests. The functions listed in this section allow your DLL and Aimms

to work together in a cooperative manner in such situations.

Handling

interrupts

You can use the functions listed in Table 34.11 to handle two-way interrupts.

int AimmsInterruptCallbackInstall(AimmsInterruptCallback cb)

int AimmsInterruptPending(void)

Table 34.11: Aimms API functions for handling interrupts

Installing a

callback

With the function AimmsInterruptCallbackInstall you can pass a function poin-

ter with a prescribed prototype to Aimms, which Aimms will call on a regular

basis during subsequent execution of an Aimms procedure. Note that the in-

stalled callback is thread-local, i.e., Aimms will only call the callback procedure

from within an Aimms procedure that is executing in the same thread in which

you called AimmsInterruptCallbackInstall to install the callback.

Within a

callback

Within a callback function Aimms allows you to request or modify model data,

or to run model procedures, which would normally be prohibited because calls

to the Aimms API block when Aimms is executing (see also Section 34.10).

Through the argument of the callback function Aimms passes its current state

(just executing, or within a solve), while you can indicate, through the return

value of the callback function, whether you

� want to interrupt the current solve but continue the remainder of the

current execution,

� want to interrupt the current execution all together, or

� do not want to interrupt the current execution at all.

Because Aimms will call a callback procedure quite regularly, it is advisory to

keep the actions executed within it to a minimum, or Aimms could be slowed

down unacceptably.

Uninstalling the

callback

You can uninstall a previously installed callback function by simply calling

the function AimmsInterruptCallbackInstall with a null pointer as the call-

back function argument. Note that it is even possible to uninstall a callback

function—or modify a callback function—during a call (by Aimms) to the cur-

rently installed callback function.

Chapter 34. The Aimms Programming Interface 603

Pending

interrupts

When Aimms calls a function within an external DLL, this would normally pre-

vent Aimms from servicing end-user requests to update end-user pages, modify

model data, or even to interrupt the execution of the current Aimms execution,

i.e. the execution of your function. This is not a problem when a call to your

function only takes a small amount of time to execute, but might be unaccept-

able when your function takes a long time to complete. In such situations,

you might consider to insert calls to the function AimmsInterruptPending at

strategic places in your source code. With it, you allow Aimms to service such

requests, and to call any callback functions installed by other DLLs. On return,

AimmsInterruptPending returns

� AIMMSAPI TRUE when Aimms received a request to interrupt the current

execution, or

� AIMMSAPI FALSE when there was no interrupt request.

When an interrupt was requested you should abort the execution of your ex-

ternal function as soon as possible.

34.12 Model Edit Functions

Aimms Model

Edit Functions

The Aimms API supports Model Edit Functions allowing external applications

to inspect, modify, or even construct Aimms models. In this section, the

model edit functions are introduced using a small example. Subsequently,

after briefly describing the relation to runtime libraries plus the conventions

used, several tables containing model edit functions, are presented and de-

scribed. Finally, the limitations of using model edit functions through the

Aimms API are described briefly.

Small exampleIn the following example, an element parameter nextCity is created with a

simple definition. Model editing is done using model editor handles. These

handles provide access to the identifiers in the model, and should not be con-

fused with the data handles and procedure handles described elsewhere in this

chapter.

The model editor handle int dsMEH refers to a declaration section, whereas the

model editor handle int ncMEH refers to the parameter nextCity.

1 AimmsMeCreateNode("nextCity", AIMMSAPI_ME_IDTYPE_ELEMENT_PARAMETER, dsMEH, 0, &ncMEH);

2 AimmsMeSetAttribute(ncMEH, AIMMSAPI_ME_ATTR_INDEX_DOMAIN, "i");

3 AimmsMeSetAttribute(ncMEH, AIMMSAPI_ME_ATTR_RANGE, "Cities");

4 AimmsMeSetAttribute(ncMEH, AIMMSAPI_ME_ATTR_DEFINITION,

"if i == last(Cities) then first(Cities) "

"else Element(Cities,ord(i)+1) endif");

5 AimmsMeCompile(ncMEH);

6 AimmsMeCloseNode(ncMEH);

A line by line explanation of this example follows below. For the sake of

brevity, error handling, such as suggested in Section 34.8, is omitted here.

Chapter 34. The Aimms Programming Interface 604

� Line 1: Creates an element parameter named nextCity. The fourth argu-

ment of AimmsMeCreateNode is the position within the section. A 0 indi-

cates that it should be placed at the end of the section.

� Lines 2-4: Set the attributes IndexDomain, Range, and Definition of this

parameter. Note that only the text is passed, these calls do not use the

Aimms compiler to compile them.

� Line 5: Compiles the element parameter nextCity. Only now is the text

of the attributes actually checked and compiled.

� Line 6: The function AimmsMeCloseHandle de-allocates the handle ncMEH

but the created identifier nextCity remains in the model.

Relation to

runtime

libraries

Section 35.6 describes the model editing facility available in the Aimms lan-

guage using runtime libraries. The advantage of using the Aimms API, instead

of runtime libraries, for model editing is that the entire model can be edited,

including the main model, provided that there is no Aimms procedure active

while executing a model edit function from within the Aimms API. The cost is

that multiple languages have to be used.

Conventions for

model edit

functions

The model edit functions follow the following conventions:

� Each function starts with AimmsMe.

� These functions return either AIMMSAPI SUCCESS or AIMMSAPI FAILURE.

� A model editor handle MEH has to be closed by either AimmsMeCloseNode or

AimmsMeDestroyNode.

� No distinction is made between identifiers and nodes in the model editor

tree, they are both called ”nodes”.

� String output arguments use the type AimmsString as is explained in Sec-

tion 34.2.

Model rootsTable 34.12 lists the functions available for manipulating model editor roots.

The number of roots available for model editing is stored by the function

AimmsMeRootCount(count) in its output argument count. Note that count is al-

ways at least 1, since there is always the main model. The root Predeclared

identifiers is not included in this count. As the root Predeclared identifiers

and its sub-nodes cannot be changed, it is not included in this count. To ob-

tain a handle for an existing root, the function int AimmsMeOpenRoot(pos, MEH)

can be used. A model editor handle is then created and stored in MEH. If pos

is 0, the main model root is opened. If pos is in the range { 1 .. count-1

} then a library is opened. If pos equals count then the predeclared root

Predeclared identifiers is opened. The root Predeclared identifiers and its

sub-nodes are read only. In order to create a new runtime library the function

AimmsMeCreateRuntimeLibrary(name, prefix, MEH) can be used. The position of

the new library is at the end of the existing libraries.

Chapter 34. The Aimms Programming Interface 605

int AimmsMeRootCount(int *count)

int AimmsMeOpenRoot(int pos, int *MEH)

int AimmsMeCreateRuntimeLibrary(char *name, char *prefix, int *MEH)

int AimmsMeNodeExists(char*name, int nMEH, int *exists)

int AimmsMeOpenNode(char*name, int nMEH, int *MEH)

int AimmsMeCreateNode(char *name, int idtype, int pMEH, int pos, int *MEH)

int AimmsMeCloseNode(int MEH)

int AimmsMeDestroyNode(int MEH)

Table 34.12: Model edit functions for roots and nodes

Opening or

creating a node

The function AimmsMeNodeExists(name, nMEH, exists) can be used to test if an

identifier exists. This function returns AIMMSAPI FAILURE when nMEH does not

indicate a valid namespace, or when name is not a valid identifier name. If

the name is a declared identifier in namespace nMEH, then exists is set to 1,

and if not to 0. The function AimmsMeOpenNode(name, nMEH, MEH) creates a han-

dle to the node with name name in the namespace determined by the model

editor handle nMEH. If successful, a model editor handle is created and stored

in the output argument MEH. If nMEH equals AIMMSAPI NULL HANDLE NUMBER, then

the namespace of the main model is used. A new node with name name and

type idtype can be created using the function AimmsMeCreateNode(name, idtype,

pMEH, pos, MEH). The value of idtype must be one of the constants defined in

aimmsapi.h starting with AIMMSAPI ME IDTYPE . The parent node of the new node

is determined by the model editor handle pMEH. The value pos determines the

new position of the node within the parent node. If pos is outside the range of

existing children {1..n}, the new identifier is placed at the end, otherwise the

existing children at positions pos .. n are shifted to positions pos+1 .. n+1 where

n was the old number of children of pMEH.

Closing or

destroying a

node

Table 34.12 not only lists the functions to open or create nodes, but also

shows the complementary functions to close or destroy nodes. The function

AimmsMeCloseNode(MEH) de-allocates the handle MEH but leaves the correspond-

ing node in the model intact. The function AimmsMeDestroyNode(MEH) destroys

the node corresponding to MEH and all nodes below that node in the model, and

subsequently deallocates the handle MEH.

The name of a

node

Table 34.13 lists the functions that return the name of a node. The func-

tion AimmsMeName(MEH, name) stores the name of the node to which MEH refers

without any prefixes in the output argument name. The function AimmsMe-

RelativeName(MEH, rMEH, rName) stores the name of MEH such as it should be

used from within the node rMEH in the output argument rName. A fully qualified

name is stored in rName when MEH is the AIMMSAPI ME NULL HANDLE NUMBER handle.

Chapter 34. The Aimms Programming Interface 606

int AimmsMeName(int MEH, AimmsString *name)

int AimmsMeRelativeName(int MEH, int rMEH, AimmsString *rName)

int AimmsMeType(int MEH, int *meType)

int AimmsMeTypeName(int typeNo, AimmsString *tName)

int AimmsMeAllowedChildTypes(int MEH, int *typeBuf, int typeBufsize, int *maxTypes)

Table 34.13: Model edit functions for name and type

The type of a

node

In addition, Table 34.13 lists the functions for the type of a node. The function

AimmsMeType(MEH, meType) stores the type of the node MEH in the output argu-

ment meType. The value of meType refers to one of the constants in aimmsapi.h

starting with AIMMSAPI ME IDTYPE . The function AimmsMeAllowedChildTypes(MEH,

typeBuf, typeBufsize, maxTypes) stores the types of children allowed below

the node MEH in the buffer typeBuf while respecting its size typeBufsize. The

maximum number of child types below MEH is stored in the output argument

maxTypes. The utility function AimmsMeTypeName(typeNo, tName) stores the name

of the type typeNo in the output argument tName.

int AimmsMeGetAttribute(int MEH, int attr, AimmsString *text)

int AimmsMeSetAttribute(int MEH, int attr, const char *txt)

int AimmsMeAttributes(int MEH, int attrsBuf[], int attrBufSize, int *maxNoAttrs)

int AimmsMeAttributeName(int attr, AimmsString *name)

Table 34.14: Model edit functions for attributes

The attributes

of a node

Table 34.14 lists the functions available for handling the attributes of a node.

All attributes correspond to constants in the aimmsapi.h file. These constants

start with AIMMSAPI ME ATTR . The function AimmsMeGetAttribute(MEH,attr,text)

stores the contents of attribute attr of node MEH in the output argument text.

The function AimmsMeSetAttribute(MEH,attr,txt) sets the contents of attribute

attr of node MEH to txt. This function will fail if attribute attr is not appli-

cable to identifier MEH, but the text itself is not checked for errors. The func-

tion AimmsMeAttributes(MEH, attrsBuf, attrBufSize, maxNoAttrs) provides the

applicable attributes for these two functions. It will store the constants corre-

sponding to the attributes available to node MEH in attrBuf while respecting the

size of that buffer attrBufSize. The maximum number of attributes available

to node MEH is stored in maxNoAttrs. The function AimmsMeAttributeName(attr,

name) stores the name of attr in name.

Basic node

manipulations

The functions that support changing the aspects of a node such as name,

location, and type of a node are also shown in Table 34.15. The function

AimmsMeNodeRename(MEH, newName) changes the name of a node, and the name-

change is applied to the attribute texts that reference this node. An entry

is appended to the name change file if the node is not a runtime node. The

function AimmsMeNodeMove(MEH, pMEH, pos) moves the node MEH to child position

Chapter 34. The Aimms Programming Interface 607

int AimmsMeNodeRename(int MEH, char *newName)

int AimmsMeNodeMove(int MEH, int pMEH, int pos)

int AimmsMeNodeChangeType(int MEH, int newType)

int AimmsMeNodeAllowedTypes(int MEH, int* typeBuf, int typeBufsize, int *maxNoTypes)

Table 34.15: Model edit functions for node manipulations

pos of node pMEH. If this results in a change of namespace, the corresponding

namechange is applied to the attributes that reference this node. In addition,

an entry is appended to the corresponding name change file if this node is not

a runtime node. Moves from one library to another are not supported, nor is

a move in or out of the main model. The function AimmsMeNodeChangeType(MEH,

newType) changes the type of a node. It will retain available attributes whenever

possible. The function AimmsMeNodeAllowedTypes can be used to query which

types, if any, a particular node can be changed to. The function AimmsMeNode-

AllowedTypes(MEH, typeBuf, typeBufsize, maxNoTypes) will store all the types

into which node MEH can be changed in a buffer typeBuf that respects the size

typeBufsize. The maximum number of types into which MEH can be changed is

stored in maxNoTypes.

Tree walk of the

model

Table 34.16 lists the functions that permit walking all nodes in the model edi-

tor tree. The function AimmsMeParent(MEH, pMEH) creates a model editor handle

to the parent of MEH, and stores this handle in the output argument pMEH. The

function AimmsMeFirst(MEH, fMEH) creates a model editor handle to the first

child of MEH, and stores this handle in the output argument fMEH. The function

AimmsMeNext(MEH, nMEH) creates a model editor handle to the node next to MEH,

and stores this handle in the output argument nMEH. If such a parent, first child,

or next node does not exist the AIMMSAPI ME NULL HANDLE NUMBER handle is stored

in the output argument although the corresponding function does not fail.

int AimmsMeParent(int MEH, int *pMEH)

int AimmsMeFirst(int MEH, int *fMEH)

int AimmsMeNext(int MEH, int *nMEH)

int AimmsMeImportNode(int MEH, char *fn, const char *pwd)

int AimmsMeExportNode(int MEH, char *fn, const char *pwd)

Table 34.16: Reading, writing and tree walking a model editor tree

Reading and

writing

(portions of) a

model

The functions that allow the reading of an Aimms section from a file, or writing

a section to a file are also listed in Table 34.16. They use the Text .ams file for-

mat. The function AimmsMeImportNode(MEH, fn, pwd) reads a file fn and stores

the resulting model structure at node MEH. The function AimmsMeExportNode(MEH,

fn, pwd) writes the model structure at node MEH to file fn. If MEH does not refer

to an Aimms section, module, library, or model, the functions AimmsMeImportNode

and AimmsMeExportNode will fail.

Chapter 34. The Aimms Programming Interface 608

CompilationThe model edit functions available for compilation and model status queries

are listed in Table 34.17. The central function AimmsMeCompile (MEH) compiles

the node MEH and all its sub-nodes. The entire application (main model and li-

braries) is compiled if the argument MEH equals AIMMSAPI ME NULL HANDLE NUMBER.

If this compilation step is successful then the procedures are runnable. The

function AimmsMeIsRunnable(MEH, r) stores 1 in the output argument r if the

procedure referenced by MEH is runnable. The function AimmsMeIsReadOnly(MEH,

r) stores 1 in the output argument r if the node resides in a read-only library,

such as the predeclared identifiers, or a library that was read from a read

only file.

int AimmsMeCompile(int MEH)

int AimmsMeIsRunnable(int MEH, int *r)

int AimmsMeIsReadOnly(int MEH, int *r)

Table 34.17: Model edit functions for compilation and status queries

LimitationsThe following limitations apply to model edit functions from within the Aimms

API:

1. The SourceFile attribute is not supported.

2. The current maximum number of identifiers is thirty thousand.

Further, when an Aimms procedure is running, the identifiers in the main ap-

plication can not be modified as explained in Section 35.6.

Chapter 35

Model Structure and Modules

Model and

sections

This chapter discusses the common structuring components of a model, name-

ly the main model and model sections. With the use of sections, you can pro-

vide depth to the model tree in the Aimms Model Explorer, which allows you

to structure your model in any logical manner that makes sense to you. Impos-

ing a clear and logical structure to your model will strongly add to the overall

maintainability of your modeling application.

ModulesThe next concept introduced in this chapter is that of a module, which is basi-

cally a model section with its own, separate, namespace. Modules allow you to

share sections of model source between multiple models, without the risk of

running into name clashes. Aimms uses modules to implement those parts of

its functionality that can be best expressed in the Aimms language itself. The

available Aimms system modules include

� a (customizable) implementation of the outer approximation algorithm,

� a scenario generation module for stochastic programming, and

� sets of constants used in the graphical 2D- and 3D-chart objects.

Library modulesFinally, this chapter discusses the concept of a library module, which is the

source module associated with a library project (see Section 3.1 of the User’s

Guide). Library modules can only be added to an Aimms model through the

Library Manager, and are always displayed as a separate root in the model

tree.

35.1 Introduction

Support for

large models

When a model grows larger, the need for a clear and logical storage structure

of all its constituting components also grows. In the absence of such a log-

ical storage structure, you will find that it becomes increasingly hard to find

your way in the model source because of the huge amount of information it

contains. To support you in structuring your model, Aimms offers several de-

velopment tools and language constructs just for this purpose.

Chapter 35. Model Structure and Modules 610

The model treeTo support you in structuring your model, Aimms lets you organize all iden-

tifier declarations and procedures of your model in the form of a tree, called

the model tree. You can access the model tree in a graphical manner, using the

Model Explorer tool (see also Chapter 4 of the User’s Guide). Several language

constructs of the Aimms language, such as collections of identifiers declara-

tions, or the procedures and functions included in your model, are visible as

separate nodes within the model tree.

Main model

node

All model declarations in an Aimms model are located underneath the root

node of the model tree, the Model node. The Model node is always present in

the Model Explorer, even when you start a new Aimms project, and cannot be

deleted. For the Model node itself, you can specify several attributes that have

a global impact, such as the licensing arrangements for your model, or the

unit convention (if any) that is applicable to your application as a whole. The

attributes of the Model node are discussed in full detail in Section 35.2.

Model sections

. . .

As you start adding identifier declarations, procedures and functions to a new

model, you will soon notice that storing all these declarations directly under-

neath the Model node will result in a nearly unmanageable list of declarations.

Finding information in such a (linear) list soon becomes a daunting task. To

support you in adding additional structure to your model tree Aimms provides

Section nodes, which allow you to add depth to the model tree, much like

directories add depth to a file system.

. . . to structure a

model

By adding Section nodes with meaningful names to the model tree, and stor-

ing all model declarations that you find relevant for these section underneath

them, you can impose any logical structure on your model tree that you find

useful. Because Aimms allows identifiers to be used prior to their declaration,

you do not even have to worry about the declaration order when you reorga-

nize the model tree in this manner.

Separate source

file

In addition to providing the structuring capabilities described above, the con-

tents of a Section node can also be stored in a separate source file. You can

import the contents of such a source file into a section of another model, or

permanently link the contents of a section to the contents of the source file.

This allows you to reuse part of one model within similar applications. This

method of sharing functionality, however, has its limitations. Name clashes

can occur when an imported section redeclares an identifier already declared

in the main model. If you run into these limitations, you are advised to use the

Module concept discussed below.

Chapter 35. Model Structure and Modules 611

Section

attributes

The attributes of a Section node allow you to specify such issues as whether

its contents needs to be stored in a separate source file, and if the usage of

such a source file needs to be licensed. The attributes of a Section node are

discussed in full detail in Section 35.3.

Complex

modeling

environments

When the development of modeling applications becomes the core business of

an organization, this will almost certainly lead to a multitude of related mod-

eling projects, collaborating developers, and various end-user types, all sub-

ject to frequent changes over time. Projects evolve naturally due to feedback

from end-users, changing application environments, and rotating personnel.

Changes in the pool of model developers are inevitable, and may cause major

fluctuations in application knowledge, experience, and modeling skills. End-

users of applications also change jobs, which may result in new requirements

and customization requests from the newcomers.

Need for

modularization

In such a dynamic modeling world, the exchange of information becomes a cru-

cial element to avoid unnecessary duplication. When projects are customized

for different end-users, there is apt to be quite a bit of commonality between

these projects. If these commonalities are not exchanged properly, there will

be multiple and differing versions of essentially the same model segments.

As a result, extensive and costly human resources will be needed to maintain

these multiple related models. Modularization can help to overcome these

problems.

Collections of

functions and

procedures

In Chapter 10 you were introduced to functions and procedures as the initial

tools to modularize the functionality within an Aimms project. As explained

above, collections of functions and procedures, along with the required iden-

tifier declarations, can be stored in model sections. These can be exported to

separate .ams files, and can subsequently be imported by, or linked into, any

other Aimms project. Every time an Aimms project is started containing a sec-

tion link, it will automatically pick up the latest version of the file. This means

that when such a collection of functions, procedures and identifier declara-

tions at a customer’s site need to be updated, only their corresponding files

need to be replaced.

Name clashesOne problem that you are likely to run into with the above approach, however,

is the occurrence of name clashes. Some of the identifier names of procedures,

functions, and identifiers in a model section may also occur in the model in

which the section is to be included. Such name clashes will effectively prevent

Aimms from importing or linking the section into your model. A possible so-

lution to this problem would be to rename the offending identifiers, either in

your model or in the section to be included. However, using either approach,

the same problems are likely to return when you get an updated version of the

included model section.

Chapter 35. Model Structure and Modules 612

Modules . . .A more structural solution to the name clash problem is provided by the con-

cept of modules in Aimms, which allow you to share common model source

into multiple models, without the risk of running into name clashes. Modules

are inserted into the model tree by means of Module nodes. These nodes are

essentially Section nodes with a separate namespace, along with attributes to

manipulate the global model namespace. The attributes of Module nodes are

discussed in full detail in Section 35.4.

. . . avoid name

clashes

Like Section nodes, Module nodes can be exported to a separate source file,

which can be imported or linked into another model. However, because all

identifiers declared within the Module node only live in its associated name-

space, importing a module into another project will not lead to name clashes

anymore.

Dividing a

project into

sub-projects. . .

When a project becomes larger, the operational demands and sheer amount

of work involved in implementing the project, may become too demanding for

a single modeler to keep up with. It is then time to divide the project into a

number of manageable sub-projects, on which individual developers can work

more or less independently.

. . . unsuitable

for modules

Modules, as discussed above, are not necessarily the most suitable instrument

to facilitate a division into sub-projects. This is mainly due to the fact that the

module concept does not allow identifiers in the module to be strictly private

to that module. Because of this, other developers can, in principle, refer to all

identifiers in the module, and, consequently, the chances of a single structural

change in any of the modules breaking the entire application are considerable.

Library projectsTo address the problem of allowing multiple developers to work indepen-

dently on manageable sub-projects of a big Aimms project more thoroughly,

Aimms supports the concept of library projects. Library projects go far beyond

modules—they do not only support independent model development, but a de-

veloper can also create end-user pages and menus as part of the library project.

When a library project is included in a main project, the associated overall ap-

plication can then be composed by combining the model source, pages, and

menus created as part of all its included libraries. Library projects are dis-

cussed in full detail in Chapter 3 of the User’s Guide.

Library modulesLibrary modules are the source code modules associated with library projects.

They can only be added to your model through the Library Manager dis-

cussed in Section 3.1 of the User’s Guide. Aimms will insert library modules

into the model tree as a separate LibraryModule root node. The attributes of

LibraryModule nodes are discussed in full detail in Section 35.5.

Chapter 35. Model Structure and Modules 613

Library

interface

As with ordinary modules, library modules have an associated namespace,

which helps to avoid name clashes when including a library project into an

Aimms project. In addition, however, library modules provide a public inter-

face to the rest of the model. Within the library project, all identifiers declared

in the library can be freely used in the source of the library module, its pages

and menus. The main project, and all other library projects included in the

main project, however, can only access the identifiers that are part of the in-

terface of the library. This allows a developer of a library to freely change any

declaration that is not part of the library interface, without the risk of breaking

the entire application.

35.2 Model declaration and attributes

Model

declaration and

attributes

The Model node defines the root node of the entire model tree associated with

an Aimms modeling project. The attributes of the main Model node are listed in

Table 35.1. All attributes of the Model node have a global impact on the entire

modeling project.

Attribute Value-type See also

page

Convention convention, element-parameter

Comment comment string 19

Table 35.1: Model attributes

The Convention

attribute

With the Convention attribute you can indicate that all I/O with respect to iden-

tifiers in your model is to take place according to the unit convention specified

in this attribute. The value of this attribute must be either a direct reference

to a convention declared in your model, an element parameter into the set

AllConventions or a string parameter holding the name of a convention within

your model. You can find more detailed information about unit conventions

and their usage in Section 32.8

35.3 Section declaration and attributes

Section

declaration and

attributes

Section nodes provide depth to the model tree, and offer facilities to store

parts of your model in separate source files. A Section node is always a child

of the Model node, of another Section node, or of a Module node. The attributes

of Section nodes are listed in Table 35.2.

Chapter 35. Model Structure and Modules 614

Attribute Value-type See also

page

SourceFile string

Property NoSave

Comment comment string 19

Table 35.2: Section attributes

The SourceFile

attribute

With the SourceFile attribute you can indicate that the contents of a Section

node in your model is linked to the specified source file. As a consequence,

Aimms will read the contents of the Section node from the specified file during

compilation of the model. Any modifications to the part of the model con-

tained in such a Section node will also be stored in this source file when you

save the model. When you select an existing source file for the SourceFile at-

tribute of a Section node in the Model Explorer (see also Section 4.2 of the

User’s Guide), any previous contents of that section will be lost.

The Property

attribute

In the property attribute the NoSave property can be specified. When the prop-

erty NoSave is set, none of the identifiers declared in the section will be saved

in cases.

Section names

as identifier

subsets

Whenever you add a Section node to the model tree, the name of the Section

node (with spaces replaced by underscores), will also be available within your

model as an implicit subset of the predeclared set AllIdentifiers. The con-

tents of this subset is fixed, and is defined as the set of all identifiers declared

within the subtree corresponding to the Section node. You can use this im-

plicitly created set, for instance, in the EMPTY statement to empty all section

identifiers using only a single statement.

35.4 Module declaration and attributes

Module

declaration and

attributes

Module nodes create a subtree of the model tree along with a separate name-

space for all identifier declarations in that subtree. Like Section nodes, the

model contents associated with a Module node can be stored in a separate

source file. A Module node is always a child of the main Model node, of a Section

node, or of another Module node. The attributes of Module nodes are listed in

Table 35.3.

The SourceFile

attribute

Like with ordinary Section nodes, the contents of a Module node can also be

stored in a separate source file, dynamically linked into a Module node in your

model through the use of the SourceFile attribute.

Chapter 35. Model Structure and Modules 615

Attribute Value-type See also

page

SourceFile string 614

Property NoSave 614

Prefix identifier

Public identifier-list

Protected identifier-list

Comment comment string 19

Table 35.3: Module attributes

Modules and

namespaces

The distinguishing feature of modules is that each module is supplied with a

separate namespace. This means that all identifiers, procedures and functions

declared within a module are, without using the module prefix, only visible

within that module. In addition, within a module it is possible to redeclare

identifier names that have already been declared outside the module.

Nested modulesModules in an Aimms model can be nested. This implies that with each Aimms

model containing one or more Module nodes, one can associate a corresponding

tree of nested namespaces. This tree of namespaces starts with the global

namespace of the Model node as the root node. As a consequence, you can

associate a path of namespaces with every identifier, procedure or function

declaration in the model tree. This path of namespaces starts with the global

namespace down to the namespace associated with the module in which the

declaration is contained.

Scoping rulesWhen Aimms encounters an identifier reference during the compilation of a

procedure or function body or in one of the attributes of an identifier dec-

laration, Aimms will search for a declaration of the identifier at hand in the

following order.

� If the referenced identifier is declared in the namespace associated with

the Module (or Model) in which the procedure, function or identifier is

contained, Aimms will use that particular declaration.

� If the referenced identifier cannot be found, Aimms will repeatedly search

the next higher namespace until a declaration for the identifier is found.

ConsequencesAs a result of these scoping rules, whenever the corresponding identifier name

is referenced within a module, Aimms has will always to refer to the identifier

declaration within the same module rather than to a possibly contradicting

declaration for an identifier with the same name anywhere higher up, or side-

ways, in the model tree. This feature enables multiple developers to work truly

independently on different modules used within a model.

Chapter 35. Model Structure and Modules 616

ExampleConsider the following model with two (nested) modules, called Module1 and

Module2. The following can be concluded by applying the scoping rules listed

Model TransportModel {

...

Parameter Distance {

IndexDomain : (i,j);

}

Parameter ShortestDistance;

...

Module Module1 {

Prefix : m1;

...

Parameter ShortestDistance;

...

Procedure ComputeShortestDistance {

Body : {

ShortestDistance :=

min((i,j), Distance(i,j));

}

}

...

Module Module2 {

Prefix : m2;

...

Parameter Distance {

Definition : ShortestDistance;

}

...

}

...

}

...

}

above.

� The reference to ShortestDistance in the procedure ComputeShortestDist-

ance in the module Module1 refers to the declaration ShortestDistance

within that module, and not to the declaration ShortestDistance in the

main model.

� The reference to Distance in the procedure ComputeShortestDistance in

the module Module1 refers to the declaration Distance(i,j) in the main

model, and not to the scalar declaration Distance within the nested mod-

ule Module2.

� The reference to ShortestDistance in the module Module2 refers to the

declaration ShortestDistance within the module Module1, and not to the

declaration ShortestDistance in the main model.

� The parameter Distance in the module Module2 does not conflict with the

declaration of Distance(i,j) in the main model, because the former is

only visible within the scope of the module Module2.

Chapter 35. Model Structure and Modules 617

Accessing

protected

identifiers

The separate namespace of every module actively prevents identifiers within

a module from being “seen” outside the module. For this reason, identifiers

declared within a module are also referred to as protected identifiers. Aimms,

however, still allows you to reference protected identifiers anywhere else in

your model through the use of the namespace resolution operator ::. In com-

bination with a module-specific prefix, the :: operator accurately lets you in-

dicate that you are referring to a protected identifier declared in the particular

module associated with the prefix.

The Prefix

attribute

With the mandatory Prefix attribute of a Module node, you must specify a

module-specific prefix to be used in conjunction with the :: operator. The

value of the Prefix attribute should be a unique name within the namespace of

the surrounding module (or main model), and will subsequently be added to

this namespace. In conjunction with the :: operator the prefix unambiguously

identifies the namespace from which a particular identifier should be taken.

The ::

namespace

resolution

operator

With the namespace resolution operator :: you instruct Aimms to look for the

identifier directly following the :: operator within the module associated with

the prefix in front it. The :: operator may be optionally surrounded with

spaces. By stacked use of the :: operator you can indicate that you want to

refer to an identifier declared in a nested module. Each next prefix should

refer to the Prefix attribute of the module declared directly within the module

associated with the previous prefix.

Using global

identifiers in

ModuleS

If you want to refer to an identifier in the main model, that is also declared

elsewhere along the path from the current module to the main model, you can

use the :: operator without a prefix. This indicates to Aimms that you are

interested in an identifier declared in the global namespace associated with

the main model.

ExamplesConsider the model outlined in the example above.

� Within the main model, a reference m1::ShortestDistance would refer to

the parameter ShortestDistance declared within the module Module1, and

not to the parameter ShortestDistance declared in the main model itself.

� Within the main model, a reference m1::m2::Distance would refer to the

parameter Distance declared in the module Module2 nested within the

module Module1.

� Within the module Module1, a reference to ::ShortestDistance would refer

to the parameter ShortestDistance declared in the main model, and not

to the parameter ShortestDistance declared in Module1.

� Within the module Module2, a reference to ::Distance would refer to the

parameter Distance declared in the main model, and not to the parameter

Distance declared in Module2.

Chapter 35. Model Structure and Modules 618

The following model outline, which is a variation of the model outline of the

previous example, further illustrates the consequences of the use of the ::

operator.

Model TransportModel {

...

Parameter Distance {

IndexDomain : (i,j);

}

Parameter ShortestDistance;

...

Module Module1 {

Prefix : m1;

...

Parameter ShortestDistance;

...

Procedure ComputeShortestDistance {

Body : {

::ShortestDistance :=

min((i,j), m2::Distance(i,j));

}

}

...

Module Module2 {

Prefix : m2;

...

Parameter Distance {

Definition : ::ShortestDistance;

}

...

}

...

}

...

}

The Public

attribute

Through the Public attribute you can indicate that a set of identifiers declared

within the module is public. These identifiers can then be referenced without

the :: operator within the importing module (or main model). The value of the

Public attribute must be a constant set expression. You might consider the

identifiers specified in the Public attribute as the public interface of a mod-

ule. As a result, Aimms will effectively add the names of these identifiers to

the namespace of the importing module, as if they were declared within the

importing module itself.

ExampleConsider the model outline of the first example, and assume that the declara-

tion of module Module2 is augmented as follows.

Module Module2 {

Prefix : m2;

Public : {

data { Distance }

}

...

Parameter Distance {

Chapter 35. Model Structure and Modules 619

Definition : ShortestDistance;

}

...

}

As a result of the Public attribute, Distance will be added to the namespace of

Module1, and the compilation of the procedure ComputeShortestDistance will fail

because Distance will now refer the scalar declaration in Module2 rather than

to the 2-dimensional declaration in the main model. In addition, it is possible,

within the main model, to refer to the parameter Distance in Module2 through

the expression m1::Distance, because Distance has been effectively added to

the namespace of module Module1.

Propagation

of public

identifiers

When an identifier is added to the Public attribute of an imported module, it

is, as explained above, effectively added to the namespace of the importing

module. This creates the possibility to add a public identifier of an imported

module to the Public attribute of the importing module as well. In this way

you can propagate the public character of such an identifier to the next outer

namespace. For example, by adding the identifier Distance in the example

above, to the Public attribute of the module Module1 as well, it would also

become public in the main model. Obviously, in this case, adding Distance

to the Public attribute of Module1 would cause a name clash with the global

identifier Distance(i,j).

The Protected

attribute

Once you import a module into an existing Aimms application, one or more

identifiers in the public interface of the imported module can cause name

clashes with existing identifiers in the application, like Distance in the example

of previous paragraph. When you run into such a problem, Aimms allows you

to override the Public status of one or more identifiers of a module through its

Protected attribute. The value of the Protected attribute must be a constant set

expression, and its contents must be a subset of the set of identifiers specified

in the Public attribute. By adding an identifier to the Protected attribute, it is,

again, only accessible outside of the module by using the :: operator.

Public versus

Protected

responsibilities

The responsibilities for specifying the Public and Protected attributes are sub-

stantially different, and result in a different storage of the values of these

attributes. This is similar to the SouceFile-related attributes discussed earlier

in this chapter. The following rules apply.

� The Public attribute is intended for the developer of a module to define

a public interface to the module. If the module is stored in a separate

.amb file, to be imported by other Aimms applications, the contents of the

Public attribute is stored inside the module-specific .amb file.

� The Protected attribute is intended for the user of a module to override

the public character of certain identifiers as specified by the developer of

the module. As the contents of the Protected attribute is not an integral

part of the module, but may be specified differently by every user of the

Chapter 35. Model Structure and Modules 620

module, it is never stored in a module-specific .amb file, but rather in the

importing module or main model.

Unique global

representation

For each identifier in an Aimms model, there is a unique global representa-

tion. If the identifier is contained in the global namespace of the main model,

the global representation is the identifier name itself. If an identifier is only

contained in the namespace of a particular module, its unique representation

based on the namespace Prefix of the module and the :: operator. Thus, for

the first example of this section (without Public attributes), the unique global

representations of all identifiers are:

� Distance(i,j)

� ShortestDistance

� m1::ShortestDistance

� m1::ComputeShortestDistance

� m1::m2::Distance

With the Public attribute of Module2 defined as in the previous example, the

unique global representation of the parameter Distance in Module2 becomes

m1::Distance, as it effectively causes Distance to be contained in the namespace

of Module1.

Display and

data transfer

Whenever Aimms is requested to DISPLAY or WRITE the contents of one or more

identifiers in your model, it will use the unique global representation discussed

in the previous paragraph. Also, when you READ data from a file, Aimms expects

all identifiers for which data is provided in the file to be identified by their

unique global representation.

35.5 LibraryModule declaration and attributes

LibraryModule

declaration and

attributes

LibraryModule nodes create a separate tree in the model tree along with a sep-

arate namespace for all identifier declarations in that subtree. The model con-

tents associated with a LibraryModule is always stored in a separate source file.

Contrary to Section and Module nodes, the name of this source file cannot be

specified in the LibraryModule declaration. Rather, it is specified when you add

the library to your project using the Library Manager, as discussed in Sec-

tion 3.1 of the User’s Guide. The attributes of LibraryModule nodes are listed

in Table 35.4.

Library modules

and

namespaces

Like a normal module, each LibraryModule is supplied with a separate names-

pace. Compared to normal modules, however, the visibility rules for identifiers

in a library modules are different. They are more in line with the intended use

of libraries, i.e. to enable a single developer to work independently on the

model source of a library.

Chapter 35. Model Structure and Modules 621

Attribute Value-type See also

page

Prefix identifier

Interface identifier-list

Property NoSave 614

Comment comment string 19

Table 35.4: LibraryModule attributes

The Interface

attribute

Through the Interface attribute of a LibraryModule you can specify the list of

identifiers in the module that you want to be part of its public interface. Only

identifiers in the library interface can be accessed in model declarations, pages

and menu items that are not part of the library at hand. Library identifiers not

in the interface are strictly private to the library, and can never be used outside

of the library.

The Prefix

attribute

With the mandatory Prefix attribute of a LibraryModule node, you must specify

a module-specific prefix to be used in conjunction with the :: operator. The

value of the Prefix attribute should be a unique name within the main model.

No propagation

to global

namespace

Even though identifiers in the interface of the library are visible outside of the

library, Aimms always requires the use of the library prefix to reference such

identifiers. Library modules do not support the Public attribute of ordinary

modules to propagate identifiers to the global namespace.

Library

initialization

and termination

When creating a new library, Aimms will automatically add LibraryInitializat-

ion, PostLibraryInitialization, PreLibraryTermination and LibraryTermination

procedures to it. These procedures will be executed during the initialization

and termination of your model. The distinction between these steps are ex-

plained in more detail in Section 25.1.

35.6 Runtime Libraries and the Model Edit Functions

Runtime libraries and the Aimms Model Edit Functions permit applications to

adapt to modern flexibility requirements of the model; at runtime you can

create identifiers and subsequently use them. A few use cases, in which the

need for flexibility in the model grows, are briefly outlined below.

Use case:

automating

modeling tasks

You may want to improve the maintainability of your application by

� Generating similar statements that act on dynamic selections of identi-

fiers, or

Chapter 35. Model Structure and Modules 622

� Generate necessary parameters and database table identifiers with their

mapping attributes by querying a relational database schema when set-

ting up a database link with your model.

Use case:

Cooperative

model

development

Another example, in cooperative model development, a model is developed

together with the users of that model. For instance, an existing application

framework is demonstrated to the users and, subsequently, the suggestions

from these users are taken into account. A suggestion might be to add struc-

tural nodes or arcs, or might be to add a particular restriction on existing

nodes and arcs.

Use case:

Proprietary user

knowledge

Further, not all structural information may be available at the time of model

development; some users may need to add their proprietary knowledge to the

model at runtime. Examples of such proprietary knowledge are:

� Pricing rules for the valuation of portfolios.

� Blending rules for the prediction of property values of blends.

Use case: ad hoc

user queries

A final example of a modern flexibility requirement is a user who has addi-

tional questions only when the results are actually presented. Such a user

wants to question the model in order to understand a particular result. This

person is only able to formulate the question after the unexpected result

presents itself.

Runtime editing

of identifiers

In the above use cases, applications create, manipulate, check, use, and destroy

Aimms identifiers at runtime. Such operations are performed by the Model Edit

Functions. Such applications need to:

1. Have a place to store these Aimms identifiers and to retrieve them from.

Such a place is called an Aimms runtime library.

2. Have functions and procedures available to create, modify, check, and

destroy these Aimms identifiers. Together, these functions and proce-

dures form the Model Edit Functions.

3. Have a way to use these identifiers inside the model.

4. And be able to continue execution in the presence of errors. This fourth re-

quirement is an essential aspect of all the other requirements and is cen-

tral to the design of the Aimms Runtime libraries and Aimms Model Edit

Functions. Global and local error handling is described in Section 8.4.1.

Runtime

identifiers and

libraries

The identifiers created, modified, checked, used, and destroyed at runtime

are called runtime identifiers. These runtime identifiers are declared within

a runtime library. A runtime library is itself also a runtime identifier: it can

also be created, modified, checked, used, and destroyed at runtime. A runtime

identifier can have any Aimms type, except for quantity.

Chapter 35. Model Structure and Modules 623

Separation

between main

application and

runtime

libraries

Model edit functions are only allowed to operate on runtime identifiers. Run-

time identifiers exist at runtime but do not yet exist at compile time; the names

of runtime identifiers cannot be used directly in the main model. This enforces

a separation between identifiers in the main application and runtime identi-

fiers as depicted in Figure 35.1. On the left side of this architecture there is a

main application consisting of a main model and zero, one or more libraries.

On the right there are zero, one or more runtime libraries. Compilation errors

can occur within runtime libraries at runtime. The identifiers inside the main

application are not affected by such an error; that is, provided it has local error

handling, any procedure inside the main application can continue execution in

the presence of compilation errors on identifiers in a runtime library. This is an

important advantage of the separation: for several of the use cases presented

above, this separation enables continuation in the presence of errors.

Figure 35.1: Separation between main application and runtime libraries

Example of

creating an

identifier

In this example, a runtime procedure rp is created and its body specified. This

procedure is created in the runtime library MyRuntimeLibrary1 with prefix mrl.

The purpose of the runtime procedure rp is to write out the runtime parameter

P declared in the same runtime library. This example assumes that both the

runtime library MyRuntimeLibrary1 and the runtime parameter P already exist.

Procedure DisplayDataOfRuntimeIdentifierTabular {

ElementParameter erp {

Default : ’MainExecution’;

Range : AllIdentifiers;

}

StringParameter str;

ElementParameter err {

Range : errh::PendingErrors;

}

ElementParameter err2 {

Range : errh::PendingErrors;

}

Body {

1 block

Chapter 35. Model Structure and Modules 624

2 erp := me::Create("rp", ’procedure’, ’MyRuntimeLibrary1’, 0);

3 me::SetAttribute(erp, ’body’, "display { P } ;");

4 me::Compile(erp);

5 me::Compile(’MyRuntimeLibrary1’);

6 Apply(erp);

7 me::Delete(erp);

8 onerror err do

9 if erp then

10 block

11 me::Delete(erp);

12 onerror err2 do

13 if errh::Severity(err2) = ’Severe’ then

14 DialogMessage(errh::Message(err2) +

15 "; not prepared to handle severe errors " +

16 "and halting execution");

17 halt ;

18 else

19 errh::MarkAsHandled(err2) ;

20 endif ;

21 endblock ;

22 erp := ’’ ;

23 endif ;

24 errh::MarkAsHandled(err);

25 DialogMessage("Creating and executing rp failed; " + errh::Message(err));

26 endblock ;

}

A line by line explanation of this example follows below.

� Lines 1, 8, 25: In order to handle the errors during a group of model edit

actions, a BLOCK statement with an ONERROR clause is used.

� Lines 2 - 7: Contain the calls to the model edit functions. Note that these

are formulated without any concern for errors because these errors are

handled in line 9 - 25.

� Line 2: Create the procedure rp as the final procedure in the runtime

library MyRuntimeLibrary1. The prefix of the library will be prefixed to the

name of the identifier created; and after this statement the value of the

element parameter erp is ’mrl::rp’.

� Line 3: Sets the contents of the body of that procedure. Here it is to

display the parameter P in tabular format.

� Line 4: Checks the procedure mrl::rp for errors.

� Line 5: Compiles the entire runtime library MyRuntimeLibrary1 which will

make the procedures inside that library runnable.

� Line 6: Executes the procedure just created.

� Line 7: Delete the procedure just created.

� Lines 9 - 23: Try to delete erp (mrl::rp) if it has not already been deleted.

� Lines 13 - 20: Ignore all errors during the deletion except for severe in-

ternal errors.

� Line 24: Mark the error err2 as handled.

� Line 25: Finally notifies the application user that something has gone

wrong.

Chapter 35. Model Structure and Modules 625

Model Edit

Functions

Model editing is available from within the language itself with intrinsic func-

tions and procedures to view, create, modify, move, rename, compile, and

delete identifiers. An intrinsic function or procedure that modifies the applica-

tion is called a Model Edit Function. These functions and procedures reside in

the predeclared module ModelEditFunctions with the prefix me. The table below

lists the Model Edit Functions and briefly describes them.

me::CreateLibrary(libraryName, prefixName)→AllIdentifiers

me::Create(name, newType, parentId, pos)→AllIdentifiers

me::Delete(runtimeId)

me::ImportLibrary(filename[, password])→AllIdentifiers

me::ImportNode(esection, filename[, password])

me::ExportNode(esection, filename[, password])

me::Parent(runtimeId)→AllIdentifiers

me::Children(runtimeId, runtimeChildren(i))

me::ChildTypeAllowed(runtimeId, newType)

me::TypeChangeAllowed(runtimeId, newType)

me::TypeChange(runtimeId, newType)

me::GetAttribute(runtimeId, attr)

me::SetAttribute(runtimeId, attr, txt)

me::AllowedAttribute(runtimeId, attr)

me::Rename(runtimeId, newname)

me::Move(runtimeId, parentId, pos)

me::IsRunnable(runtimeId)

me::Compile(runtimeId)

Table 35.5: Model Edit Functions for runtime libraries

Creating and

deleting

Table 35.5 lists the Model Edit Functions. A new runtime library can be created

using the function me::CreateLibrary. if successful this function returns the

library as an element in AllSymbols. The function me::Create creates a new

node or identifier with name name of type type in section ep sec at position

pos. The return value is an element in AllSymbols. If inserted at position i

(i > 0), the declarations previously at positions i .. n are moved to positions

i + 1 .. n + 1. If inserted at position 0, the identifier is placed at the end.

The procedure me::Delete can be used to delete both a runtime library and a

runtime identifier in a library. All subnodes of ep in the runtime library are

also deleted.

Reading and

writing

The procedure me::ImportNode reads a section, module, or library into node ep.

If ep is a runtime library, an entire library is read, replacing the existing prefix.

me::ExportNode writes the contents of the model editor tree referenced by ep to

a file. These two procedures use the text .ams file format.

Chapter 35. Model Structure and Modules 626

Inspecting the

tree

The function me::Parent(ep) returns the parent of ep, or the empty element if

ep is a root. The function me::Children(ep, epc(i)) returns the children of ep

in epc(i) in which i is an index over a subset of Integers.

Node typesThe function me::ChildTypeAllowed(ep, et) returns 1 if an identifier of type

et is allowed as a child of ep. The function me::TypeChangeAllowed(ep, et) re-

turns 1 if the identifier ep is allowed to change into type et. The procedure

me::TypeChange(ep,et) performs a type change while attempting to retain as

many attributes as possible.

AttributesThe function me::GetAttribute(ep, attr) returns the contents of the attribute

attr of identifier or node ep. The complementary procedure me::SetAttribute

(ep,attr,str) specifies these contents. The function me::AllowedAttribute(ep,

attr) returns 1 if attribute attr of identifier ep is allowed to have text.

Changing name

or location

The procedure me::Rename(ep, newname) gives ep a new name newname. The text

inside the library is adapted, but a corresponding entry in the namechange

file is not created. The procedure me::Move(ep, ep p, pos) moves an identifier

from one location to another. When an identifier changes its namespace, this

is a change of name, and the text in the runtime library is adapted correspond-

ingly, but no entry in the namechange file is created. Runtime identifiers can

not be moved from one runtime library to another.

Querying

runtime library

status

The function me::IsRunnable(ep) returns 1 if ep is inside a succesfully compiled

runtime library.

CompilationThe function me::Compile(ep) compiles the node ep and all its subnodes. If ep

is the empty element, all runtime libraries are compiled. See also Section 25.4

on working with AllIdentifiers.

Runtime

identifiers are

like data

To the main application, runtime identifiers are like data. Data operations such

as creation, modification, destruction, read, and write are also applicable to

runtime identifiers. When saving a project, the runtime libraries are not saved.

Runtime libraries, including the data of runtime identifiers, can be saved in

two ways: as separate files or in cases.

Storing runtime

libraries in

separate files

The runtime libraries themselves can be saved in text or binary model files

using the function me::ExportNode. They can subsequently be read back using

the functions me::ImportLibrary and me::ImportNode (see the function reference

for more details on these functions). The data of the runtime identifiers can

be written using a write to file statement and be read back using a read from

file statement, see also Section 26.1.1.

Chapter 35. Model Structure and Modules 627

Storing runtime

libraries in

cases

When saving a case, a snapshot of the data in a model, or a selection thereof

(casetype), is saved. The data of a model include the runtime libraries. How-

ever, the names of the runtime identifiers can vary and therefore they can-

not be part of a casetype. Whether runtime libraries are saved in a case is

controlled by a global option, named Case contains runtime libraries. When

loading a case saved with this option switched on, the previously created run-

time libraries will be first destroyed and then the stored runtime libraries will

be recreated, both their structure and data. When loading a case saved while

this option was off, or a case saved with Aimms 3.10 or earlier, any existing

runtime libraries will be left intact. Datasets never contain runtime libraries.

The NoSave

property

When the NoSave property is specified for a runtime library, this runtime library

will not be saved in cases.

The Aimms

model explorer

To the Aimms model explorer, the runtime libraries are read only; it can copy

runtime identifiers into the main application, but it cannot modify runtime

identifiers. This is because, if the Aimms model explorer could modify runtime

identifiers, the state information maintained by the main application regard-

ing the runtime identifiers might become inconsistent with the actual state of

these runtime identifiers.

Visualizing the

data of runtime

identifiers

When Aimms is in developer mode, data pages of the runtime identifiers can

be opened, just like data pages of ordinary identifiers. The data of runtime

identifiers can also be visualized on the Aimms pages in the following two

ways:

� The safest way is to create a subset of AllIdentifiers containing the

selected runtime identifiers, and use this subset as ”implicit identifiers”

in a pivot table. If the runtime identifiers referenced in this set do not

yet exist, they will simply not be displayed.

� The runtime identifiers can also be directly visualized in other page ob-

jects. Care should then be taken that the visualized runtime identifiers

are created with the proper index domain before a page is opened con-

taining these identifiers; if an identifier does not exist, a page contain-

ing a reference to such an identifier will not open correctly. In order to

avoid the inadvertent use of runtime identifiers on pages, they are not se-

lectable using point and click in the identifier selector, but the identifier

selector accepts them when typed in.

LimitationsThe following limitations apply:

� Local declarations are not supported; only global identifiers correspond-

ing to elements in AllIdentifiers.

� Quantities are not supported.

� The source file, module code and user data attributes are not supported.

� The current maximum number of identifiers is thirty thousand.

Appendices

Appendix A

Distributions, statistical operators and

histogram functions

This chapterThis chapter provides a more elaborate description of the distributions and

distribution and sample operators listed in Tables 6.5, 6.6 and 6.7. You can

use this information when you want to set up an experiment around your

(optimization-based) Aimms model.

Description of

distributions

For each of the available distributions we describe

� its parameters, mean and variance,

� the unit relationship between its parameters and result,

� its shape, and

� its typical use in applications.

Such information may be useful in the selection and use of a distribution to

describe the particular statistical behavior of input data of experiments that

you want to perform on top of your model. However, a general guideline for

choosing the right might be in order and is provided in the next paragraph.

Choosing the

right

distribution

Whenever your experiment counts a number of occurrences, you should first

make a distinction between experiments with replacement (i.e. throwing dice),

experiments without replacement (i.e. drawing cards from a deck), or experi-

ments in which independent occurrences take place at random moments (i.e.

customers appearing at a desk). Having made this distinction, Table A.1 will

help you to select the right distribution for your experiment. In any other case

the Normal distribution should be considered first. Although this distribution

is unbounded, it is declining so rapidly that it can often be used even when the

result should be bounded. If the Normal distribution does not suffice, the pri-

mary selection criterium is existence of bounds: Aimms provides the user with

distributions with no bounds, one (lower) bound and two (upper and lower)

bounds. See section A.2 (continuous distributions) for details.

Appendix A. Distributions, statistical operators and histogram functions 630

Description of

distribution

operators

For each of the available distribution and sample operators we provide

� the interpretation of its result, and

� the formula for the computation of the operator.

Such information may be useful when you want to perform an analysis of the

results of your experiments.

Option for

backward

compatibility

All distribution operators that are listed in Section A.3 have been introduced

in Aimms 3.4, although the DistributionCumulative and DistributionInverse-

Cumulative operator were already available under the names CumulativeDistri-

bution and InverseCumulativeDistribution, respectively. Furthermore, in order

to obtain a consistent set of distribution functions the prototype for some

of them has been slightly adapted. Section A.2 discusses the function pro-

totype of the continuous distribution functions in full detail. Both the old

and the new function prototypes are discussed in the Aimms Function Refer-

ence. To make sure that models using distribution functions and developed

in an older version of Aimms are working correctly, you should set the option

Distribution compatibility to ‘AIMMS 3.0’.

A.1 Discrete distributions

Discrete

distributions

We start our discussion with the discrete distributions available in Aimms.

They are

� the Binomial distribution,

� the HyperGeometric distribution,

� the Poisson distribution,

� the Negative Binomial distribution, and

� the Geometric distribution.

Discrete

distributions

describing

successes

The Binomial, HyperGeometric and Poisson distributions describe the number

of times that a particular outcome (referred to as ”success”) occurs. In the

Binomial distribution, the underlying assumption is a fixed number of trials

and a constant likelihood of success. In the HyperGeometric distribution, the

underlying assumption is ”sampling without replacement”: A fixed number of

trials are taken from a population. Each element of this population denotes a

success or failure and cannot occur more than once. In the Poisson distribution

the number of trials is not fixed. Instead we assume that successes occur

independently of each other and with equal chance for all intervals with the

same duration.

Appendix A. Distributions, statistical operators and histogram functions 631

with

replacement

without

replacement

independent

occurrences at

random moments

example throwing dice drawing cards serving customers

trials until first

success / time until

first occurrence

Geometric
not supported

in Aimms

Exponential

(continuous)

trials until n-th

success / time until

n-th occurrence

Negative

Binomial

not supported

in Aimms

Gamma

(continuous)

successes in fixed

trials /

successes in fixed

time

Binomial Hypergeometric Poisson

Table A.1: Overview of discrete distributions in Aimms

Distributions

describing trials

The Negative Binomial distribution describes the number of failures before a

specified number of successes have occurred. It assumes a constant chance of

success for each trial, so it is linked to the Binomial distribution. Similarly, the

distribution linked to Poisson distribution that describes the amount of time

until a certain number of successes have occurred is known as the Gamma distri-

bution and is discussed in Section A.2. The Negative Binomial distribution is a

special case of the Geometric distribution and describes the number of failures

before the first success occurs. Similarly, the Exponetial distribution is a spe-

cial case of the Gamma distribution and describes the amount of time until the

first occurrence.

Discrete

distributions

overview

Table A.1 shows the relation between the discrete distributions. The continu-

ous Exponential and Gamma distribution naturally fit in this table as they repre-

sent the distribution of the time it takes before the first/n-th occurrence (given

the average time between two consecutive occurrences).

Binomial

distribution

The Binomial(p,n) distribution:

� Input parameters : Probability of success p and number of trials n

� Input check : integer n > 0 and 0 < p < 1

� Permitted values : {i | i = 0,1, . . . , n}

� Formula : P(X = i) =
(
n

i

)
pi(1− p)n−i

� Mean : np

� Variance : np(1− p)
� Remarks : Binomial(p,n) = HyperGeometric(p,n,∞)

Appendix A. Distributions, statistical operators and histogram functions 632

A typical example for this distribution is the number of defectives in a batch

of manufactured products where a fixed percentage was found to be defective

in previously produced batches. Another example is the number of persons

in a group voting yes instead of no, where the probability of yes has been

determined on the basis of a sample.

HyperGeometric

distribution

The HyperGeometric(p,n,N) distribution:

� Input parameters : Known initial probability of success p, number

of trials n and population size N

� Input check : integer n,N : 0 < n ≤ N, and p ∈ 1
N ,

2
N , . . . ,

N−1
N

� Permitted values : {i | i = 0,1, . . . , n}

� Formula : P(X = i) =

(
Np
i

)(
N(1−p)
n−i

)

(
N
n

)

� Mean : np

� Variance : np(1− p)N−nN−1

As an example of this distribution, consider a set of 1000 books of which 30

are faulty When considering an order containing 50 books from this set, the

HyperGeometric(0.03,50,1000) distribution shows the probability of observing

i (i = 0,1, . . . , n) faulty books in this subset.

Poisson

distribution

The Poisson(λ) distribution:

� Input parameters : Average number of occurrences λ

� Input check : λ > 0

� Permitted values : {i | i = 0,1, . . .}
� Formula : P(X = i) = λi

i!
e−λ

� Mean : λ

� Variance : λ

� Remarks : Poisson(λ) = limp↓0Binomial(p, λ/p)

The Poisson distribution should be used when there is an constant chance of a

’success’ over time or (as an approximation) when there are many occurrences

with a very small individual chance of ’success’. Typical examples are the

number of visitors in a day, the number of errors in a document, the number

of defects in a large batch, the number of telephone calls in a minute, etc.

Negative

Binomial

distribution

The NegativeBinomial(p, r) distribution:

� Input parameters : Success probability p and number of successes r

� Input check : 0 < p < 1 and r = 1,2, . . .

� Permitted values : {i | i = 0,1, . . .}

� Formula : P(X = i) =
(
r + i− 1

i

)
pr (1− p)i

� Mean : r/p − r
� Variance : r(1− p)/p2

Appendix A. Distributions, statistical operators and histogram functions 633

Whenever there is a repetition of the same activity, and you are interested

in observing the r -th occurrence of a particular outcome, then the Negative

Binomial distribution might be applicable. A typical situation is going from

door-to-door until you have made r sales, where the probability of making a

sale has been determined on the basis of previous experience. Note that the

NegativeBinomial distribution describes the number of failures before the r -th

success. The distribution of the number of trials i before the r -th success is

given by PNegativeBinomial(p,r)(X = i− r).

Geometric

distribution

The Geometric(p) distribution:

� Input parameters : Probability of success p

� Input check : 0 < p < 1

� Permitted values : {i | i = 0,1, . . .}
� Formula : P(X = i) = (1− p)ip
� Mean : 1/p − 1

� Variance : (1− p)/p2

� Remarks : Geometric(p) = NegativeBinomial(p,1)

The Geometric distribution is a special case of the NegativeBinomial distribu-

tion. So it can be used for the same type of problems (the number of visited

doors before the first sale). Another example is an oil company drilling wells

until a producing well is found, where the probability of success is based on

measurements around the site and comparing them with measurements from

other similar sites.

A.2 Continuous distributions

Continuous

distributions

In this section we discuss the set of continuous distributions available in

Aimms.

The three distributions with both lower and upper bound are

� the Uniform distribution,

� the Triangular distribution, and

� the Beta distribution.

The five distributions with only a lower bound are

� the LogNormal distribution,

� the Exponential distribution,

� the Gamma distribution,

� the Weibull distribution, and

� the Pareto distribution.

The three unbounded distributions are

� the Normal distribution,

Appendix A. Distributions, statistical operators and histogram functions 634

� the Logistic distribution, and

� the Extreme Value distribution.

Parameters of

continuous

distributions

Every parameter of a continuous distributions can be characterized as either

a shape parameter β, a location parameter l, or a scale parameter s. While the

presence and meaning of a shape parameter is usually distribution-dependent,

location and scale parameters find their origin in the common transformation

x ֏
x − l
s

to shift and stretch a given distribution. By choosing l = 0 and s = 1 the stan-

dard form of a distribution is obtained. If a certain distribution has n shape

parameters (n ≥ 0), these shape parameters will be passed as the first n pa-

rameters to Aimms. The shape parameters are then followed by two optional

parameters, with default values 0 and 1 respectively. For double-bounded dis-

tributions these two optional parameters can be interpreted as a lower and

upper bound (the value of the location parameter l for these distributions is

equal to the lower bound and the value of the scale parameter s is equal to the

difference between the upper and lower bound). For single-bounded distribu-

tions the bound value is often used as the location parameter l. In this section,

whenever the location parameter can be interpreted as a mean value or when-

ever the scale parameter can be interpreted as the deviation of a distribution,

these more meaningful names are used to refer to the parameters. Note that

the LogNormal, Gamma and Exponential distributions are distrubutions that will

mostly be used with location parameter equal to 0.

Transformation

to standard

form

When transforming a distribution to standard form, distribution operators

change. Section A.5 (scaling of statistical operators) gives the relationships be-

tween distribution operators working on random variables X(l, s) and X(0,1).

Units of

measurement

When a random variable representing some real-life quantity with a given unit

of measurement (see also Chapter 32) is distributed according to a particular

distribution, some parameters of that distribution are also naturally expressed

in terms of this same unit while other parameters are expected to be unitless.

In particular, the location and scale parameters of a distribution are measured

in the same unit of measurement as the corresponding random variable, while

shape parameters (within Aimms) are implemented as unitless parameters.

Unit notation in

this appendix

When you use a distribution function, Aimms will perform a unit consistency

check on its parameters and result, whenever your model contains one or more

QUANTITY declarations. In the description of the continuous distributions be-

low, the expected units of the distribution parameters are denoted in square

brackets. Throughout the sequel, [x] denotes that the parameter should have

the same unit of measurement as the random variable X and [–] denotes that

a parameter should be unitless.

Appendix A. Distributions, statistical operators and histogram functions 635

A commonly

used

distribution

In practice, the Normal distribution is used quite frequently. Such widespread

use is due to a number of pleasant properties:

� the Normal distribution has no shape parameters and is symmetrical,

� random values are more likely as they are closer to the mean value,

� it can be directly evaluated for any given mean and standard deviation

because it is fully specified through the mean and standard deviation

parameter,

� it can be used as a good approximation for distributions on a finite inter-

val, because its probability density is declining fast enough (when moving

away from the mean),

� the mean and sum of any number of uncorrelated Normal distributions

are Normal distributed themselves, and thus have the same shape, and

� the mean and sum of a large number of uncorrelated distributions are

always approximately Normal distributed.

Distributions for

double bounded

variables

For random variables that have a known lower and upper bound, Aimms pro-

vides three continuous distributions on a finite interval: the Uniform, Triang-

ular and Beta distribution. The Uniform (no shape parameters) and Triangular

(one shape parameter) distributions should be sufficient for most experiments.

For all remaining experiments, the user might consider the highly configurable

Beta (two shape parameters) distribution.

Distributions for

single bounded

variables

When your random variable only has a single bound, you should first check

whether the Gamma distribution can be used or whether the Normal distribution

is accurate enough. The LogNormal distribution should be considered if the

most likely value is near but not at the bound. The Weibull or Gamma distribution

(β > 1), or even the ExtremeValue distribution are alternatives, while the Weibull

or Gamma distribution (β ≤ 1) or Pareto distribution should be considered if the

bound is the most likely value.

The Gamma

distribution

The Gamma (and as a special case thereof the Exponential) distribution is widely

used for its special meaning. It answers the question: how long does it take for

a success to occur, when you only know the average number of occurrences

(like in the Poisson distribution). The Exponential distribution gives the time

to the first occurrence, and its generalization, the Gamma(β) distribution gives

the time to the β-th occurrence. Note that the sum of a Gamma(β1, l1, s) and

Gamma(β2, l2, s) distribution has a Gamma(β1 + β2, l1 + l2, s) distribution.

The LogNormal

distribution

If you assume the logarithm of a variable to be Normal distributed, the variable

itself is LogNormal-distributed. As a result, it can be shown that the chance of

an outcome in the interval [x·c1, x·c2] is equal to the chance of an outcome in

the interval [x/c2, x/c1] for some x. This might be a reasonable assumption

in price developments, for example.

Appendix A. Distributions, statistical operators and histogram functions 636

Uniform

distribution

The Uniform(min,max) distribution:

� Input parameters : min [x], max [x]

� Input check : min < max

� Permitted values : {x | min ≤ x ≤ max}
� Standard density : f(0,1)(x) = 1

� Mean : 1/2

� Variance : 1/12

In the Uniform distribution all values of the random variable occur between a

fixed minimum and a fixed maximum with equal likelihood. It is quite com-

mon to use the Uniform distribution when you have little knowledge about an

uncertain parameter in your model except that its value has to lie anywhere

within fixed bounds. For instance, after talking to a few appraisers you might

conclude that their single appraisals of your property vary anywhere between

a fixed pessimistic and a fixed optimistic value.

Triangular

distribution

The Triangular(β,min,max) distribution:

� Input parameters : shape β [−],min [x], max [x]

� Input check : min < max , 0 < β < 1

� Permitted values : {x | min ≤ x ≤ max}

� Standard density : f(β,0,1)(x) =





2x/β for 0 ≤ x ≤ β
2(1− x)/(1− β) for β < x ≤ 1

� Mean : (β+ 1)/3

� Variance : (1− β+ β2)/18

� Remarks : The shape parameter β indicates the position

of the peak in relation to the range, i.e. β =
peak−min
max−min

In the Triangular distribution all values of the random variable occur between

a fixed minimum and a fixed maximum, but not with equal likelihood as in the

Uniform distribution. Instead, there is a most likely value, and its position is

not necessarily in the middle of the interval. It is quite common to use the

Triangular distribution when you have little knowledge about an uncertain pa-

rameter in your model except that its value has to lie anywhere within fixed

bounds and that there is a most likely value. For instance, assume that a few

appraisers each quote an optimistic as well as a pessimistic value of your prop-

erty. Summarizing their input you might conclude that their quotes provide

not only a well-defined interval but also an indication of the most likely value

of your property.

Appendix A. Distributions, statistical operators and histogram functions 637

Beta distribution

Beta(4,2)

Beta(0.9,1.5)

The Beta(α,β,min,max) distribution:

� Input parameters : shape α [–], shape β [–], min [x], max [x]

� Input check : α > 0, β > 0,min < max

� Permitted values : {x | min < x < max}
� Standard density : f(α,β,0,1)(x) =

1

B(α,β)
xα−1(1− x)β−1

where B(α,β) is the Beta function
� Mean : α/(α+ β)
� Variance : αβ(α+ β)−2(α+ β+ 1)−1

� Remarks : Beta(1,1,min,max)=Uniform(min,max)

The Beta distribution is a very flexible distribution whose two shape param-

eters allow for a good approximation of almost any distribution on a finite

interval. The distribution can be made symmetrical, positively skewed, nega-

tively skewed, etc. It has been used to describe empirical data and predict the

random behavior of percentages and fractions. Note that for α < 1 a singular-

ity occurs at x = min and for β < 1 at x = max.

LogNormal

distribution

The LogNormal(β,min,s) distribution:

� Input parameters : shape β [–], lowerbound min [x] and scale s [x]

� Input check : β > 0 and s > 0

� Permitted values : {x | min < x < ∞}
� Standard density : f(β,0,1)(x) =

1√
2πx ln(β2 + 1)

e
−(ln(x2(β2+1))

2 ln(β2+1)

� Mean : 1

� Variance : β2

If you assume the logarithm of the variable to be Normal(µ,σ)-distributed, then

the variable itself is LogNormal(
√
eσ2−1,0, eµ−σ

2/2)-distributed. This parameter-

ization is used for its simple expressions for mean and variance. A typical

example is formed by real estate prices and stock prices. They all cannot drop

below zero, but they can grow to be very high. However, most values tend to

stay within a particular range. You usually can form some expected value of

a real estate price or a stock price, and estimate the standard deviation of the

prices on the basis of historical data.

Exponential

distribution

The Exponential(min,s) distribution:

� Input parameters : lowerbound min [x] and scale s [x]

� Input check : s > 0

� Permitted values : {x | min ≤ x < ∞}
� Standard density : f(0,1)(x) = λe−x
� Mean : 1

� Variance : 1

� Remarks : Exponential(min,s) = Gamma(1,min,s)

Exponential(min,s) = Weibull(1,min,s)

Appendix A. Distributions, statistical operators and histogram functions 638

Assume that you are observing a sequence of independent events with a con-

stant chance of occurring in time, with s being the average time between oc-

currences. (in accordance with the Poisson distribution) The Exponential(0, s)

distribution gives answer to the question: how long a time do you need to wait

until you observe the first occurrence of an event. Typical examples are time

between failures of equipment, and time between arrivals of customers at a

service desk (bank, hospital, etc.).

Gamma

distribution

The Gamma(β,min,s) distribution:

� Input parameters : shape β [–], lowerbound min [x] and scale s [x]

� Input check : s > 0 and β > 0

� Permitted values : {x | min < x < ∞}
� Standard density : f(β,0,1)(x) = xβ−1e−x/Γ(β)

where Γ(β) is the Gamma function
� Mean : β

� Variance : β

The Gamma distribution gives answer to the question: how long a time do you

need to wait until you observe the β-th occurrence of an event (instead of the

first occurrence as in the Exponential distribution). Note that it is possible to

use non-integer values for β and a location parameter. In these cases there is

no natural interpretation of the distribution and for β < 1 a singularity exists

at x = min, so one should be very careful in using the Gamma distribution this

way.

Weibull

distribution

The Weibull(β,min,s) distribution:

� Input parameters : shape β [–], lowerbound min [x] and scale s [x]

� Input check : β > 0 and s > 0

� Permitted values : {x | min ≤ x < ∞}
� Standard density : f(β,0,1)(x) = βxβ−1e−x

β

� Mean : Γ(1+ 1/β)

� Variance : Γ(1+ 2/β)− Γ2(1+ 1/β)

The Weibull distribution is another generalization of the Exponential distribu-

tion. It has been successfully used to describe failure time in reliability studies,

and the breaking strengths of items in quality control testing. By using a value

of the shape parameter that is less than 1, the Weibull distribution becomes

steeply declining and could be of interest to a manufacturer testing failures

of items during their initial period of use. Note that in that case there is a

singularity at x = min.

Appendix A. Distributions, statistical operators and histogram functions 639

Pareto

distribution

The Pareto(β,l,s) distribution:

� Input parameters : shape β [–], location l [x] and scale s [x]

� Input check : s > 0 and β > 0

� Permitted values : {x | l+ s < x <∞}
� Standard density : f(β,0,1)(x) = β/xβ+1

� Mean : for β > 1 : β/(β− 1),∞ otherwise

� Variance : for β > 2 : β(β− 1)−2(β− 2)−1,∞ otherwise

The Pareto distribution has been used to describe the sizes of such phenomena

as human population, companies, incomes, stock fluctuations, etc.

Normal

distribution

The Normal(µ,σ) distribution:

� Input parameters : Mean µ [x] and standard deviation σ [x]

� Input check : σ > 0

� Permitted values : {x | −∞ < x <∞}
� Standard density : f(0,1)(x) = e−x

2/2/
√

2π

� Mean : 0

� Variance : 1

� Remarks : Location µ, scale σ

The Normal distribution is frequently used in practical applications as it de-

scribes many phenomena observed in real life. Typical examples are attributes

such as length, IQ, etc. Note that while the values in these examples are nat-

urally bounded, a close fit between such data values and normally distributed

values is quite common in practice, because the likelihood of extreme values

away from the mean is essentially zero in the Normal distribution.

Logistic

distribution

The Logistic(µ,s) distribution:

� Input parameters : mean µ [x] and scale s [x]

� Input check : s > 0

� Permitted values : {x | −∞ < x <∞}
� Standard density : f(0,1)(x) = (ex + e−x + 2)−1

� Mean : 0

� Variance : π2/3

The Logistic distribution has been used to describe growth of a population

over time, chemical reactions, and similar processes. Extreme values are more

common than in the somewhat similar Normal distribution

Extreme Value

distribution

The Extreme Value(l,s) distribution:

� Input parameters : Location l [x] and scale s [x]

� Input check : s > 0

� Permitted values : {x | −∞ < x <∞}
� Standard density : f(0,1)(x) = exe−e

x

Appendix A. Distributions, statistical operators and histogram functions 640

� Mean : γ = 0.5772 . . . (Euler’s constant)

� Variance : π2/6

Extreme Value distributions have been used to describe the largest values of

phenomena observed over time: water levels, rainfall, etc. Other applica-

tions include material strength, construction design or any other application

in which extreme values are of interest. In literature the Extreme Value distri-

bution that is provided by Aimms is known as a type 1 Gumbel distribution.

A.3 Distribution operators

Distribution

operators

The distribution operators discussed in this section can help you to analyze

the results of an experiment. For example, it is expected that the sample mean

of a sequence of observations gets closer to the mean of the distribution that

was used during the observations as the number of observations increases. To

compute statistics over a sample, you can use the sample operators discussed

in Section A.4 or you can use the histogram functions that are explained in

Section ?? of the Language Reference. The following distribution operators are

available in Aimms:

� the DistributionCumulative(distr,x) operator,

� the DistributionInverseCumulative(distr,α) operator,

� the DistributionDensity(distr,x) operator,

� the DistributionInverseDensity(distr,α) operator,

� the DistributionMean(distr) operator,

� the DistributionDeviation(distr) operator,

� the DistributionVariance(distr) operator,

� the DistributionSkewness(distr) operator, and

� the DistributionKurtosis(distr) operator.

Cumulative

distributions . . .

DistributionCumulative(distr,x) computes the probability that a random vari-

able X drawn from the distribution distr is less or equal than x. Its inverse,

DistributionInverseCumulative(distr,α), computes the smallest x such that

the probability that a variable X is greater than or equal to x does not exceed

α.

. . . and their

derivatives

The DistributionDensity(distr,x) expresses the expected density around x of

sample points drawn from a distr distribution and is in fact the derivative

of DistributionCumulative(distr,x). The DistributionInverseDensity(distr,α)

is the derivative of DistributionInverseCumulative(distr,α). Given a random

variable X, the DistributionInverseDensity can be used to answer the question

of how much a given value x should be increased such that the probability

P(X ≤ x) is increased with α (for small values of α).

Appendix A. Distributions, statistical operators and histogram functions 641

. . . for discrete

distributions

For continuous distributions distr, α ∈ [0,1], and x = DistributionInverse-

Cumulative(distr, α) it holds that

DistributionDensity(distr, x) = ∂α/∂x

DistributionInverseDensity(distr, α) = ∂x/∂α

Note that the above two relations make it possible to express Distribution-

InverseDensity in terms of DistributionDensity. Through this relation the

DistributionInverseDensity is also defined for discrete distributions.

Distribution

statistics

The operators DistributionMean, DistributionDeviation, DistributionVariance,

DistributionSkewness and DistributionKurtosis provide the mean, standard de-

viation, variance, skewness and kurtosis of a given distribution. Note that

the values computed using the sample operators converges to the values com-

puted using the corresponding distribution operators as the size of the sample

increases (the law of large numbers).

A.4 Sample operators

Sample

operators

The statistical sample operators discussed in this section can help you to an-

alyze the results of an experiment. The following operators are available in

Aimms:

� the Mean operator,

� the GeometricMean operator,

� the HarmonicMean operator,

� the RootMeanSquare operator,

� the Median operator,

� the SampleDeviation operator,

� the PopulationDeviation operator,

� the Skewness operator,

� the Kurtosis operator,

� the Correlation operator, and

� the RankCorrelation operator.

Associated unitsThe results of the Skewness, Kurtosis, Correlation and RankCorrelation opera-

tor are unitless. The results of the other sample operators listed above should

have the same unit of measurement as the expression on which the statisti-

cal computation is performed. Whenever your model contains one or more

QUANTITY declarations, Aimms will perform a unit consistency check on argu-

ments of the statistical operators and their result.

Appendix A. Distributions, statistical operators and histogram functions 642

MeanThe following mean computation methods are supported: (arithmetic) mean

or average, geometric mean, harmonic mean and root mean square (RMS). The

first method is well known and has the property that it is an unbiased estimate

of the expectation of a distribution. The geometric mean is defined as the N-

th root of the product of N values. The harmonic mean is the reciprocal of

the arithmetic mean of the reciprocals. The root mean square is defined as

the square root of the arithmetic mean of the squares. It is mostly used for

averaging the measurements of a physical process.

� Operator : Mean(domain,expression)

� Formula :
1

n

n∑

i=1

xi

� Operator : GeometricMean(domain,expression)

� Formula : n

√√√√
n∏

i=1

xi

� Operator : HarmonicMean(domain,expression)

� Formula :
n

n∑

i=1

1

xi

� Operator : RootMeanSquare(domain,expression)

� Formula :

√√√√ 1

n

n∑

i=1

x2
i

MedianThe median is the middle value of a sorted group of values. In case of an odd

number of values the median is equal to the middle value. If the number of

values is even, the median is the mean of the two middle values.

� Operator : Median(domain,expression)

� Formula : median =





xN+1
2

if N is odd

1
2

(
xN

2
+ xN+2

2

)
if N is even

Standard

deviation

The standard deviation is a measure of dispersion about the mean. It is defined

as the root mean square of the distance of a set of values from the mean.

There are two kinds of standard deviation: the standard deviation of a sample

of a population, also known as σn−1 or s, and the standard deviation of a

population, which is denoted by σn. The relation between these two standard

deviations is that the first kind is an unbiased estimate of the second kind.

This implies that for large n σn−1 ≈ σn. The standard deviation of an sample

of a population can be computed by means of

� Operator : SampleDeviation(domain,expression)

Appendix A. Distributions, statistical operators and histogram functions 643

� Formula :

√√√√√√
1

n− 1




n∑

i=1

x2
i −

1

n




n∑

i=1

xi




2



whereas the standard deviation of a population can be determined by

� Operator : PopulationDeviation(domain,expression)

� Formula :

√√√√√√
1

n




n∑

i=1

x2
i −

1

n




n∑

i=1

xi




2



SkewnessThe skewness is a measure of the symmetry of a distribution. Two kinds of

skewness are distinguished: positive and negative. A positive skewness means

that the tail of the distribution curve on the right side of the central maximum

is longer than the tail on the left side (skewed ”to the right”). A distribution

is said to have a negative skewness if the tail on the left side of the central

maximum is longer than the tail on the right side (skewed ”to the left”). In

general one can say that a skewness value greater than 1 of less than −1 indi-

cates a highly skewed distribution. Whenever the value is between 0.5 and 1 or

−0.5 and −1, the distribution is considered to be moderately skewed. A value

between −0.5 and 0.5 indicates that the distribution is fairly symmetrical.

� Operator : Skewness(domain,expression)

� Formula :

n∑

i=1

(xi − µ)3

σ 3
n−1

where µ denotes the mean and σn−1 denotes the standard deviation.

KurtosisThe kurtosis coefficient is a measure for the peakedness of a distribution. If

a distribution is fairly peaked, it will have a high kurtosis coefficient. On the

other hand, a low kurtosis coefficient indicates that a distribution has a flat

peak. It is common practice to use the kurtosis coefficient of the standard Nor-

mal distribution, equal to 3, as a standard of reference. Distributions which

have a kurtosis coefficient less than 3 are considered to be platykurtic (mean-

ing flat), whereas distributions with a kurtosis coefficient greater than 3 are

leptokurtic (meaning peaked). Be aware that in literature also an alternative

definition of kurtosis is used in which 3 is subtracted from the formula used

here.

� Operator : Kurtosis(domain,expression)

� Formula :

n∑

i=1

(xi − µ)4

σ 4
n−1

where µ denotes the mean and σn−1 denotes the standard deviation.

Appendix A. Distributions, statistical operators and histogram functions 644

Correlation

coefficient

The correlation coefficient is a measurement for the relationship between two

variables. Two variables are positive correlated with each other when the cor-

relation coefficient lies between 0 and 1. If the correlation coefficient lies be-

tween −1 and 0, the variables are negative correlated. In case the correlation

coefficient is 0, the variables are considered to be unrelated to one another.

Positive correlation means that if one variable increases, the other variable

increases also. Negative correlation means that if one variable increases, the

other variable decreases.

� Operator : Correlation(domain,x expression, y expression)

� Formula :

n

n∑

i=1

xiyi −
n∑

i=1

xi

n∑

i=1

yi

√√√√√√


n

n∑

i=1

x2
i −




n∑

i=1

xi




2




n

n∑

i=1

y2
i −



n∑

i=1

yi




2



Rank

correlation

If one wants to determine the relationship between two variables, but their

distributions are not equal or the precision of the data is not trusted, one can

use the rank correlation coefficient to determine their relationship. In order

to compute the rank correlation coefficient the data is ranked by their value

using the numbers 1,2, . . . , n. These rank numbers are used to compute the

rank correlation coefficient.

� Operator : RankCorrelation(domain,x expression, y expression)

� Formula : 1−
6

n∑

i=1

(
Rank(xi)− Rank(yi)

)2

n(n2 − 1)

A.5 Scaling of statistical operators

Transforming

distributions

Shifting and scaling distribution has an effect on the distribution operators,

and on sample operators when the samples are from a specified distribution.

Location and scale parameters find their origin in a common transformation

x ֏
x − l
s

to shift and stretch a given distribution. By choosing l = 0 and s = 1 one

obtains the standard form of a given distribution, and the relation of operators

working on the general and standard form of distributions is as follows:

Appendix A. Distributions, statistical operators and histogram functions 645

X(l, s) = l+ sX(0,1)

DistributionDensity(x; l, s) = 1
s
DistributionDensity(

x−l
s

; 0,1)

DistributionInversDensity(α; l, s) = s · DistributionInversDensity(α; 0,1)

DistributionCumulative(x; l, s) = DistributionCumulative(
x−l
s ; 0,1)

DistributionInverseCumulative(α; l, s) = l+ s · DistributionInverseCumulative(α; 0,1)

Mean(X(l, s)) = l+ s · Mean(X(0,1))
Median(X(l, s)) = l+ s · Median(X(0,1))

Deviation(X(l, s)) = s · Deviation(X(0,1))
DistributionVariance(X(l, s)) = s2 · DistributionVariance(X(0,1))

Skewness(X(l, s)) = Skewness(X(0,1))

Kurtosis(X(l, s)) = Kurtosis(X(0,1))

(Rank)Correlation(X(l, s), Y) = (Rank)Correlation(X(0,1), Y)

Transformation

of the mean

The transformation formula for the Mean holds for both the DistributionMean

and the Mean of a sample. However, for the GeometricMean, the HarmonicMean

and the RootMeanSquare, only the scale factor can be propagated easily during

the transformation. Thus, for a sample taken from a distribution X and a any

mean operator M from the GeometricMean, HarmonicMean or RootMeanSquare, it

holds that

M(X(l, s)) = s ·M(X(l,1))

but in general

M(X(l, s))≠≠≠ l+M(X(0, s))

Transformation

of the other

moments

The transformation formula for the deviation is valid for the Distribution-

Deviation, the SampleDeviation and PopulationDeviation, while the transforma-

tion formulae for the Skewness and Kurtosis hold for both the distribution and

sample operators.

A.6 Creating histograms

HistogramThe term histogram typically refers to a picture of a number of observations.

The observations are divided over equal-length intervals, and the number of

observed values in each interval is counted. Each count is referred to as a

frequency, and the corresponding interval is called a frequency interval. The

picture of a number of observations is then constructed by drawing, for each

frequency interval, the corresponding frequency as a bar. A histogram can

thus be viewed as a bar chart of frequencies.

Appendix A. Distributions, statistical operators and histogram functions 646

Histogram

support

The procedures and functions discussed in this section allow you to create his-

tograms based on a large number of trials in an experiment conducted from

within your model. You can set up such an experiment by making use of

random data for each trial drawn from one or more of the distributions dis-

cussed in the Aimms Language Reference. The histogram frequencies, created

through the functions and procedures discussed in this section, can be dis-

played graphically using the standard Aimms bar chart object.

Histogram

functions and

procedures

Aimms provides the following procedure and functions for creating and com-

puting histograms.

� HistogramCreate(histogram-id[,integer-histogram][,sample-buffer-size])

� HistogramDelete(histogram-id)

� HistogramSetDomain(histogram-id,intervals[,left,width]

[,left-tail][,right-tail])

� HistogramAddObservation(histogram-id,value)

� HistogramAddObservations(histogram-id,values-parameter)

� HistogramGetFrequencies(histogram-id,frequency-parameter)

� HistogramGetBounds(histogram-id,left-bound,right-bound)

� HistogramGetObservationCount(histogram-id)

� HistogramGetAverage(histogram-id)

� HistogramGetDeviation(histogram-id)

� HistogramGetSkewness(histogram-id)

� HistogramGetKurtosis(histogram-id)

The histogram-id argument assumes an integer value. The arguments fre-

quency-parameter, left-bound and right-bound must be one- dimensional pa-

rameters (defined over a set of intervals declared in your model). The optional

arguments integer-histogram (default 0), left-tail (default 1) and right-tail (de-

fault 1) must be either 0 or 1. The optional argument sample-buffer-size must

be a positive integer, and defaults to 512.

Creating and

deleting

histograms

Through the procedures HistogramCreate and HistogramDelete you can create

and delete the internal data structures associated with each individual his-

togram in your experiment. Upon success, the procedure HistogramCreate

passes back a unique integer number, the histogram-id. This reference is re-

quired in the remaining procedures and functions to identify the histogram

at hand. The observations corresponding to a histogram can be either contin-

uous or integer-valued. Aimms assumes continuous observations by default.

Through the optional integer-histogram argument you can indicate that the

observations corresponding to a histogram are integer-valued.

Appendix A. Distributions, statistical operators and histogram functions 647

Sample buffer

size

For every histogram, Aimms will allocate a certain amount of memory for stor-

ing observations. By default, Aimms allocates space to store samples of 512

observations at most. Using the optional sample-buffer-size argument, you can

override the default maximum sample size. As long as the number of obser-

vations is still smaller than the sample buffer size, all observations will be

stored individually. As soon as the actual number of observations exceeds

the sample buffer size, Aimms will no longer store the individual observations.

Instead, all observations are then used to determine the frequencies of fre-

quency intervals. These intervals are determined on the basis of the sample

collected so far, unless you have specified interval ranges through the proce-

dure HistogramSetDomain.

Setting the

interval domain

You can use the function HistogramSetDomain to define frequency intervals

manually. You do so by specifying

� the number of fixed-width intervals,

� the lower bound of the left-most interval (not including a left-tail interval)

together with the (fixed) width of intervals to be created (optional),

� whether a left-tail interval must be created (optional), and

� whether a right-tail interval must be created (optional).

The default for the left argument is -INF. Note that the left argument is ignored

unless the width argument is strictly greater than 0. Note that the selection of

one or both of the tail intervals causes a corresponding increase in the number

of frequency intervals to be created.

Use of tail

intervals

Whenever an observed value is smaller than the lower bound of the left-most

fixed-width interval, Aimms will update the frequency count of the left-tail

interval. If the left-tail interval is not present, then the observed value is lost

and the procedure HistogramAddObservation and HistogramAddObservations (to

be discussed below) will have a return value of 0. Similarly, Aimms will update

the frequency count of the right-tail interval, when an observation lies beyond

the right-most fixed-width interval.

Adjusting the

interval domain

Whenever, during the course of an experiment, the number of added obser-

vations is still below the sample buffer size, you are allowed to modify the

interval ranges. As soon as the number of observations exceeds the sample

buffer size, Aimms will have fixed the settings for the interval ranges, and the

function HistogramSetDomain will fail. This function will also fail when previous

observations cannot be placed in accordance with the specified interval ranges.

Adding

observations

You can use the procedure HistogramAddObservation to add a new observed

value (or HistogramAddObservations to add a set of values) to a histogram. Non-

integer observations for integer-valued histograms will be rounded to the near-

est integer value. The procedure will fail, if the observed value cannot be

placed in accordance with the specified interval ranges.

Appendix A. Distributions, statistical operators and histogram functions 648

Obtaining

frequencies

With the procedure HistogramGetFrequencies, you can request Aimms to fill a

one-dimensional parameter (slice) in your model with the observed frequen-

cies. The cardinality of the index domain of the frequency parameter must be

at least as large as the total number of frequency intervals (including the tail

interval(s) if created). The first element of the domain set is associated with

the left-tail interval, if created, or else the left-most fixed-width interval.

Interval

determination

If you have provided the number of intervals through the procedure Histogram-

SetDomain, Aimms will create this number of frequency intervals plus at most

two tail intervals. Without a custom-specified number of intervals, Aimms will

create 16 fixed-width intervals plus two tail intervals. If you have not provided

interval ranges, Aimms will determine these on the basis of the collected ob-

servations. As long as the sample buffer size of the histogram has not yet been

reached, you are still allowed to modify the number of intervals prior to any

subsequent call to the procedure HistogramGetFrequencies.

Obtaining

interval bounds

Through the procedure HistogramGetBounds you can obtain the left and right

bound of each frequency interval. The bound parameters must be one-dimen-

sional, and the cardinality of the corresponding domain set must be at least

the number of intervals (including possible left- and right-tail intervals). The

lower bound of a left-tail interval will be -INF, the upper bound of a right-tail

interval will be INF.

Obtaining

statistical

information

The following functions provided statistical information:

� HistogramGetObservationCount The total number of observations,

� HistogramGetAverage the arithmetic mean,

� HistogramGetDeviation standard deviation,

� HistogramGetSkewness skewness, and

� HistogramGetKurtosis kurtosis coefficient.

ExampleIn the following example, a number of observable outputs o of a mathematical

program are obtained as the result of changes in a single uniformly distributed

input parameter InputRate. The interval range of every histogram is set to the

interval [0,100] in 10 steps, and it is assumed that the set associated with index

i has at least 12 elements.

for (o) do

HistogramCreate(HistogramID(o));

HistogramSetDomain(HistogramID(o), intervals: 10, left: 0.0, width: 10.0);

endfor;

while (LoopCount <= TrialSize) do

InputRate := Uniform(0,1);

solve MathematicalProgram;

for (o) do

HistogramAddObservation(HistogramID(o), ObservableOutput(o));

endfor;

endwhile;

Appendix A. Distributions, statistical operators and histogram functions 649

for (o) do

HistogramGetFrequencies(HistogramID(o), Frequencies(o,i));

HistogramGetBounds(HistogramID(o), LeftBound(o,i), RightBound(o,i));

HistogramDelete(HistogramID(o));

endfor;

Appendix B

Additional Separation Procedures for

Benders’ Decomposition

This chapterIn Section 21.4 we showed the implementation of the procedure Separation-

OptimalityAndFeasibilityDual as used by the textbook algorithm. The Benders’

module implements also three other separation procedure that can be used

by the Benders’ decomposition algorithm depending on the setting of the con-

trol parameters UseDual and FeasibilityOnly. In this chapter we explain the

implementation of these procedures.

The procedure

Separation-

FeasibilityOnly

The procedure SeparationFeasibilityOnly is called by the Benders’ decompo-

sition algorithm in case the primal of the Benders’ subproblem is used (pa-

rameter UseDual equals 0) and if only feasibility cuts can be generated by the

algorithm (parameter FeasibilityOnly equals 1). This procedure creates the

feasibility problem for the (primal) subproblem if it does not exist yet. The

feasibility problem is updated and solved. If its optimal objective value equals

0 (or is negative) then we have found an optimal solution for the original prob-

lem and the algorithm terminates. If the optimal objective value is larger than

0, indicating that the subproblem would have been infeasible, we add a feasi-

bility cut to the master problem. The feasibility cut is created using the dual

solution of the feasibility problem. By the dual solution we mean the shadow

prices of the constraints and the reduced costs of the variables in the feasibil-

ity subproblem.

return when (BendersAlgorithmFinished);

! Create feasibility problem corresponding to Subproblem (if it does not exist yet).

if (not FeasibilityProblemCreated) then

gmpF := GMP::Instance::CreateFeasibility(gmpS, "FeasProb",

useMinMax : UseMinMaxForFeasibilityProblem);

solsesF := GMP::Instance::CreateSolverSession(gmpF) ;

FeasibilityProblemCreated := 1;

endif;

! Update feasibility problem corresponding to Subproblem and solve it.

GMP::Benders::UpdateSubProblem(gmpF, gmpM, 1, round : 1);

GMP::SolverSession::Execute(solsesF) ;

GMP::Solution::RetrieveFromSolverSession(solsesF, 1) ;

Appendix B. Additional Separation Procedures for Benders’ Decomposition 651

! Check whether objective is 0 in which case optimality condition is satisfied.

ObjectiveFeasProblem := GMP::SolverSession::GetObjective(solsesF);

if (ObjectiveFeasProblem <= BendersOptimalityTolerance) then

if (MasterHasBeenSolved) then

return AlgorithmTerminate(’Optimal’);

endif;

endif;

! Add feasibility cut to the Master problem.

NumberOfFeasibilityCuts += 1;

GMP::Benders::AddFeasibilityCut(gmpM, gmpF, 1, NumberOfFeasibilityCuts);

The procedure

Separation-

OptimalityAnd-

Feasibility

The procedure SeparationOptimalityAndFeasibility is called by the Benders’

decomposition algorithm in case the primal of the Benders’ subproblem is

used (parameter UseDual equals 0) and if both optimality and feasibility cuts

can be generated by the algorithm (parameter FeasibilityOnly equals 0). This

procedure updates the primal subproblem and solves it. If the primal sub-

problem is infeasible then this procedure creates a feasibility problem for the

subproblem if it does not exist yet. The feasibility problem is updated and

solved, and its dual solution is used to created a feasibility cut which is added

to the master problem. If the primal subproblem is bounded and optimal then

the objective value of the subproblem is compared to the objective value of the

master problem to check whether the algorithm has found an optimal solution

for the original problem. If the solution is not optimal yet then an optimal-

ity cut is added to the master problem, using the dual solution of the primal

subproblem.

return when (BendersAlgorithmFinished);

! Update Subproblem and solve it.

GMP::Benders::UpdateSubProblem(gmpS, gmpM, 1, round : 1);

GMP::SolverSession::Execute(solsesS) ;

GMP::Solution::RetrieveFromSolverSession(solsesS, 1) ;

ProgramStatus := GMP::Solution::GetProgramStatus(gmpS, 1) ;

if (ProgramStatus = ’Unbounded’) then

return AlgorithmTerminate(’Unbounded’);

endif;

if (ProgramStatus = ’Infeasible’) then

! Create (if it does not exist yet) and update feasibility problem corresponding to

! Subproblem, and solve it to create feasibility cut for the Master problem.

if (not FeasibilityProblemCreated) then

gmpF := GMP::Instance::CreateFeasibility(gmpS, "FeasProb",

useMinMax : UseMinMaxForFeasibilityProblem);

solsesF := GMP::Instance::CreateSolverSession(gmpF) ;

FeasibilityProblemCreated := 1;

endif;

GMP::Benders::UpdateSubProblem(gmpF, gmpM, 1, round : 1);

Appendix B. Additional Separation Procedures for Benders’ Decomposition 652

GMP::SolverSession::Execute(solsesF) ;

GMP::Solution::RetrieveFromSolverSession(solsesF, 1) ;

! Add feasibility cut to the Master problem.

NumberOfFeasibilityCuts += 1;

GMP::Benders::AddFeasibilityCut(gmpM, gmpF, 1, NumberOfFeasibilityCuts);

else

! Check whether optimality condition is satisfied.

ObjectiveSubProblem := GMP::SolverSession::GetObjective(solsesS);

if (SolutionImprovement(ObjectiveSubProblem, BestObjective)) then

BestObjective := ObjectiveSubProblem;

endif;

if (SolutionIsOptimal(ObjectiveSubProblem, ObjectiveMaster)) then

return AlgorithmTerminate(’Optimal’);

endif;

! Add optimality cut to the Master problem.

NumberOfOptimalityCuts += 1;

GMP::Benders::AddOptimalityCut(gmpM, gmpS, 1, NumberOfOptimalityCuts);

endif;

The procedure

Separation-

Feasibility-

OnlyDual

The procedure SeparationFeasibilityOnlyDual is called by the Benders’ decom-

position algorithm in case the dual of the Benders’ subproblem is used (pa-

rameter UseDual equals 1) and if only feasibility cuts can be generated by the

algorithm (parameter FeasibilityOnly equals 1). This procedure updates the

dual subproblem and solves it. If its optimal objective value equals 0 (or is

negative) then we have found an optimal solution for the original problem and

the algorithm terminates. If the optimal objective value is larger than 0 then

we create a feasibility cut using the level values of the variables in the solution

of the dual subproblem. This feasibility cut is added to the master problem.

return when (BendersAlgorithmFinished);

! Update Subproblem and solve it.

GMP::Benders::UpdateSubProblem(gmpS, gmpM, 1, round : 1);

GMP::SolverSession::Execute(solsesS) ;

GMP::Solution::RetrieveFromSolverSession(solsesS, 1) ;

! Check whether objective is 0 in which case optimality condition is satisfied.

ObjectiveSubproblem := GMP::SolverSession::GetObjective(solsesS);

if (ObjectiveSubproblem <= BendersOptimalityTolerance) then

if (MasterHasBeenSolved) then

return AlgorithmTerminate(’Optimal’);

endif;

else

! Add feasibility cut to the Master problem.

NumberOfFeasibilityCuts += 1;

GMP::Benders::AddFeasibilityCut(gmpM, gmpS, 1, NumberOfFeasibilityCuts);

endif;

Index

Symbols

! (comment), 25

" (double quote), 24

’ (single quote), 24

((parenthesis), 24

* operator, 52, 64, 76, 179, 182, 529

*= operator, 104, 179

+ operator, 52, 62, 64, 76, 179, 182, 464

++ operator, 62

+= operator, 104, 179

, (comma), 24

- operator, 52, 62, 64, 76, 179, 181, 182

-- operator, 62

-= operator, 104, 179

-INF special number, 72

--> operator, 449

. (dot), 22

. operator, 145

.. operator, 49

/ operator, 76, 179, 182, 502, 529

/*. . . */ (comment), 25

/= operator, 104, 179

/$ operator, 76

: operator, 501, 504

:: (namespace resolution), 21

:: operator, 617

:= operator, 104, 179

; (semicolon), 24

< operator, 87, 89, 90, 179, 182

<= operator, 87, 89, 90, 179, 182

<> operator, 87, 89, 90, 179, 182

= operator, 87, 89, 90, 179, 182

> operator, 87, 89, 90, 179, 182

>= operator, 87, 89, 90, 179, 182

@ operator, 502

[(square bracket), 24

operator, 502

$ operator, 83, 179, 182

ˆ operator, 76, 179, 182, 529

ˆ= operator, 104

A

Abs function, 77

Action attribute, 427

ActivatingCondition attribute, 221

Activities attribute, 387

Activity, 379

activity

attribute

Length, 382

Priority, 383

Property, 382

ScheduleDomain, 381

Size, 382

property

Contiguous, 382

Optional, 382

Activity declaration, 380

activity-group-transition diagram, 389

activity-selection diagram, 387

activity-sequence diagram, 391

activity-transition diagram, 388

ActivityLevel suffix, 392

actual argument, 144

actual-argument diagram, 145

addition, 76

iterative, 78

Adjustable property, 216

.Adjustable suffix, 344

adjustable variable, 333, 343

Aggregate procedure, 555

example of use, 557

aggregation

at conversion, 555

example of use, 557

interpolation, 557

during conversion, 555

average, 556

example of use, 556

maximum, 556

minimum, 556

summation, 556

user defined, 558

AIMMS, v

Aimms, v

deployment documentation, xix

example projects, xx

help files, xix

Language Reference, xviii, xx

Optimization Modeling, xix

tutorials, xx

User’s Guide, xviii

Aimms 4, xvii

AimmsAPILastError API function, 595, 596

AimmsAPIPassMessage API function, 595, 596

AimmsAPIStatus API function, 595, 596

AimmsAttributeCallDomain API function, 579,

582

Index 654

AimmsAttributeDeclarationDomain API function,

582

AimmsAttributeDefault API function, 579, 580

AimmsAttributeDimension API function, 579,

581

AimmsAttributeElementRange API function, 579,

584, 589

AimmsAttributeFlags API function, 579, 584

AimmsAttributeFlagsGet API function, 579, 584

AimmsAttributeFlagsSet API function, 579, 584

AimmsAttributeGetUnit API function, 579

AimmsAttributeName API function, 579

AimmsAttributePermutation API function, 579,

583

AimmsAttributeRestriction API function, 579,

582

AimmsAttributeRootDomain API function, 579,

582

AimmsAttributeSetUnit API function, 579

AimmsAttributeSlicing API function, 579, 583

AimmsAttributeStorage API function, 579, 580

AimmsAttributeType API function, 579

AimmsControlGet API function, 601

AimmsControlRelease API function, 601

AimmsErrorCount API function, 597

AimmsExecutionInterrupt API function, 593

AimmsIdentifierCleanup API function, 585, 586

AimmsIdentifierCreate API function, 584, 585

AimmsIdentifierCreatePermuted API function,

585

AimmsIdentifierDataVersion API function, 585,

586

AimmsIdentifierDelete API function, 585, 586

AimmsIdentifierEmpty API function, 585, 586

AimmsIdentifierHandleCreatePermuted API

function, 585

AimmsIdentifierUpdate API function, 585, 586

AimmsInterruptCallbackInstall API function,

602

AimmsInterruptPending API function, 602

AimmsIsReadOnly API function, 608

AimmsIsRunnable API function, 608

AimmsMeAllowedChildTypes API function, 606

AimmsMeAttributeName API function, 606

AimmsMeAttributes API function, 606

AimmsMeCloseNode API function, 605

AimmsMeCompile API function, 608

AimmsMeCreateNode API function, 605

AimmsMeCreateRuntimeLibrary API function, 605

AimmsMeDestroyNode API function, 605

AimmsMeExportNode API function, 607

AimmsMeFirst API function, 607

AimmsMeGetAttribute API function, 606

AimmsMeImportNode API function, 607

AimmsMeName API function, 606

AimmsMeNext API function, 607

AimmsMeNodeAllowedTypes API function, 607

AimmsMeNodeChangeType API function, 607

AimmsMeNodeExists API function, 605

AimmsMeNodeMove API function, 607

AimmsMeNodeRename API function, 607

AimmsMeOpenNode API function, 605

AimmsMeOpenRoot API function, 605

AimmsMeParent API function, 607

AimmsMeRelativeName API function, 606

AimmsMeRootCount API function, 605

AimmsMeSetAttribute API function, 606

AimmsMeType API function, 606

AimmsMeTypeName API function, 606

AimmsProcedureArgumentHandleCreate API

function, 593, 594

AimmsProcedureAsyncRunCreate API function,

593, 594

AimmsProcedureAsyncRunDelete API function,

593, 595

AimmsProcedureAsyncRunStatus API function,

593, 595

AimmsProcedureHandleCreate API function, 593

AimmsProcedureHandleDelete API function, 593

AimmsProcedureRun API function, 593

AimmsProjectClose API function, 598, 599

AimmsProjectOpen API function, 598

AimmsProjectWindow API function, 598, 599

AimmsServerProjectOpen API function, 598, 599

AimmsSetAddElement API function, 590, 591

AimmsSetAddElementMulti API function, 591,

592

AimmsSetAddElementRecursive API function, 591

AimmsSetAddElementRecursiveMulti API

function, 591, 592

AimmsSetDeleteElement API function, 591

AimmsSetElementNumber API function, 592

AimmsSetElementToName API function, 591, 592

AimmsSetElementToOrdinal API function, 591,

592

AimmsSetNameToElement API function, 591, 592

AimmsSetNameToOrdinal API function, 591, 592

AimmsSetOrdinalToElement API function, 591,

592

AimmsSetOrdinalToName API function, 591, 592

AimmsSetRenameElement API function, 591

AimmsString API type, 580

AimmsThreadAttach API function, 600

AimmsThreadDetach API function, 600

AIMMSUSERDLL environment variable, 154

AimmsValue API type, 580

AimmsValueAssign API function, 587, 589, 591

AimmsValueAssignMulti API function, 587, 589

AimmsValueCard API function, 587

AimmsValueDoubleToMapval API function, 587,

589

AimmsValueMapvalToDouble API function, 587,

589

AimmsValueNext API function, 587

AimmsValueNextMulti API function, 587, 589

AimmsValueResetHandle API function, 587

AimmsValueRetrieve API function, 587, 589

AimmsValueSearch API function, 587

algorithm

multistart, 289

stochastic Benders, 326

AllChanceApproximationTypes set, 226, 342

Index 655

AllConstraints set, 229

AllDataFiles set, 441

AllDefinedParameters set, 99

AllDefinedSets set, 99

AllGMPEvents set, 274

AllGMPExtensions set, 265

AllIdentifiers set, 20, 148, 432–434

AllIsolationLevels set, 459

AllSolutionStates set, 236

AllStochasticScenarios set, 316

AllTimeZones set, 554, 566

AllVariables set, 229

AllVariablesConstraints set, 240

AllViolationTypes set, 240

AND, 376

AND operator, 86, 179, 182

API function

AimmsAPILastError, 595, 596

AimmsAPIPassMessage, 595, 596

AimmsAPIStatus, 595, 596

AimmsAttributeCallDomain, 579, 582

AimmsAttributeDeclarationDomain, 582

AimmsAttributeDefault, 579, 580

AimmsAttributeDimension, 579, 581

AimmsAttributeElementRange, 579, 584,

589

AimmsAttributeFlags, 579, 584

AimmsAttributeFlagsGet, 579, 584

AimmsAttributeFlagsSet, 579, 584

AimmsAttributeGetUnit, 579

AimmsAttributeName, 579

AimmsAttributePermutation, 579, 583

AimmsAttributeRestriction, 579, 582

AimmsAttributeRootDomain, 579, 582

AimmsAttributeSetUnit, 579

AimmsAttributeSlicing, 579, 583

AimmsAttributeStorage, 579, 580

AimmsAttributeType, 579

AimmsControlGet, 601

AimmsControlRelease, 601

AimmsErrorCount, 597

AimmsExecutionInterrupt, 593

AimmsIdentifierCleanup, 585, 586

AimmsIdentifierCreate, 584, 585

AimmsIdentifierCreatePermuted, 585

AimmsIdentifierDataVersion, 585, 586

AimmsIdentifierDelete, 585, 586

AimmsIdentifierEmpty, 585, 586

AimmsIdentifierHandleCreatePermuted,

585

AimmsIdentifierUpdate, 585, 586

AimmsInterruptCallbackInstall, 602

AimmsInterruptPending, 602

AimmsIsReadOnly, 608

AimmsIsRunnable, 608

AimmsMeAllowedChildTypes, 606

AimmsMeAttributeName, 606

AimmsMeAttributes, 606

AimmsMeCloseNode, 605

AimmsMeCompile, 608

AimmsMeCreateNode, 605

AimmsMeCreateRuntimeLibrary, 605

AimmsMeDestroyNode, 605

AimmsMeExportNode, 607

AimmsMeFirst, 607

AimmsMeGetAttribute, 606

AimmsMeImportNode, 607

AimmsMeName, 606

AimmsMeNext, 607

AimmsMeNodeAllowedTypes, 607

AimmsMeNodeChangeType, 607

AimmsMeNodeExists, 605

AimmsMeNodeMove, 607

AimmsMeNodeRename, 607

AimmsMeOpenNode, 605

AimmsMeOpenRoot, 605

AimmsMeParent, 607

AimmsMeRelativeName, 606

AimmsMeRootCount, 605

AimmsMeSetAttribute, 606

AimmsMeType, 606

AimmsMeTypeName, 606

AimmsProcedureArgumentHandleCreate,

593, 594

AimmsProcedureAsyncRunCreate, 593, 594

AimmsProcedureAsyncRunDelete, 593, 595

AimmsProcedureAsyncRunStatus, 593, 595

AimmsProcedureHandleCreate, 593

AimmsProcedureHandleDelete, 593

AimmsProcedureRun, 593

AimmsProjectClose, 598, 599

AimmsProjectOpen, 598

AimmsProjectWindow, 598, 599

AimmsServerProjectOpen, 598, 599

AimmsSetAddElement, 590, 591

AimmsSetAddElementMulti, 591, 592

AimmsSetAddElementRecursive, 591

AimmsSetAddElementRecursiveMulti, 591,

592

AimmsSetDeleteElement, 591

AimmsSetElementNumber, 592

AimmsSetElementToName, 591, 592

AimmsSetElementToOrdinal, 591, 592

AimmsSetNameToElement, 591, 592

AimmsSetNameToOrdinal, 591, 592

AimmsSetOrdinalToElement, 591, 592

AimmsSetOrdinalToName, 591, 592

AimmsSetRenameElement, 591

AimmsThreadAttach, 600

AimmsThreadDetach, 600

AimmsValueAssign, 587, 589, 591

AimmsValueAssignMulti, 587, 589

AimmsValueCard, 587

AimmsValueDoubleToMapval, 587, 589

AimmsValueMapvalToDouble, 587, 589

AimmsValueNext, 587

AimmsValueNextMulti, 587, 589

AimmsValueResetHandle, 587

AimmsValueRetrieve, 587, 589

AimmsValueSearch, 587

API type

AimmsString, 580

Index 656

AimmsValue, 580

application programming interface

accessing sets, 590

communicating values, 587

handle, 575

handle attributes, 579

handle management, 584

header file, 578

import library, 578

opening a project, 598

passing errors, 595

Raising and handling errors, 596

return value, 578

running procedures, 593

thread synchronization, 599

application programming interface (API), 575

APPLY operator, 148

use in constraint, 149

Approximation attribute, 226, 342

arc

attribute

Cost, 418

Default, 417

From, 418

FromMultiplier, 418

IndexDomain, 417

NonvarStatus, 417

Priority, 417

Property, 417

Range, 417

RelaxStatus, 417

To, 418

ToMultiplier, 418

Unit, 417

index binding, 131

property

SemiContinuous, 419

Arc declaration, 417

ArcCos function, 77, 181

ArcCosh function, 77, 181

ArcSin function, 77, 181

ArcSinh function, 77, 181

ArcTan function, 77, 181

ArcTanh function, 77, 181

ArgMax operator, 13, 60, 180, 182

ArgMin operator, 60, 180, 182

argument

actual, 144

domain checking, 143

external, 157

formal, 136

over subdomain, 146

range checking, 136

sliced, 145

tag, 147

unit of measurement, 138, 524

Arguments attribute, 91, 136, 456

arithmetic extensions, 72

arithmetic function, 76

array translation type, 157

ASSERT statement, 427

assert-statement diagram, 428

assertion

attribute

Action, 427

AssertLimit, 427

Definition, 426

Property, 427

Text, 426

FailCount operator, 427

sliced verification, 428

verifying, 427

Assertion declaration, 425

AssertLimit attribute, 427

assignment, 103

binding domain, 104

conditional, 104

index binding, 104, 131

operator, 104

sequential execution, 105

versus FOR statement, 106, 114

with element parameter, 107

with lag and lead, 107

assignment-statement diagram, 103

Atleast operator, 90

Atmost operator, 90

atomic unit, 515

attribute

Action, 427

ActivatingCondition, 221

Activities, 387

Approximation, 226, 342

Arguments, 91, 136, 456

AssertLimit, 427

BaseUnit, 516

BeginChange, 392

BeginDate, 545

Body, 24, 137

BodyCall, 156

ComesBefore, 390

Comment, 19, 32

Complement, 412

Constraints, 229

Convention, 154, 231, 449, 497, 536, 613

Conversion, 517

Cost, 418

CurrentPeriod, 547

DataSource, 447

Default, 44, 210, 373, 417, 538

Definition, 24, 34, 44, 91, 211, 217, 373,

416, 426, 538, 548

Dependency, 216, 343

DerivativeCall, 165

Device, 496

Direction, 229

Distribution, 46

DllName, 154

Encoding, 159, 497

EndChange, 392

EndDate, 545

FirstActivity, 390

From, 418

Index 657

FromMultiplier, 418

GroupDefinition, 389

GroupSet, 389

GroupTransition, 389

Index, 32

IndexDomain, 37, 42, 141, 208, 216, 411,

416, 417, 450

InitialData, 26, 423, 464

InitialLevel, 392

Interface, 621

IntervalLength, 547

LastActivity, 390

Length, 382

LevelChange, 392

LevelRange, 391

Mapping, 448

Mode, 497

Name, 496

NonvarStatus, 212, 412, 417

Objective, 228

OrderBy, 32, 36, 55, 203

Owner, 447, 456

Parameter, 32

PerIdentifier, 535

PerQuantity, 535

PerUnit, 535

Precedes, 390

Prefix, 617, 621

Priority, 211, 383, 417

Probability, 226, 341

Property, 34, 45, 140, 155, 213, 218,

373, 382, 387, 413, 416, 417, 427,

447, 456

Protected, 619

Public, 618

Quantity, 537

Range, 38, 43, 142, 208, 373, 411, 417

Region, 46, 334

RelaxStatus, 213, 417

ReturnType, 154

ScheduleDomain, 381, 387

Size, 382

SosWeight, 219

SourceFile, 614

SQLQuery, 456

Stage, 216, 317

StoredProcedure, 456

SubsetOf, 32

TableName, 447

Text, 19, 32, 45, 426

TimeslotFormat, 546, 561

To, 418

ToMultiplier, 418

Transition, 388

Type, 231

Uncertainty, 46, 337

Unit, 45, 142, 211, 412, 416, 417, 518,

544

Usage, 386

Variables, 229

ViolationPenalty, 231

XML, 476

authors

Bisschop, J.J., xxiii

Roelofs, G.H.M., xxiii

B

BACKUP mode

in READ and WRITE statements, 442

base unit, 515

BaseUnit attribute, 516

Basic property, 214, 223

basic quantity, 515

.Basic suffix, 214, 223

basic variable, 214

Begin suffix, 380

BeginChange attribute, 392

BeginDate attribute, 545

.BestBound suffix, 233, 234

Beta function, 80, 637

.Beyond suffix, 549

Binary range, 43, 208

binding domain, 52

assignment, 104

binding-domain diagram, 52

binding-element diagram, 52

binding-tuple diagram, 52

Binomial function, 80, 631

BLOCK statement, 117

block-statement diagram, 118

Body attribute, 24, 137

BodyCall attribute, 156

.BodyCurrentColumn suffix, 508

.BodyCurrentRow suffix, 508

.BodySize suffix, 508

Bound property, 223

Bounded distribution, 340

BREAK statement, 110, 115

WHEN clause, 110

BY modifier, 51

C

Calc, 468

calendar

attribute

BeginDate, 545

EndDate, 545

TimeslotFormat, 561

Unit, 544

communicating with databases, 460

daylight saving time, 547

example of use, 546

use of, 544

Calendar declaration, 544

Calendar identifier, 543

call to procedure or function, 143

callback, 232, 251

.CallbackAddCut suffix, 234, 235

.CallbackAOA suffix, 234

.CallbackIncumbent suffix, 234

Index 658

.CallbackIterations suffix, 233, 234

.CallbackProcedure suffix, 234

.CallbackReturnStatus suffix, 234, 236

.CallbackStatusChange suffix, 234

.CallbackTime suffix, 234

calling convention

C versus Fortran, 167

Win32, 162

Card function, 59, 77

card translation type, 157

Cartesian product, 52

case

reference, 22

case reference, 75

case sensitivity, 22

Ceil function, 77, 181

chance constraint, 332, 339

Chance property, 225

changeover, 388

character, 20

CHECKING clause, 442, 444

clause

CHECKING, 442, 444

FILTERING, 442, 444

WHEN, 110, 117, 139

WHERE, 445

CLEANDEPENDENTS statement, 204, 430

CLEANUP statement, 430, 444

cleanup-statement diagram, 430

closing a file, 499

Cobb-Douglas function, 141, 152, 165

CoefficientRange property, 215

COLDIM keyword, 504

COLSPERLINE keyword, 504

column generation, 282

Combination function, 84

Combination operator, 182

combinatoric function, 82

ComesBefore attribute, 390

comment, 25

Comment attribute, 19, 32

CommitTransaction procedure, 458

comparison

element, 88

numerical, 87

set, 89

string, 90

Complement attribute, 412

.Complement suffix, 413

complementarity problem, 407

complementarity variable

attribute

Complement, 412

IndexDomain, 411

NonvarStatus, 412

Property, 413

Range, 411

Unit, 412

suffix

.Complement, 413

ComplementaryVariable declaration, 411

composite table

created by DISPLAY statement, 505

COMPOSITE TABLE keyword, 9, 438, 466

composite-header diagram, 467

composite-row diagram, 467

composite-table diagram, 467

computed unit expression, 530

conditional expression, 83

conditional-expression diagram, 83

constraint

allowed relations, 217

attribute

ActivatingCondition, 221

Approximation, 226, 342

Definition, 217

IndexDomain, 216

Probability, 226, 341

Property, 218

SosWeight, 219

chance, 332, 339

element, 375

implied by variable definition, 215

index binding, 131

indicator, 221, 262

lazy, 222, 262

meta, 376

non-anticipativity, 317

property

Basic, 223

Bound, 223

Chance, 225

Level, 223

NoSave, 218

RightHandSideRange, 224

ShadowPrice, 223

ShadowPriceRange, 224

Sos1, 219

Sos2, 219

shadow price, 223

suffix

.Basic, 223

.Convex, 225, 262

.ExtendedConstraint, 265

.ExtendedVariable, 265

.LargestRightHandSide, 224

.LargestShadowPrice, 224

.Lower, 223

.NominalRightHandSide, 224

.RelaxationOnly, 225, 262

.ShadowPrice, 223

.SmallestRightHandSide, 224

.SmallestShadowPrice, 224

.Upper, 223

.Violation, 242

table, 376

uncertainty, 337

use of, 5, 216

use of distributions, 81

use of external function, 164

use of horizon, 547

user cut, 222, 262

Index 659

Constraint declaration, 216

constraint listing, 509, 510

constraint programming, 370

Constraints attribute, 229

ConstraintVariables function, 53, 230

constructed set, 51

index binding, 131

constructed-set diagram, 52

Contiguous property, 382

convention

application order, 536

attribute

PerIdentifier, 535

PerQuantity, 535

PerUnit, 535

semantics, 536

Convention attribute, 154, 231, 449, 497, 536,

613

Convention declaration, 534

Convention identifier, 449

convention-list diagram, 535

conventions

lexical, 20

notational, 19

conversion

element to string, 70

string to element, 69

Conversion attribute, 517

conversion specifier, 65

date-specific, 561

period-specific, 563

time-specific, 563

ConvertReferenceDate function, 571

ConvertUnit function, 530

.Convex suffix, 225, 262

Correlation operator, 82, 644

Cos function, 77, 181

Cosh function, 77, 181

Cost attribute, 418

Count operator, 78, 180, 182

cp::ActivityBegin function, 396

cp::ActivityEnd function, 396

cp::ActivityLength function, 396

cp::ActivitySize function, 396

cp::AllDifferent function, 378

cp::Alternative function, 395

cp::BeginAtBegin function, 395

cp::BeginAtEnd function, 395

cp::BeginBeforeBegin function, 395

cp::BeginBeforeEnd function, 395

cp::BeginOfNext function, 396

cp::BeginOfPrevious function, 396

cp::BinPacking function, 378

cp::Cardinality function, 378

cp::Channel function, 378

cp::Count function, 378

cp::EndAtBegin function, 395

cp::EndAtEnd function, 395

cp::EndBeforeBegin function, 395

cp::EndBeforeEnd function, 395

cp::EndOfNext function, 396

cp::EndOfPrevious function, 396

cp::GroupOfNext function, 396

cp::GroupOfPrevious function, 396

cp::LengthOfNext function, 396

cp::LengthOfPrevious function, 396

cp::Lexicographic function, 378

cp::ParallelSchedule function, 379

cp::Sequence function, 378

cp::SequentialSchedule function, 378

cp::SizeOfNext function, 396

cp::SizeOfPrevious function, 396

cp::Span function, 395

cp::Synchronize function, 395

create

histogram, 645

CreateScenarioData procedure, 321

CreateScenarioTree procedure, 318

CreateTimeTable procedure, 550

example of use, 552

CROSS operator, 52

cumulative, 379

CumulativeDistribution function, 79

current time

convert to elapsed time, 570

convert to string, 568

convert to time slot, 568

CurrentAutoUpdatedDefinitions set, 99

CurrentFile parameter, 499

CurrentFileName parameter, 499

CurrentPeriod attribute, 547

CurrentToMoment function, 570

CurrentToString function, 568

CurrentToTimeSlot function, 568

D

data

control, 428

enforcing domain restriction, 439

inactive, 430

initialization, 26, 422

page, 27

text format, 462

data entry

unit-based scaling, 526

data file

allowed formats, 462

data initialization, 8

DATA keyword, 9, 48, 50, 74

data source

of READ and WRITE statements, 441

DATA TABLE keyword, 9, 464

data-selection diagram, 103

database, 446

checking existence, 459

date-time values, 460

SQL query, 455

stored procedure, 455

use of database procedure, 442

use of views for filtering, 442

database procedure, 455

Index 660

attribute

Arguments, 456

Convention, 536

Owner, 456

Property, 456

SQLQuery, 456

StoredProcedure, 456

example of use, 457

input-output type, 456

property

UseResultSet, 456

database table

attribute

Convention, 449, 536

DataSource, 447

IndexDomain, 450

Mapping, 448

Owner, 447

Property, 447

TableName, 447

compare to composite table, 466

creation of record, 452

EMPTY statement, 429, 453

FILTERING clause, 453

indexed, 450

mapping column names, 448

property

No Implicit Mapping, 447

ReadOnly, 447

removal of record, 452

REPLACE COLUMNS mode, 452

REPLACE ROWS mode, 452

restrictions, 451

TRUNCATE statement, 453

DatabaseProcedure declaration, 455

DatabaseTable declaration, 446

DatabaseTable identifier, 441

DataSource attribute, 447

daylight saving time, 547

reference date, 545

TimeSlotCharacteristic, 554

DaylightSavingEndDate function, 570

DaylightSavingStartDate function, 570

DECIMALS keyword, 504

declaration

Activity, 380

Arc, 417

Assertion, 425

attributes, 19

Calendar, 544

ComplementaryVariable, 411

Constraint, 216

Convention, 534

DatabaseProcedure, 455

DatabaseTable, 446

ElementParameter, 41

ElementVariable, 373

ExternalFunction, 153

ExternalProcedure, 153

File, 154, 496

Function, 141

Handle, 156

Horizon, 547

identifier types, 19

Index, 38

LibraryModule, 620

MACRO, 91

MathematicalProgram, 228

Model, 613

Module, 614

Node, 416

Parameter, 41

Procedure, 136

Quantity, 515

Resource, 386

Section, 613

section, 17

Set, 30

StringParameter, 41

UnitParameter, 41

Variable, 208

Default attribute, 44, 210, 373, 417, 538

DEFAULT selector, 116

defined parameter

versus macro, 93

defined variable, 7

versus macro, 93

definition

allowed expressions, 97

dependency graph, 94

lazy evaluation, 99

self-reference, 97

use of functions and procedures, 97

when to avoid, 198

Definition attribute, 24, 34, 44, 91, 211, 217,

373, 416, 426, 538, 548

.DefinitionViolation suffix, 242

degeneracy, 255

Degrees function, 77

delimiter, 24

delimiter time slot, 551

DENSE mode

in WRITE statements, 444

dependency

cyclic, 95

graph, 94

Dependency attribute, 216, 343

depot location problem, 2

derivative

numerical differencing, 167

of a function, 165

.Derivative suffix, 165, 166

DerivativeCall attribute, 165

derived quantity, 515

derived unit, 515, 517

Device attribute, 496

difference

set, 52

Direction attribute, 229

DirectSQL procedure, 458

Disaggregate procedure, 555

example of use, 557

Index 661

disjunctive, 378

display

unit-based scaling, 526

DISPLAY statement, 462, 498, 503

default format, 504

example of use, 505

format specification, 504

horizon-based data, 550

undirected output, 498

display-format diagram, 504

display-statement diagram, 504

distribution

Bounded, 340

Gaussian, 340

location parameter, 634

scale parameter, 634

set seed, 79

shape parameter, 634

Support, 340

Symmetric, 340

Unimodal, 340

unit of measurement, 82

Distribution attribute, 46

distribution function, 79, 630

Beta, 80, 637

Binomial, 80, 631

CumulativeDistribution, 79

Exponential, 80, 637

ExtremeValue, 80, 639

Gamma, 80, 638

Geometric, 80, 633

HyperGeometric, 80, 632

InverseCumulativeDistribution, 79

Logistic, 80, 639

LogNormal, 80, 637

NegativeBinomial, 80, 632

Normal, 80, 639

Pareto, 80, 639

Poisson, 80, 632

Triangular, 80, 636

Uniform, 80, 636

use in constraint, 81

Weibull, 80, 638

DistributionDeviation operator, 83

DistributionKurtosis operator, 83

DistributionMean operator, 83

DistributionSkewness operator, 83

DistributionVariance operator, 83

Div function, 77

division, 76

DllName attribute, 154

documentation

deployment features, xix

domain

binding, 52, 104

checking, 440

condition, 7, 104

extending, 440

index, see index domain

domain checking, 143

domain condition, 4

Domain restrictions, 375

dominance rule, 133

DoMultiStart procedure, 292

DoStochasticDecomposition procedure, 329

double external data type, 158

Double property, 45

dual mathematical program, 256

matrix manipulation, 265

E

efficiency, 183

element order, 203

FOR with ordered set, 203

lag/lead operator, 204

elapsed time, 569

convert to string, 569

convert to time slot, 569

element, 23

as singleton set, 57

convert to string, 70

integer, 23

reference, 58

use of quotes, 23

value, 24

XML, 476

element comparison, 88

element constraint, 375

element expression, 58

Element function, 59

element parameter

in assignment, 107

element range, 49

BY modifier, 51

integer, 51

nonconsecutive, 51

element variable

attribute

Default, 373

Definition, 373

Property, 373

Range, 373

property

EmptyElementAllowed, 373

NoSave, 373

element-expression diagram, 58

element-range diagram, 50

element-tuple diagram, 49

element-valued function, 59

Element, 59

ElementCast, 59, 133

Min, 60

StringToElement, 70

Val, 59, 60

element-valued iterative operator, 60

ArgMax, 13, 60, 180, 182

ArgMin, 60, 180, 182

First, 60, 180

Last, 60, 180

Max, 60

Min, 60

Index 662

Nth, 60, 180

ElementCast function, 59, 133

elementnumber translation modifier, 161

ElementParameter declaration, 41

ElementRange function, 50, 54

ElementsAreLabels property, 34, 35

ElementsAreNumerical property, 34, 35

ElementVariable declaration, 373

EMPTY statement, 429

database table, 429, 453

empty-statement diagram, 429

EmptyElementAllowed property, 373

Encoding attribute, 159, 497

End suffix, 380

end-user page, 495

EndChange attribute, 392

EndDate attribute, 545

enumerated list, 73, 462

enumerated set, 35, 48, 462

relation, 51

enumerated-list diagram, 74

enumerated-set diagram, 49

environment variable

AIMMSUSERDLL, 154

PATH, 154

ErrorF function, 77

EvaluateUnit function, 532

event, 273

Exactly operator, 90

example projects, xx

Excel, 468

execution

assignment, 105

compare to spreadsheet, 94

definitions in procedures, 102

efficiency, 183

nonprocedural, 24, 99

of definitions, 94

procedural, 24, 102

statement, 103

Exists, 376

Exists operator, 90, 182

Exp function, 77

Exponential function, 80, 637

expression, 25, 47

conditional, 83

constant, 47, 71

element, 58

IF-THEN-ELSE, 84

list, 73

logical, 85

numerical, 71

ONLYIF, 83

reference, 74

set, 47

string, 63

symbolic, 47, 71

unit, 528

unit consistency, 521

expression-inclusion diagram, 87

expression-relationship diagram, 87

extended arithmetic, 72

in functions, 76

logical value, 85

numerical comparison, 88

.ExtendedConstraint suffix, 265

.ExtendedVariable suffix, 265

external argument, 157

actual, 157

external data type, 158

full versus sparse, 160

input-output type, 158

set, 161

translation modifier, 160

translation type, 157

external data type, 158

double, 158

integer, 158

integer16, 158

integer32, 158

integer8, 158

string, 158

external function

attribute

DerivativeCall, 165

suffix

.Derivative, 166

use in constraint, 164

external procedure or function, 151

attribute

BodyCall, 156

DllName, 154

Property, 155

ReturnType, 154

C versus Fortran, 167

calling convention, 162

name mangling, 163

property

FortranConventions, 155

UndoSafe, 155

external-argument diagram, 157

external-call diagram, 156

ExternalFunction declaration, 153

ExternalProcedure declaration, 153

ExtremeValue function, 80, 639

F

Factorial function, 84, 181

FailCount operator, 427

file

attribute

Convention, 154, 497, 536

Device, 496

Encoding, 497

Mode, 497

Name, 496

closing, 499

listing, 495, 509

opening, 498

page versus stream mode, 498, 507

suffix

Index 663

.BodyCurrentColumn, 508

.BodyCurrentRow, 508

.BodySize, 508

.FooterCurrentColumn, 508

.FooterCurrentRow, 508

.FooterSize, 508

.HeaderCurrentColumn, 508

.HeaderCurrentRow, 508

.HeaderSize, 508

.PageMode, 507, 508

.PageNumber, 508

.PageSize, 507, 508

.PageWidth, 507, 508

File declaration, 154, 496

FILE identifier, 441

filtering

diversity filter, 220

range filter, 221

solution pool, 220

FILTERING clause, 442, 444

filtering semantics, 445

financial function, 82

FindNthString function, 68

FindString function, 68

FindUsedElements procedure, 432

First operator, 60, 180

FirstActivity attribute, 390

fixed recourse, 344

Floor function, 77, 181

flow control statement, 107

BLOCK, 117

BREAK, 110, 115

FOR, 112, 203

HALT, 116

IF-THEN-ELSE, 108

OnError, 119

REPEAT, 109

RETURN, 116

SKIP, 110, 115

SWITCH, 115

WHILE, 109

flow-control-statement diagram, 108

FlowCost keyword, 415, 418, 419

footer (page mode), 508

.FooterCurrentColumn suffix, 508

.FooterCurrentRow suffix, 508

.FooterSize suffix, 508

FOR statement, 112, 203

index binding, 131

integer domain, 113

loop string, 112

non-integer domain, 113

versus assignment, 106, 114

for-statement diagram, 113

Forall, 376

ForAll operator, 90, 180, 182

formal argument, 136

format

period, 560

reference date, 545

format specification

in DISPLAY statement, 504

in FormatString function, 65

in PUT statement, 501

format-field diagram, 501

FormatString function, 65, 458, 501

formatting strings, 65

alignment, 66

conversion specifier, 65

field width, 66

precision, 66

special characters, 67

FortranConventions property, 155

From attribute, 418

FromMultiplier attribute, 418

function

Abs, 77

ArcCos, 77, 181

ArcCosh, 77, 181

ArcSin, 77, 181

ArcSinh, 77, 181

ArcTan, 77, 181

ArcTanh, 77, 181

argument

unit of measurement, 138, 524

arithmetic, 76

as data, 148

attribute

IndexDomain, 141

Range, 142

Unit, 142

call, 143

Card, 59, 77

Ceil, 77, 181

Cobb-Douglas, 141, 152, 165

Combination, 84

combinatoric, 82

ConvertReferenceDate, 571

ConvertUnit, 530

Cos, 77, 181

Cosh, 77, 181

cp::ActivityBegin, 396

cp::ActivityEnd, 396

cp::ActivityLength, 396

cp::ActivitySize, 396

cp::AllDifferent, 378

cp::Alternative, 395

cp::BeginAtBegin, 395

cp::BeginAtEnd, 395

cp::BeginBeforeBegin, 395

cp::BeginBeforeEnd, 395

cp::BeginOfNext, 396

cp::BeginOfPrevious, 396

cp::BinPacking, 378

cp::Cardinality, 378

cp::Channel, 378

cp::Count, 378

cp::EndAtBegin, 395

cp::EndAtEnd, 395

cp::EndBeforeBegin, 395

cp::EndBeforeEnd, 395

cp::EndOfNext, 396

Index 664

cp::EndOfPrevious, 396

cp::GroupOfNext, 396

cp::GroupOfPrevious, 396

cp::LengthOfNext, 396

cp::LengthOfPrevious, 396

cp::Lexicographic, 378

cp::ParallelSchedule, 379

cp::Sequence, 378

cp::SequentialSchedule, 378

cp::SizeOfNext, 396

cp::SizeOfPrevious, 396

cp::Span, 395

cp::Synchronize, 395

CurrentToMoment, 570

CurrentToString, 568

CurrentToTimeSlot, 568

DaylightSavingEndDate, 570

DaylightSavingStartDate, 570

Degrees, 77

derivative by differencing, 167

derivative computation, 165

distribution, 79, 630

Div, 77

element-valued, 59

ErrorF, 77

EvaluateUnit, 532

Exp, 77

extended arithmetic, 76

external, 151

Factorial, 84, 181

financial, 82

Floor, 77, 181

FormatString, 458

GenerateXML, 481

GMP::Benders namespace

CreateMasterProblem, 277

CreateSubProblem, 277

GMP::Coefficient namespace

Get, 260

GetQuadratic, 260

GMP::Column namespace

GetLowerBound, 263

GetStatus, 263

GetType, 263

GetUpperBound, 263

GMP::Event namespace

Create, 273

Delete, 273

Reset, 273

Set, 273

GMP::Instance namespace

Copy, 249

CreateDual, 249

CreateFeasibility, 249

CreatePresolved, 249

CreateSolverSession, 249

Generate, 249

GetColumnNumbers, 249

GetDirection, 249

GetMathematicalProgrammingType, 249

GetNumberOfColumns, 249

GetNumberOfNonzeros, 249

GetNumberOfRows, 249

GetObjectiveColumnNumber, 249

GetObjectiveRowNumber, 249

GetRowNumbers, 249

GetSolver, 249

GetSymbolicMathematicalProgram, 249

GMP::Linearization namespace

GetDeviation, 278

GetDeviationBound, 278

GetLagrangeMultiplier, 278

GetType, 278

GetWeight, 278

GMP::QuadraticCoefficient namespace

Get, 261

GMP::Row namespace

GetLeftHandSide, 262

GetRightHandSide, 262

GetStatus, 262

GetType, 262

GMP::Solution namespace

GetColumnValue, 269

GetObjective, 269

GetProgramStatus, 269

GetRowValue, 269

GetSolutionsSet, 269

GetSolverStatus, 269

SetProgramStatus, 269

SetSolverStatus, 269

GMP::SolverSession namespace

CreateProgressCategory, 270

ExecutionStatus, 270

GenerateCut, 270

GetBestBound, 270

GetCallbackInterruptStatus, 270

GetCandidateObjective, 270

GetInstance, 270

GetIterationsUsed, 270

GetMemoryUsed, 270

GetNodeNumber, 270

GetNodeObjective, 270

GetNodesLeft, 270

GetNodesUsed, 270

GetNumberOfBranchNodes, 270

GetObjective, 270

GetOptionValue, 270

GetProgramStatus, 270

GetSolver, 270

GetSolverStatus, 270

GetTimeUsed, 270

Interrupt, 270

SetOptionValue, 270

SetSolverStatus, 270

Transfer, 270

WaitForCompletion, 270

WaitForSingleCompletion, 270

GMP::Stochastic namespace

BendersFindFeasibilityReference, 276

BendersFindReference, 276

CreateBendersRootproblem, 276

GetObjectiveBound, 276

Index 665

GetRelativeWeight, 276

HistogramGetAverage, 646, 648

HistogramGetDeviation, 646, 648

HistogramGetKurtosis, 646, 648

HistogramGetObservationCount, 646, 648

HistogramGetSkewness, 646, 648

internal, 140

Log, 77

Log10, 77

MainInitialization, 26

MapVal, 77

Max, 77

me namespace

AllowedAttribute, 625

ChildTypeAllowed, 625

Create, 625

CreateLibrary, 625

GetAttribute, 625

IsRunnable, 625

Parent, 625

Type, 625

TypeChangeAllowed, 625

Min, 77

Mod, 77

MomentToString, 569

MomentToTimeSlot, 569

NonDefault, 77

objective, 7

Ord, 59, 77

PeriodToString, 563, 568

Permutation, 84

Power, 77

Precision, 77

Radians, 77

ReadGeneratedXML, 481

ReadXML, 493

result, 141

Round, 77, 181

set-valued, 53

Sign, 77

Sin, 77, 181

Sinh, 77, 181

Spreadsheet::AddNewSheet, 470

Spreadsheet::AssignParameter, 471

Spreadsheet::AssignSet, 471

Spreadsheet::AssignTable, 471

Spreadsheet::AssignValue, 471

Spreadsheet::ClearRange, 470

Spreadsheet::CloseWorkbook, 470

Spreadsheet::ColumnName, 470

Spreadsheet::ColumnNumber, 470

Spreadsheet::CopyRange, 470

Spreadsheet::CreateWorkbook, 470

Spreadsheet::DeleteSheet, 470

Spreadsheet::Print, 470

Spreadsheet::RetrieveParameter, 471

Spreadsheet::RetrieveSet, 471

Spreadsheet::RetrieveTable, 471

Spreadsheet::RetrieveValue, 471

Spreadsheet::RunMacro, 470

Spreadsheet::SaveWorkbook, 470

Spreadsheet::SetActiveSheet, 470

Spreadsheet::SetUpdateLinksBehavior,

470

Spreadsheet::SetVisibility, 470

Sqr, 77

Sqrt, 77

string, 65, 67, 68

StringToMoment, 569

StringToTimeSlot, 568

StringToUnit, 530

suffix

.Derivative, 165

tagged argument, 147

Tan, 77, 181

Tanh, 77, 181

TimeslotCharacteristic, 553

TimeSlotToMoment, 569

TimeSlotToString, 568

TimeZoneOffSet, 570

Trunc, 77, 181

Unit, 530

unit-conversion, 523

unit-transparent, 523

unitless, 523

Val, 24

WriteXML, 493

Function declaration, 141

function-call diagram, 144

G

Gamma function, 80, 638

Gaussian distribution, 340

generalized network problem, 419

GenerateCut procedure, 235

generated mathematical program instance,

246, 248

GenerateXML function, 481

.GenTime suffix, 233

Geometric function, 80, 633

GeometricMean operator, 82, 182, 642

GMP::Benders namespace

AddFeasibilityCut procedure, 277

AddOptimalityCut procedure, 277

CreateMasterProblem function, 277

CreateSubProblem function, 277

UpdateSubProblem procedure, 277

GMP::Coefficient namespace

Get function, 260

GetQuadratic function, 260

Set procedure, 260

SetMulti procedure, 264

SetQuadratic procedure, 260

GMP::Column namespace

Add procedure, 263

AddMulti procedure, 264

Delete procedure, 263

DeleteMulti procedure, 264

Freeze procedure, 263

FreezeMulti procedure, 264

GetLowerBound function, 263

Index 666

GetStatus function, 263

GetType function, 263

GetUpperBound function, 263

SetAsMultiObjective procedure, 263

SetAsObjective procedure, 263

SetDecomposition procedure, 263

SetDecompositionMulti procedure, 264

SetLowerBound procedure, 263

SetLowerBoundMulti procedure, 264

SetType procedure, 263

SetTypeMulti procedure, 264

SetUpperBound procedure, 263

SetUpperBoundMulti procedure, 264

Unfreeze procedure, 263

UnfreezeMulti procedure, 264

GMP::Event namespace

Create function, 273

Delete function, 273

Reset function, 273

Set function, 273

GMP::Instance namespace

AddIntegerEliminationRows procedure,

249

Copy function, 249

CreateDual function, 249

CreateDual procedure, 256

CreateFeasibility function, 249

CreateMasterMIP procedure, 249

CreatePresolved function, 249

CreateProgressCategory procedure, 249

CreateSolverSession function, 249

Delete procedure, 249

DeleteIntegerEliminationRows

procedure, 249

DeleteMultiObjectives procedure, 249

DeleteSolverSession procedure, 249

FindApproximatelyFeasibleSolution

procedure, 249

FixColumns procedure, 249

Generate function, 249

GenerateRobustCounterpart procedure,

249

GenerateStochasticProgram procedure,

249, 324

GetBestBound procedure, 249

GetColumnNumbers function, 249

GetDirection function, 249

GetMathematicalProgrammingType

function, 249

GetMemoryUsed procedure, 249

GetNumberOfColumns function, 249

GetNumberOfNonzeros function, 249

GetNumberOfRows function, 249

GetObjective procedure, 249

GetObjectiveColumnNumber function, 249

GetObjectiveRowNumber function, 249

GetOptionValue procedure, 249

GetRowNumbers function, 249

GetSolver function, 249

GetSymbolicMathematicalProgram

function, 249

MemoryStatistics procedure, 249

Rename procedure, 249

SetCallbackAddCut procedure, 249

SetCallbackAddLazyConstraint

procedure, 249

SetCallbackBranch procedure, 249

SetCallbackCandidate procedure, 249

SetCallbackHeuristic procedure, 249

SetCallbackIncumbent procedure, 249

SetCallbackIterations procedure, 249

SetCallbackStatusChange procedure, 249

SetCallbackTime procedure, 249

SetCutoff procedure, 249

SetDirection procedure, 249

SetIterationLimit procedure, 249

SetMathematicalProgrammingType

procedure, 249

SetMemoryLimit procedure, 249

SetOptionValue procedure, 249

SetSolver procedure, 249

SetTimeLimit procedure, 249

Solve procedure, 249, 325, 346

GMP::Instance namespace, 248

GMP::Linearization namespace

Add procedure, 278

AddSingle procedure, 278

Delete procedure, 278

GetDeviation function, 278

GetDeviationBound function, 278

GetLagrangeMultiplier function, 278

GetType function, 278

GetWeight function, 278

RemoveDeviation procedure, 278

SetDeviationBound procedure, 278

SetType procedure, 278

SetWeight procedure, 278

GMP::ProgressWindow namespace

DeleteCategory procedure, 279

DisplayLine procedure, 279

DisplayProgramStatus procedure, 279

DisplaySolver procedure, 279

DisplaySolverStatus procedure, 279

FreezeLine procedure, 279

Transfer procedure, 279

UnfreezeLine procedure, 279

GMP::QuadraticCoefficient namespace

Get function, 261

Set procedure, 261

GMP::Robust namespace

EvaluateAdjustableVariables procedure,

276

GMP::Row namespace

Activate procedure, 262

ActivateMulti procedure, 264

Add procedure, 262

AddMulti procedure, 264

Deactivate procedure, 262

DeactivateMulti procedure, 264

Delete procedure, 262

DeleteIndicatorCondition procedure,

262

Index 667

DeleteMulti procedure, 264

Generate procedure, 262

GenerateMulti procedure, 264

GetConvex procedure, 262

GetIndicatorColumn procedure, 262

GetIndicatorCondition procedure, 262

GetLeftHandSide function, 262

GetRelaxationOnly procedure, 262

GetRightHandSide function, 262

GetStatus function, 262

GetType function, 262

SetConvex procedure, 262

SetIndicatorCondition procedure, 262

SetLeftHandSide procedure, 262

SetPoolType procedure, 262

SetPoolTypeMulti procedure, 264

SetRelaxationOnly procedure, 262

SetRightHandSide procedure, 262

SetRightHandSideMulti procedure, 264

SetType procedure, 262

SetTypeMulti procedure, 264

GMP::Solution namespace

Check procedure, 269

ConstraintListing procedure, 269

Copy procedure, 269

Count procedure, 269

Delete procedure, 269

DeleteAll procedure, 269

GetBestBound procedure, 269

GetColumnValue function, 269

GetFirstOrderDerivative procedure, 269

GetIterationsUsed procedure, 269

GetMemoryUsed procedure, 269

GetObjective function, 269

GetProgramStatus function, 269

GetRowValue function, 269

GetSolutionsSet function, 269

GetSolverStatus function, 269

GetTimeUsed procedure, 269

IsDualDegenerated procedure, 269

IsInteger procedure, 269

IsPrimalDegenerated procedure, 269

Move procedure, 269

RetrieveFromModel procedure, 269

RetrieveFromSolverSession procedure,

269

SendToModel procedure, 269

SendToModelSelection procedure, 269

SendToSolverSession procedure, 269

SetColumnValue procedure, 269

SetIterationCount procedure, 269

SetObjective procedure, 269

SetProgramStatus function, 269

SetRowValue procedure, 269

SetSolverStatus function, 269

SetSolverStatus procedure, 269

SolutionCount procedure, 269

GMP::SolverSession namespace

AsynchronousExecute procedure, 270

CreateProgressCategory function, 270

Execute procedure, 270

ExecutionStatus function, 270

GenerateCut function, 270

GetBestBound function, 270

GetCallbackInterruptStatus function,

270

GetCandidateObjective function, 270

GetInstance function, 270

GetIterationsUsed function, 270

GetMemoryUsed function, 270

GetNodeNumber function, 270

GetNodeObjective function, 270

GetNodesLeft function, 270

GetNodesUsed function, 270

GetNumberOfBranchNodes function, 270

GetObjective function, 270

GetOptionValue function, 270

GetProgramStatus function, 270

GetSolver function, 270

GetSolverStatus function, 270

GetTimeUsed function, 270

Interrupt function, 270

SetOptionValue function, 270

SetSolverStatus function, 270

Transfer function, 270

WaitForCompletion function, 270

WaitForSingleCompletion function, 270

GMP::Stochastic namespace

AddBendersFeasibilityCut procedure,

276

AddBendersOptimalityCut procedure, 276

BendersFindFeasibilityReference

function, 276

BendersFindReference function, 276

CreateBendersRootproblem function, 276

GetObjectiveBound function, 276

GetRelativeWeight function, 276

GetRepresentativeScenario procedure,

276

MergeSolution procedure, 276

UpdateBendersSubproblem procedure, 276

goal programming, 243

group-definition diagram, 389

GroupDefinition attribute, 389

GroupSet attribute, 389

GroupTransition attribute, 389

H

HALT statement, 116, 427

versus RETURN statement, 116

WHEN clause, 117

halt-statement diagram, 117

handle, 575

attributes, 579

management, 584

Handle declaration, 156

handle translation type, 157

HarmonicMean operator, 82, 182, 642

header (page mode), 508

header file, 578

.HeaderCurrentColumn suffix, 508

Index 668

.HeaderCurrentRow suffix, 508

.HeaderSize suffix, 508

histogram, 82, 645

HistogramAddObservation procedure, 646, 647

HistogramAddObservations procedure, 646

HistogramCreate procedure, 646

HistogramDelete procedure, 646

HistogramGetAverage function, 646, 648

HistogramGetBounds procedure, 646, 648

HistogramGetDeviation function, 646, 648

HistogramGetFrequencies procedure, 646, 648

HistogramGetKurtosis function, 646, 648

HistogramGetObservationCount function, 646,

648

HistogramGetSkewness function, 646, 648

HistogramSetDomain procedure, 646, 647

horizon

attribute

CurrentPeriod, 547

Definition, 548

IntervalLength, 547

example of use, 549

lag/lead operator, 549

rolling, 558

suffix

.Beyond, 549

.Past, 549

.Planning, 549

use in constraint, 548

use in variable, 548

use of, 547

Horizon declaration, 547

Horizon identifier, 543

HyperGeometric function, 80, 632

I

identifier, 21

Calendar, 543

case, 22

Convention, 449

DatabaseTable, 441

declaration types, 19

FILE, 441

Horizon, 543

Quantity, 545

identifier selection

of READ and WRITE statements, 441

identifier-part diagram, 75

identifier-slice diagram, 145

IF-THEN-ELSE expression, 84

IF-THEN-ELSE statement, 108

if-then-else-expression diagram, 84

if-then-else-statement diagram, 108

import library, 578

IN operator, 89

inactive data, 430

discard, 430

restore, 433

inactive time slot, 551

IncludeInCutPool property, 222

IncludeInLazyConstraintPool property, 222

.Incumbent suffix, 233, 234

index, 38

attribute

Range, 38

Index attribute, 32

index binding, 131

assignment, 104

binding domain, 52

context, 132

default, 132

dimension limit, 24

dominance rule, 133

horizon, 549

intersection rule, 134

local, 131

nested, 132

ordering rule, 134

rules, 133

index component, 37

Index declaration, 38

index domain, 37, 42

condition, 7, 42

index set

use of, 3

index tuple, 37

IndexDomain attribute, 37, 42, 141, 208, 216,

411, 416, 417, 450

indexed database table, 450

indexed set, 37

attribute

IndexDomain, 37

indexing, 38

timetable, 550

indicator constraint, 221, 262

indicator translation modifier, 161

IndicatorConstraint property, 221

INF special number, 72

InitialData attribute, 26, 423, 464

initialization, 26, 422

2-dimensional table, 464

by computation, 425

composite table, 466

data, 8

data validity, 425

enforcing domain restriction, 439

from a database, 425

from case files, 425

from text files, 424, 462

interactive, 422

sequence, 26, 423

sliced, 463

InitialLevel attribute, 392

Inline property, 214

InOut property, 136

Input property, 136

integer

element range, 51

integer external data type, 158

Integer property, 45

Integer range, 43, 208

Index 669

integer range, 43, 208

integer set, 34

integer translation modifier, 161

integer16 external data type, 158

Integer16 property, 45

integer32 external data type, 158

Integer32 property, 45

integer8 external data type, 158

Integer8 property, 45

Integers set, 34

interface

library, 613

Interface attribute, 621

internal function, 140

internal procedure, 135

interpolation, 557

intersection, 52

iterative, 55

Intersection operator, 55, 57, 180

intersection rule, 134

interval range, 43, 208

IntervalLength attribute, 547

InverseCumulativeDistribution function, 79

IsDiversificationFilter property, 220

IsRangeFilter property, 221

.Iterations suffix, 233

iterative operator, 55

ArgMax, 13, 60, 180, 182

ArgMin, 60, 180, 182

Atleast, 90

Atmost, 90

Correlation, 82, 644

Count, 78, 180, 182

DistributionDeviation, 83

DistributionKurtosis, 83

DistributionMean, 83

DistributionSkewness, 83

DistributionVariance, 83

element-valued, 60

Exactly, 90

Exists, 90, 182

First, 60, 180

ForAll, 90, 180, 182

GeometricMean, 82, 182, 642

HarmonicMean, 82, 182, 642

index binding, 131

Intersection, 55, 57, 180

Kurtosis, 82, 182, 643

Last, 60, 180

logical, 90, 180

Max, 60, 78, 180, 182

Mean, 82, 182, 642

Median, 82, 182, 642

Min, 60, 78, 180, 182

NBest, 55, 56, 180

Nth, 60, 180

numerical, 78

PopulationDeviation, 82, 182, 642

Prod, 78, 180, 182

RankCorrelation, 82, 644

RootMeanSquare, 82, 182, 642

SampleDeviation, 82, 182, 642

set-valued, 55

Skewness, 82, 182, 643

Sort, 33, 55, 180, 203

statistical, 81, 180, 641

Sum, 78, 180, 182

Union, 55, 57, 180

iterative-expression diagram, 55

K

keyword

COLDIM, 504

COLSPERLINE, 504

COMPOSITE TABLE, 9, 438, 466

DATA, 9, 48, 50, 74

DATA TABLE, 9, 464

DECIMALS, 504

FlowCost, 415, 418, 419

mcp, 413

mpcc, 414

mpec, 414

NetInflow, 415, 416

NetOutflow, 415, 416

ORDERED, 115, 197

ROWDIM, 504

SPARSE, 115, 197

UNORDERED, 115, 196

User, 33

Kurtosis operator, 82, 182, 643

L

lag/lead operator, 62

efficiency, 204

horizon, 549

in assignment, 107

with integer sets, 35, 63

large-scale modeling, 14

.LargestCoefficient suffix, 215

.LargestRightHandSide suffix, 224

.LargestShadowPrice suffix, 224

.LargestValue suffix, 215

Last operator, 60, 180

LastActivity attribute, 390

lazy constraint, 222, 262

lazy evaluation, 99

Length attribute, 382

Length suffix, 380

Level property, 223

level-modification diagram, 392

LevelChange attribute, 392

LevelRange attribute, 391

lexical conventions, 20

library

module, 612

interface, 613

project, 612

library module

attribute

Interface, 621

Index 670

Prefix, 621

namespace, 620

LibraryInitialization procedure, 423, 621

LibraryModule declaration, 620

LibraryTermination procedure, 424, 621

limits, 24

list

created by DISPLAY statement, 505

enumerated, 73, 462

list expression, 73

listing file, 495, 509

constraint, 509, 510

solution, 509, 511

solver status, 509

source, 509

undirected output, 509

literal translation type, 157

local set, 138

locus, 557

Log function, 77

Log10 function, 77

logical expression, 85

element comparison, 88

extended arithmetic, 85

numerical comparison, 87

numerical values as, 85

set comparison, 89

string comparison, 90

logical iterative operator, 90, 180

Atleast, 90

Atmost, 90

Exactly, 90

Exists, 90, 182

ForAll, 90, 180, 182

logical-expression diagram, 85

Logistic function, 80, 639

LogNormal function, 80, 637

loop string, 112

LoopCount operator, 12, 111

.Lower suffix, 210, 223, 511

M

macro

attribute

Arguments, 91

Definition, 91

versus defined parameter, 93

versus defined variable, 93

MACRO declaration, 91

main model

attribute

Convention, 613

MainExecution procedure, 17

MainInitialization function, 26

MainInitialization procedure, 17, 423

MainTermination procedure, 17

Mapping attribute, 448

mapping column names in databases, 448

mapping-list diagram, 449

MapVal function, 77

mathematical program, 5, 8, 227

with complementarity constraints, 414

attribute

Constraints, 229

Convention, 231, 536

Direction, 229

Objective, 228

Type, 231

Variables, 229

ViolationPenalty, 231

complementarity problem, 407

creating dual, 256

degeneracy, 255

generated instance, 246, 248

manipulating dual, 265

matrix manipulation, 258

mixed complementarity, 413

model algebra, 230

network problem, 415

non-uniqueness, 255

solution repository, 267

solver callback, 232

solver sessions, 270

solving, 8

suffix

.BestBound, 233, 234

.CallbackAddCut, 234, 235

.CallbackAOA, 234

.CallbackIncumbent, 234

.CallbackIterations, 233, 234

.CallbackProcedure, 234

.CallbackReturnStatus, 234, 236

.CallbackStatusChange, 234

.CallbackTime, 234

.ExtendedConstraint, 265

.ExtendedVariable, 265

.GenTime, 233

.Incumbent, 233, 234

.Iterations, 233

.Nodes, 233

.NumberOfBranches, 233

.NumberOfConstraints, 235

.NumberOfFails, 233

.NumberOfIndicatorConstraints, 235

.NumberOfInfeasibilities, 233

.NumberOfIntegerVariables, 235

.NumberOfNonlinearConstraints, 235

.NumberOfNonlinearNonzeros, 235

.NumberOfNonlinearVariables, 235

.NumberOfNonzeros, 235

.NumberOfSOS1Constraints, 235

.NumberOfSOS2Constraints, 235

.NumberOfVariables, 235

.Objective, 233, 234

.ProgramStatus, 233, 236

.SolutionTime, 233

.SolverCalls, 235

.SolverStatus, 233, 236

.SumOfInfeasibilities, 233

supported types, 227, 231

unit-based scaling, 526

Index 671

MathematicalProgram declaration, 228

matrix manipulation, 246, 258

column generation, 282

dual mathematical program, 265

sensitivity analysis, 281

sequential linear programming, 283

solving binary program, 281

Max function, 77

Max operator, 60, 78, 180, 182

mcp keyword, 413

me namespace

AllowedAttribute function, 625

Children procedure, 625

ChildTypeAllowed function, 625

Compile procedure, 625

Create function, 625

CreateLibrary function, 625

Delete procedure, 625

ExportNode procedure, 625

GetAttribute function, 625

ImportLibrary procedure, 625

ImportNode procedure, 625

IsRunnable function, 625

Move procedure, 625

Parent function, 625

Rename procedure, 625

SetAttribute procedure, 625

Type function, 625

TypeChange procedure, 625

TypeChangeAllowed function, 625

Mean operator, 82, 182, 642

Median operator, 82, 182, 642

membership table, 465

memory

fragmentation, 434

reclaim, 430

MERGE mode

in File declaration, 497

in READ and WRITE statements, 442

in SOLVE statement, 237

meta constraint, 376

meta constraints, 376

Min function, 60, 77

Min operator, 60, 78, 180, 182

mixed complementarity model, 413

Mod function, 77

Mode attribute, 497

model, 16, 610

attribute

Convention, 536

execution, 24

files, 19

large-scale, 14

new, 17

reformulation, 15

section, 17, 610

tree, 17

model algebra, 230

model data, 8

Model declaration, 613

modification flag, 66

modifier

BY, 51

modularization, 611

module

attribute

Prefix, 617

Protected, 619

Public, 618

SourceFile, 614

library, 612

namespace, 615

nesting, 615

reference, 75

Module declaration, 614

MomentToString function, 569

MomentToTimeSlot function, 569

mpcc keyword, 414

mpec keyword, 414

multi-objective optimization, 274

multiplication, 76

iterative, 78

multistart algorithm, 289

N

NA special number, 72, 73

Name attribute, 496

name mangling, 163

namespace, 21, 615, 620

resolution, 21

scoping rules, 615

units, 516

namespace resolution operator, 75, 617

NBest operator, 55, 56, 180

NegativeBinomial function, 80, 632

nested modules, 615

NetInflow keyword, 415, 416

NetOutflow keyword, 415, 416

network problem, 415

pure versus generalized, 419

No Implicit Mapping property, 447

node

attribute

Definition, 416

IndexDomain, 416

Property, 416

Unit, 416

Node declaration, 416

.Nodes suffix, 233

.NominalCoefficient suffix, 215

.NominalRightHandSide suffix, 224

non-anticipativity constraint, 317

non-uniqueness, 255

nonbasic variable, 214

NonDefault function, 77

Nonnegative range, 43, 208

Nonpositive range, 43, 208

nonprocedural execution, 99

lazy evaluation, 99

nonvar status, 212

.NonVar suffix, 11, 212

Index 672

NonvarStatus attribute, 212, 412, 417

versus Variables attribute, 229

Normal function, 80, 639

NoSave property, 34, 45, 213, 218, 373

NOT, 376

NOT operator, 86, 181

notational conventions, 19

Nth operator, 60, 180

number, 20

precision, 21

scientific notation, 20

special, 21

.NumberOfBranches suffix, 233

.NumberOfConstraints suffix, 235

.NumberOfFails suffix, 233

.NumberOfIndicatorConstraints suffix, 235

.NumberOfInfeasibilities suffix, 233

.NumberOfIntegerVariables suffix, 235

.NumberOfNonlinearConstraints suffix, 235

.NumberOfNonlinearNonzeros suffix, 235

.NumberOfNonlinearVariables suffix, 235

.NumberOfNonzeros suffix, 235

.NumberOfSOS1Constraints suffix, 235

.NumberOfSOS2Constraints suffix, 235

.NumberOfVariables suffix, 235

numerical comparison, 87

extended arithmetic, 88

tolerances, 87

numerical differencing, 167

numerical iterative operator, 78

numerical-expression diagram, 72

O

Objective attribute, 228

objective function, 7

.Objective suffix, 233, 234

ODBCDateTimeFormat parameter, 460

OnError clause

and RETURN, HALT, SKIP, BREAK, 122

OnError statement, 119

ONLYIF operator, 83, 179, 182

onlyif-expression diagram, 83

opening a file, 498

OpenOffice, 468

operator

*, 52, 64, 76, 179, 182, 529

*=, 104, 179

+, 52, 62, 64, 76, 179, 182, 464

++, 62

+=, 104, 179

-, 52, 62, 64, 76, 179, 181, 182

--, 62

-=, 104, 179

-->, 449

., 145

.., 49

/, 76, 179, 182, 502, 529

/=, 104, 179

/$, 76

:, 501, 504

::, 617

:=, 104, 179

<, 87, 89, 90, 179, 182

<=, 87, 89, 90, 179, 182

<>, 87, 89, 90, 179, 182

=, 87, 89, 90, 179, 182

>, 87, 89, 90, 179, 182

>=, 87, 89, 90, 179, 182

@, 502

#, 502

$, 83, 179, 182

ˆ, 76, 179, 182, 529

ˆ=, 104

AND, 86, 179, 182

APPLY, 148

Combination, 182

CROSS, 52

FailCount, 427

IN, 89

lag/lead, 62

logical, 86

LoopCount, 12, 111

namespace resolution, 75, 617

NOT, 86, 181

numerical, 76

ONLYIF, 83, 179, 182

OR, 86, 179, 182

Permutation, 182

precedence, 91

set, 52

XOR, 86, 179, 182

operator-expression diagram, 76

optimization

multi-objective, 274

robust, 330

OPTION statement, 129, 238

option-statement diagram, 129

Optional property, 136, 382

OR, 376

OR operator, 86, 179, 182

Ord function, 59, 77

OrderBy attribute, 32, 36, 55, 203

OrderBy attribute

User, 33

ORDERED keyword, 115, 197

ordered translation modifier, 160

ordering rule, 134

ordinalnumber translation modifier, 161

Output property, 136

output redirection, 498

Owner attribute, 447, 456

P

page

end-user, 495

print, 495

page mode, 498, 507

cursor positioning, 502, 508

header and footer, 508

page number, 509

Index 673

page size and width, 507

switch to, 507

.PageMode suffix, 507, 508

.PageNumber suffix, 508

.PageSize suffix, 507, 508

.PageWidth suffix, 507, 508

parallel resource, 387

parameter

attribute

Default, 44

Definition, 44

Distribution, 46

IndexDomain, 42

Property, 45

Range, 43

Region, 46, 334

Text, 45

Uncertainty, 46, 337

Unit, 45

domain condition, 42

predefined, 20

property

Double, 45

Integer, 45

Integer16, 45

Integer32, 45

Integer8, 45

NoSave, 45

Random, 45

Stochastic, 45, 316

Uncertain, 45

random, 340

suffix

.Stochastic, 316

uncertain, 333

use of, 3, 40

value type, 41

element, 41

number, 41

string, 41

unit, 41, 537

versus macro, 93

versus variable, 208

Parameter attribute, 32

Parameter declaration, 41

Pareto function, 80, 639

.Past suffix, 549

PATH environment variable, 154

PerIdentifier attribute, 535

period

convert to string, 568

period format, 560

date-specific component, 561

inclusive versus exclusive, 564

period-specific component, 563

time-specific component, 563

wizard, 561

PeriodToString function, 563, 568

Permutation function, 84

Permutation operator, 182

PerQuantity attribute, 535

PerUnit attribute, 535

.Planning suffix, 549

Poisson function, 80, 632

PopulationDeviation operator, 82, 182, 642

position-determination diagram, 502

PostLibraryInitialization procedure, 423,

621

PostMainInitialization procedure, 423

Power function, 77

precedence order, 91

Precedes attribute, 390

Precision function, 77

predefined parameter, 20

CurrentFile, 499

CurrentFileName, 499

ODBCDateTimeFormat, 460

predefined set, 20

AllChanceApproximationTypes, 226, 342

AllConstraints, 229

AllDataFiles, 441

AllDefinedParameters, 99

AllDefinedSets, 99

AllGMPEvents, 274

AllGMPExtensions, 265

AllIdentifiers, 20, 148, 432–434

AllIsolationLevels, 459

AllSolutionStates, 236

AllStochasticScenarios, 316

AllTimeZones, 554, 566

AllVariables, 229

AllVariablesConstraints, 240

AllViolationTypes, 240

CurrentAutoUpdatedDefinitions, 99

Integers, 34

section names, 20

Prefix attribute, 617, 621

PreLibraryTermination procedure, 424, 621

Present suffix, 380

print page, 495

priority, 211

Priority attribute, 211, 383, 417

.Priority suffix, 211

Probability attribute, 226, 341

problem

depot location, 2

procedural execution, 102

procedure

Aggregate, 555

argument

unit of measurement, 138, 524

arguments over local sets, 138

as data, 148

attribute

Arguments, 136

Body, 137

InitialData, 423

Property, 140

call, 143

CommitTransaction, 458

CreateScenarioData, 321

CreateScenarioTree, 318

Index 674

CreateTimeTable, 550

database, 455, 457

DirectSQL, 458

Disaggregate, 555

DoMultiStart, 292

DoStochasticDecomposition, 329

external, 151

FindUsedElements, 432

GenerateCut, 235

GMP::Benders namespace

AddFeasibilityCut, 277

AddOptimalityCut, 277

UpdateSubProblem, 277

GMP::Coefficient namespace

Set, 260

SetMulti, 264

SetQuadratic, 260

GMP::Column namespace

Add, 263

AddMulti, 264

Delete, 263

DeleteMulti, 264

Freeze, 263

FreezeMulti, 264

SetAsMultiObjective, 263

SetAsObjective, 263

SetDecomposition, 263

SetDecompositionMulti, 264

SetLowerBound, 263

SetLowerBoundMulti, 264

SetType, 263

SetTypeMulti, 264

SetUpperBound, 263

SetUpperBoundMulti, 264

Unfreeze, 263

UnfreezeMulti, 264

GMP::Instance namespace

AddIntegerEliminationRows, 249

CreateDual, 256

CreateMasterMIP, 249

CreateProgressCategory, 249

Delete, 249

DeleteIntegerEliminationRows, 249

DeleteMultiObjectives, 249

DeleteSolverSession, 249

FindApproximatelyFeasibleSolution,

249

FixColumns, 249

GenerateRobustCounterpart, 249

GenerateStochasticProgram, 249, 324

GetBestBound, 249

GetMemoryUsed, 249

GetObjective, 249

GetOptionValue, 249

MemoryStatistics, 249

Rename, 249

SetCallbackAddCut, 249

SetCallbackAddLazyConstraint, 249

SetCallbackBranch, 249

SetCallbackCandidate, 249

SetCallbackHeuristic, 249

SetCallbackIncumbent, 249

SetCallbackIterations, 249

SetCallbackStatusChange, 249

SetCallbackTime, 249

SetCutoff, 249

SetDirection, 249

SetIterationLimit, 249

SetMathematicalProgrammingType, 249

SetMemoryLimit, 249

SetOptionValue, 249

SetSolver, 249

SetTimeLimit, 249

Solve, 249, 325, 346

GMP::Linearization namespace

Add, 278

AddSingle, 278

Delete, 278

RemoveDeviation, 278

SetDeviationBound, 278

SetType, 278

SetWeight, 278

GMP::ProgressWindow namespace

DeleteCategory, 279

DisplayLine, 279

DisplayProgramStatus, 279

DisplaySolver, 279

DisplaySolverStatus, 279

FreezeLine, 279

Transfer, 279

UnfreezeLine, 279

GMP::QuadraticCoefficient namespace

Set, 261

GMP::Robust namespace

EvaluateAdjustableVariables, 276

GMP::Row namespace

Activate, 262

ActivateMulti, 264

Add, 262

AddMulti, 264

Deactivate, 262

DeactivateMulti, 264

Delete, 262

DeleteIndicatorCondition, 262

DeleteMulti, 264

Generate, 262

GenerateMulti, 264

GetConvex, 262

GetIndicatorColumn, 262

GetIndicatorCondition, 262

GetRelaxationOnly, 262

SetConvex, 262

SetIndicatorCondition, 262

SetLeftHandSide, 262

SetPoolType, 262

SetPoolTypeMulti, 264

SetRelaxationOnly, 262

SetRightHandSide, 262

SetRightHandSideMulti, 264

SetType, 262

SetTypeMulti, 264

GMP::Solution namespace

Index 675

Check, 269

ConstraintListing, 269

Copy, 269

Count, 269

Delete, 269

DeleteAll, 269

GetBestBound, 269

GetFirstOrderDerivative, 269

GetIterationsUsed, 269

GetMemoryUsed, 269

GetTimeUsed, 269

IsDualDegenerated, 269

IsInteger, 269

IsPrimalDegenerated, 269

Move, 269

RetrieveFromModel, 269

RetrieveFromSolverSession, 269

SendToModel, 269

SendToModelSelection, 269

SendToSolverSession, 269

SetColumnValue, 269

SetIterationCount, 269

SetObjective, 269

SetRowValue, 269

SetSolverStatus, 269

SolutionCount, 269

GMP::SolverSession namespace

AsynchronousExecute, 270

Execute, 270

GMP::Stochastic namespace

AddBendersFeasibilityCut, 276

AddBendersOptimalityCut, 276

GetRepresentativeScenario, 276

MergeSolution, 276

UpdateBendersSubproblem, 276

HistogramAddObservation, 646, 647

HistogramAddObservations, 646

HistogramCreate, 646

HistogramDelete, 646

HistogramGetBounds, 646, 648

HistogramGetFrequencies, 646, 648

HistogramSetDomain, 646, 647

internal, 135

LibraryInitialization, 423, 621

LibraryTermination, 424, 621

local identifier, 139

MainExecution, 17

MainInitialization, 17, 423

MainTermination, 17

me namespace

Children, 625

Compile, 625

Delete, 625

ExportNode, 625

ImportLibrary, 625

ImportNode, 625

Move, 625

Rename, 625

SetAttribute, 625

TypeChange, 625

PostLibraryInitialization, 423, 621

PostMainInitialization, 423

PreLibraryTermination, 424, 621

property

UndoSafe, 140

RestoreInactiveElements, 433

RetrieveCurrentVariableValues, 235

return value, 139, 147

RollbackTransaction, 458

SetElementAdd, 69

SetElementRename, 69

StartTransaction, 458

subnodes, 139

tagged argument, 147

TestDatabaseTable, 459

TestDataSource, 459

use of definitions, 102

Procedure declaration, 136

procedure-call diagram, 144

Prod operator, 78, 180, 182

product

Cartesian, 52

programming

goal, 243

.ProgramStatus suffix, 233, 236

property

Adjustable, 216

Basic, 214, 223

Bound, 223

Chance, 225

CoefficientRange, 215

Contiguous, 382

Double, 45

ElementsAreLabels, 34, 35

ElementsAreNumerical, 34, 35

EmptyElementAllowed, 373

FortranConventions, 155

IncludeInCutPool, 222

IncludeInLazyConstraintPool, 222

IndicatorConstraint, 221

Inline, 214

InOut, 136

Input, 136

Integer, 45

Integer16, 45

Integer32, 45

Integer8, 45

IsDiversificationFilter, 220

IsRangeFilter, 221

Level, 223

No Implicit Mapping, 447

NoSave, 34, 45, 213, 218, 373

Optional, 136, 382

Output, 136

Random, 45

ReadOnly, 447

ReducedCost, 214

RetainsValue, 139

RightHandSideRange, 224

SemiContinuous, 214, 419

ShadowPrice, 223

ShadowPriceRange, 224

Index 676

Sos1, 219

Sos2, 219

Stochastic, 45, 216, 316

Uncertain, 45

UndoSafe, 140, 155

UseResultSet, 456

ValueRange, 215

Property attribute, 34, 45, 140, 155, 213, 218,

373, 382, 387, 413, 416, 417, 427,

447, 456

PROPERTY statement, 34, 45, 129

property-statement diagram, 130

Protected attribute, 619

Public attribute, 618

pure network problem, 419

PUT statement, 462, 498, 500

cursor positioning, 502

example of use, 502

format specification, 501

page versus stream mode, 507

redirect output, 499

undirected output, 498

put-statement diagram, 500

PUTCLOSE statement, 499, 500

PUTFT statement, 500

PUTHD statement, 500

PUTPAGE statement, 500

Q

quantity

allowed conversion, 518

attribute

BaseUnit, 516

Conversion, 517

basic, 515

derived, 515

derived unit, 517

Quantity attribute, 537

Quantity declaration, 515

Quantity identifier, 545

quotes, 22

R

Radians function, 77

raise-statement diagram, 126

random parameter, 340

supported distributions, 340

Random property, 45

range

.., 49

Binary, 43, 208

element, 49

Integer, 43, 208

integer, 43, 208

interval, 43, 208

Nonnegative, 43, 208

Nonpositive, 43, 208

Real, 43, 208

set, 43

Range attribute, 38, 43, 142, 208, 373, 411, 417

range-bound diagram, 50

RankCorrelation operator, 82, 644

raw translation modifier, 160

read Excel data, 468

read OpenOffice Calc data, 468

READ statement, 9, 424, 440

allowed data source, 441

clause

CHECKING, 442, 444

FILTERING, 442, 444

example of filtering, 445

example of use, 437

FILTERING clause, 439

horizon-based data, 550

identifier selection, 441

mode

MERGE, 442

REPLACE, 442

restrictions for databases, 451

result of stored procedure, 457

unit-based scaling, 526

read XML data, 473

read-write-statement diagram, 440

ReadGeneratedXML function, 481

ReadOnly property, 447

ReadXML function, 493

Real range, 43, 208

REBUILD statement, 430

reduced cost, 214

unit, 215

ReducedCost property, 214

.ReducedCost suffix, 214, 511

reference, 74

case, 22, 75

element, 58

set, 48

to module identifier, 75

undefined, 75

reference diagram, 74

reference date format, 545

Region attribute, 46, 334

relation, 30, 36

relax status, 213

.Relax suffix, 213

.RelaxationOnly suffix, 225, 262

RelaxStatus attribute, 213, 417

REPEAT statement, 109

loop string, 112

repeat-statement diagram, 109

REPLACE mode

in FILE declaration, 497

in READ and WRITE statements, 442

in SOLVE statement, 237

reporting, 495, 498

resolution

namespace, 21

resort root set, 431

Resource, 379

resource

attribute

Index 677

Activities, 387

BeginChange, 392

ComesBefore, 390

EndChange, 392

FirstActivity, 390

GroupDefinition, 389

GroupSet, 389

GroupTransition, 389

InitialLevel, 392

LastActivity, 390

LevelChange, 392

LevelRange, 391

Precedes, 390

Property, 387

ScheduleDomain, 387

Transition, 388

Usage, 386

parallel, 387

sequential, 386

Resource declaration, 386

RestoreInactiveElements procedure, 433

retainspecials translation modifier, 160

RetainsValue property, 139

RetrieveCurrentVariableValues procedure, 235

RETURN statement, 116, 139

RETURN statement

WHEN clause, 139

return value, 139, 147, 578

return-statement diagram, 139

ReturnType attribute, 154

RightHandSideRange property, 224

robust counterpart, 331

robust optimization, 330

basic concepts, 331

fixed recourse, 344

robust counterpart, 331

RollbackTransaction procedure, 458

rolling horizon, 543, 558

generic strategy, 559

simple strategy, 558

root set, 32

resort, 431

RootMeanSquare operator, 82, 182, 642

Round function, 77, 181

ROWDIM keyword, 504

S

SampleDeviation operator, 82, 182, 642

scalar translation type, 157

scaling, 525

scenario, 313

generation, 314, 318

generation, distribution-based, 318, 321

probability, 313

tree, 313

schedule domain, 380

ScheduleDomain attribute, 381, 387

scheduling, 379

scientific notation, 20

scoping rules, 615

section, 17, 610

attribute

SourceFile, 614

Section declaration, 613

selection diagram, 441

selector diagram, 115

SemiContinuous property, 214, 419

sensitivity analysis, 214, 215, 223

constraints memory considerations, 225

memory considerations, 215

using matrix manipulation, 281

separation of model and data, 13, 422, 437

sequential linear programming, 283

sequential resource, 386

set, 29

attribute

Comment, 32

Definition, 34

Index, 32

InitialData, 423

OrderBy, 32, 36, 203

Parameter, 32

Property, 34

SubsetOf, 32

Text, 32

constructed, 51

difference, 52

element, 23

enumerated, 35, 48, 462

index binding, 131

indexed, 37

indexing, 3, 29, 30

integer, 34

integer element, 23

intersection, 52

local, 138

membership table, 465

order-related efficiency, 203

predefined, 20

property

ElementsAreLabels, 34, 35

ElementsAreNumerical, 34, 35

NoSave, 34

reference, 48

relation, 30, 36

resort root —, 431

root, 32

simple, 30

sort, 30

union, 52

universal, 133

set comparison, 89

Set declaration, 30

set expression, 47

set-expression diagram, 48

set-primary diagram, 48

set-relationship diagram, 88

set-valued function, 53

ConstraintVariables, 53, 230

ElementRange, 50, 54

SubRange, 54

Index 678

VariableConstraints, 53, 230

set-valued iterative operator, 55

Intersection, 55, 57, 180

NBest, 55, 56, 180

Sort, 33, 55, 180, 203

Union, 55, 57, 180

SetElementAdd procedure, 69

SetElementRename procedure, 69

shadow price, 223

unit, 223

ShadowPrice property, 223

.ShadowPrice suffix, 223, 511

ShadowPriceRange property, 224

Sign function, 77

simple set, 30

simple unit expression, 530

Sin function, 77, 181

Sinh function, 77, 181

Size attribute, 382

Size suffix, 380

Skewness operator, 82, 182, 643

SKIP statement, 110, 115

WHEN clause, 110

skip-break-statement diagram, 110

sliced argument, 145

.SmallestCoefficient suffix, 215

.SmallestRightHandSide suffix, 224

.SmallestShadowPrice suffix, 224

.SmallestValue suffix, 215

solution listing, 509, 511

solution pool, 220

filtering, 220

solution repository, 247, 267

.SolutionTime suffix, 233

SOLVE statement, 236, 253, 260

constraint listing, 510

MERGE mode, 237

REPLACE mode, 237

solution listing, 511

unit-based scaling, 526

WHERE clause, 238

solve-statement diagram, 237

solver

callback, 251

solver callback, 232

solver listing, 509

solver session, 247

solver sessions, 270

.SolverCalls suffix, 235

.SolverStatus suffix, 233, 236

sort

iterative, 55

root set, 56

Sort operator, 33, 55, 180, 203

sorting sets, 30

integer, 36

sos-weights diagram, 219

Sos1 property, 219

Sos2 property, 219

SosWeight attribute, 219

source listing, 509

SourceFile attribute, 614

space delimiter, 24

SPARSE keyword, 115, 197

special number, 21

-INF, 72

INF, 72

logical value, 85

NA, 72, 73

numerical comparison, 88

UNDF, 72, 73

ZERO, 72, 73

Spreadsheet, 468

spreadsheet

compare to, 94

Spreadsheet::AddNewSheet function, 470

Spreadsheet::AssignParameter function, 471

Spreadsheet::AssignSet function, 471

Spreadsheet::AssignTable function, 471

Spreadsheet::AssignValue function, 471

Spreadsheet::ClearRange function, 470

Spreadsheet::CloseWorkbook function, 470

Spreadsheet::ColumnName function, 470

Spreadsheet::ColumnNumber function, 470

Spreadsheet::CopyRange function, 470

Spreadsheet::CreateWorkbook function, 470

Spreadsheet::DeleteSheet function, 470

Spreadsheet::Print function, 470

Spreadsheet::RetrieveParameter function, 471

Spreadsheet::RetrieveSet function, 471

Spreadsheet::RetrieveTable function, 471

Spreadsheet::RetrieveValue function, 471

Spreadsheet::RunMacro function, 470

Spreadsheet::SaveWorkbook function, 470

Spreadsheet::SetActiveSheet function, 470

Spreadsheet::SetUpdateLinksBehavior

function, 470

Spreadsheet::SetVisibility function, 470

SQL query, 455

sql query

example of use, 457

SQLQuery attribute, 456

Sqr function, 77

Sqrt function, 77

stage, 312

Stage attribute, 216, 317

StartTransaction procedure, 458

statement, 26

ASSERT, 427

assignment, 103

CLEANDEPENDENTS, 204, 430

CLEANUP, 430, 444

DISPLAY, 462, 498, 503

EMPTY, 429

flow control, 107

HALT, 427

OPTION, 129, 238

PROPERTY, 34, 45, 129

PUT, 462, 498, 500

PUTCLOSE, 499, 500

PUTFT, 500

PUTHD, 500

Index 679

PUTPAGE, 500

READ, 9, 424, 440

REBUILD, 430

RETURN, 139

SOLVE, 236, 253, 260

UPDATE, 100

WHILE, 12

WRITE, 440, 462

statement diagram, 103

statistical iterative operator, 81, 180, 641

Correlation, 82, 644

DistributionDeviation, 83

DistributionKurtosis, 83

DistributionMean, 83

DistributionSkewness, 83

DistributionVariance, 83

GeometricMean, 82, 182, 642

HarmonicMean, 82, 182, 642

Kurtosis, 82, 182, 643

Mean, 82, 182, 642

Median, 82, 182, 642

PopulationDeviation, 82, 182, 642

RankCorrelation, 82, 644

RootMeanSquare, 82, 182, 642

SampleDeviation, 82, 182, 642

Skewness, 82, 182, 643

stochastic Benders algorithm, 326

stochastic programming, 311

basic concepts, 312

Benders algorithm, 326

deterministic equivalent, 324

scenario, 313

scenario generation, 314, 318

scenario tree, 313

stage, 312

Stochastic property, 45, 216, 316

.Stochastic suffix, 316, 317

stored procedure, 442

example of use, 457

use of, 455

StoredProcedure attribute, 456

stream mode, 498, 507

switch to, 507

string, 22

concatenation, 64

convert to elapsed time, 569

convert to element, 69

convert to time slot, 568

formatting, 65

manipulation, 68

repetition, 64

subtraction, 64

string comparison, 90

string expression, 63

string external data type, 158

string function, 65, 67, 68

string parameter

attribute

Encoding, 159

string translation modifier, 161

string-expression diagram, 64

string-valued function

FindNthString, 68

FindString, 68

FormatString, 65, 501

StringCapitalize, 67

StringLength, 68

StringOccurrences, 69

StringToLower, 67

StringToUpper, 67

Substring, 68

StringCapitalize function, 67

StringLength function, 68

StringOccurrences function, 69

StringParameter declaration, 41

StringToElement function, 70

StringToLower function, 67

StringToMoment function, 569

StringToTimeSlot function, 568

StringToUnit function, 530

StringToUpper function, 67

structural limits, 24

subnodes, 139

SubRange function, 54

SubsetOf attribute, 32

Substring function, 68

subtraction, 76

Suffix

ActivityLevel, 392

Begin, 380

End, 380

Length, 380

Present, 380

Size, 380

suffix, 22

.Adjustable, 344

.Basic, 214, 223

.BestBound, 233, 234

.Beyond, 549

.BodyCurrentColumn, 508

.BodyCurrentRow, 508

.BodySize, 508

.CallbackAddCut, 234, 235

.CallbackAOA, 234

.CallbackIncumbent, 234

.CallbackIterations, 233, 234

.CallbackProcedure, 234

.CallbackReturnStatus, 234, 236

.CallbackStatusChange, 234

.CallbackTime, 234

.Complement, 413

.Convex, 225, 262

.DefinitionViolation, 242

.Derivative, 165, 166

.ExtendedConstraint, 265

.ExtendedVariable, 265

.FooterCurrentColumn, 508

.FooterCurrentRow, 508

.FooterSize, 508

.GenTime, 233

.HeaderCurrentColumn, 508

.HeaderCurrentRow, 508

Index 680

.HeaderSize, 508

.Incumbent, 233, 234

.Iterations, 233

.LargestCoefficient, 215

.LargestRightHandSide, 224

.LargestShadowPrice, 224

.LargestValue, 215

.Lower, 210, 223, 511

.Nodes, 233

.NominalCoefficient, 215

.NominalRightHandSide, 224

.NonVar, 11, 212

.NumberOfBranches, 233

.NumberOfConstraints, 235

.NumberOfFails, 233

.NumberOfIndicatorConstraints, 235

.NumberOfInfeasibilities, 233

.NumberOfIntegerVariables, 235

.NumberOfNonlinearConstraints, 235

.NumberOfNonlinearNonzeros, 235

.NumberOfNonlinearVariables, 235

.NumberOfNonzeros, 235

.NumberOfSOS1Constraints, 235

.NumberOfSOS2Constraints, 235

.NumberOfVariables, 235

.Objective, 233, 234

.PageMode, 507, 508

.PageNumber, 508

.PageSize, 507, 508

.PageWidth, 507, 508

.Past, 549

.Planning, 549

.Priority, 211

.ProgramStatus, 233, 236

.ReducedCost, 214, 511

.Relax, 213

.RelaxationOnly, 225, 262

.ShadowPrice, 223, 511

.SmallestCoefficient, 215

.SmallestRightHandSide, 224

.SmallestShadowPrice, 224

.SmallestValue, 215

.SolutionTime, 233

.SolverCalls, 235

.SolverStatus, 233, 236

.Stochastic, 316, 317

.SumOfInfeasibilities, 233

.Unit, 520

.Upper, 210, 223, 511

.Violation, 242

Sum operator, 78, 180, 182

.SumOfInfeasibilities suffix, 233

superbasic variable, 214

Support distribution, 340

SWITCH statement, 115

DEFAULT selector, 116

switch-statement diagram, 115

Symmetric distribution, 340

syntax diagram

activity-group-transition, 389

activity-selection, 387

activity-sequence, 391

activity-transition, 388

actual-argument, 145

assert-statement, 428

assignment-statement, 103

binding-domain, 52

binding-element, 52

binding-tuple, 52

block-statement, 118

cleanup-statement, 430

composite-header, 467

composite-row, 467

composite-table, 467

conditional-expression, 83

constructed-set, 52

convention-list, 535

data-selection, 103

display-format, 504

display-statement, 504

element-expression, 58

element-range, 50

element-tuple, 49

empty-statement, 429

enumerated-list, 74

enumerated-set, 49

expression-inclusion, 87

expression-relationship, 87

external-argument, 157

external-call, 156

flow-control-statement, 108

for-statement, 113

format-field, 501

function-call, 144

group-definition, 389

halt-statement, 117

identifier-part, 75

identifier-slice, 145

if-then-else-expression, 84

if-then-else-statement, 108

iterative-expression, 55

level-modification, 392

logical-expression, 85

mapping-list, 449

numerical-expression, 72

onlyif-expression, 83

operator-expression, 76

option-statement, 129

position-determination, 502

procedure-call, 144

property-statement, 130

put-statement, 500

raise-statement, 126

range-bound, 50

read-write-statement, 440

reference, 74

repeat-statement, 109

return-statement, 139

selection, 441

selector, 115

set-expression, 48

set-primary, 48

Index 681

set-relationship, 88

skip-break-statement, 110

solve-statement, 237

sos-weights, 219

statement, 103

string-expression, 64

switch-statement, 115

table, 465

table-header, 465

table-row, 465

tagged-argument, 145

timeslot-format-list, 571

tuple-component, 49

unit-conversion-list, 517

unit-expression, 529

update-statement, 100

while-statement, 109

T

table, 464

2-dimensional, 464

composite, 466

continuation, 464

created by DISPLAY statement, 505

membership, 465

table diagram, 465

table constraint, 376

table-header diagram, 465

table-row diagram, 465

TableName attribute, 447

tabular expression, 464

tag

argument, 147

tagged-argument diagram, 145

Tan function, 77, 181

Tanh function, 77, 181

termination, 422

sequence, 424

TestDatabaseTable procedure, 459

TestDataSource procedure, 459

Text attribute, 19, 32, 45, 426

text data format, 462

text report, 495, 498

tick, 545

time slot, 544

convert to elapsed time, 569

convert to string, 568

delimiter, 551

inactive, 551

time slot format, 560

time zone, 547

reference date, 545

TimeSlotCharacteristic, 554

time-based modeling, 542

Calendar, 543

Horizon, 543

timetable, 543

timeslot-format-list diagram, 571

TimeslotCharacteristic function, 553

TimeslotCharacteristics function

week numbering, 554

TimeslotFormat attribute, 546, 561

TimeSlotToMoment function, 569

TimeSlotToString function, 568

timetable, 543, 550

TimeZoneOffSet function, 570

To attribute, 418

ToMultiplier attribute, 418

Transition attribute, 388

translation modifier, 160

elementnumber, 161

indicator, 161

integer, 161

ordered, 160

ordinalnumber, 161

raw, 160

retainspecials, 160

string, 161

translation type, 157

array, 157

card, 157

handle, 157

literal, 157

scalar, 157

work, 157

Triangular function, 80, 636

Trunc function, 77, 181

TRUNCATE statement

database table, 453

tuple, 37

tuple-component diagram, 49

tutorials, xx

Type attribute, 231

U

unary, 378

uncertain parameter, 333

Uncertain property, 45

Uncertainty attribute, 46, 337

uncertainty constraint, 337

UNDF special number, 72, 73

UndoSafe property, 140, 155

Uniform function, 80, 636

Unimodal distribution, 340

union, 52

iterative, 55

Union operator, 55, 57, 180

unit

absolute vs. non-absolute, 523

atomic, 515

base, 515

consistency, 521

consistency override, 533

convention, 534

derived, 515

in function, 523

local override, 532

of distribution, 82

of reduced cost, 215

of shadow price, 223

Index 682

procedure argument, 138, 524

scaled versus unscaled data, 525

scaling, 525

SI quantities, 514

symbol, 516, 518, 529

use of, 513, 519

Unit attribute, 45, 142, 211, 412, 416, 417,

518, 544

unit constant, 530

unit expression, 528

computed, 530

constant, 530

simple, 530

Unit function, 530

unit parameter

attribute

Default, 538

Definition, 538

Quantity, 537

.Unit suffix, 520

unit-based scaling, 525

unit-conversion-list diagram, 517

unit-expression diagram, 529

unit-valued parameter, 537

UnitParameter declaration, 41

UNORDERED keyword, 115, 196

UPDATE statement, 100

update-statement diagram, 100

.Upper suffix, 210, 223, 511

Usage attribute, 386

use of

calendar, 544

constraint, 5, 216

horizon, 547

index set, 3, 29

macro, 93

mathematical program, 227

matrix manipulation, 258

nonvar status, 212

parameter, 3, 40

priority, 211

reduced cost, 214

relax status, 213

shadow price, 223

stored procedure, 455

unit convention, 534

units, 513, 519

variable, 6, 208

user cut pool, 222, 262

User keyword, 33

UseResultSet property, 456

V

Val function, 24, 59, 60

value type, 22, 41

element, 23, 24

number, 20

string, 22

unit, 528, 537

ValueRange property, 215

variable

adjustable, 333, 343

attribute

Default, 210

Definition, 211

Dependency, 216, 343

IndexDomain, 208

NonvarStatus, 212

Priority, 211

Property, 213

Range, 208

RelaxStatus, 213

Stage, 216, 317

Unit, 211

basic, 214

defined, 7

implied constraint, 215

nonbasic, 214

nonvar status, 212

priority, 211

property

Adjustable, 216

Basic, 214

CoefficientRange, 215

Inline, 214

NoSave, 213

ReducedCost, 214

SemiContinuous, 214

Stochastic, 216, 316

ValueRange, 215

reduced cost, 214

relax status, 213

suffix

.Adjustable, 344

.Basic, 214

.DefinitionViolation, 242

.Derivative, 166

.ExtendedConstraint, 265

.ExtendedVariable, 265

.LargestCoefficient, 215

.LargestValue, 215

.Lower, 210

.NominalCoefficient, 215

.NonVar, 212

.Priority, 211

.ReducedCost, 214

.Relax, 213

.SmallestCoefficient, 215

.SmallestValue, 215

.Stochastic, 317

.Upper, 210

.Violation, 242

superbasic, 214

unit of reduced cost, 215

unit of shadow price, 223

unit-based scaling, 526

use of, 6, 208

use of horizon, 547

versus macro, 93

versus parameter, 208

Variable declaration, 208

Index 683

VariableConstraints function, 53, 230

Variables attribute, 229

versus NonvarStatus attribute, 229

.Violation suffix, 242

ViolationPenalty attribute, 231

W

week numbering, 554

Weibull function, 80, 638

WHEN clause, 110, 117, 139

WHERE clause, 445

WHERE clause, 238

WHILE statement, 12, 109

loop string, 112

while-statement diagram, 109

work translation type, 157

write Excel data, 468

write OpenOffice Calc data, 468

WRITE statement, 440, 462

allowed data source, 441

clause

CHECKING, 442, 444

FILTERING, 442, 444

WHERE, 445

example of filtering, 445

example of use, 439

horizon-based data, 550

identifier selection, 441

mode

BACKUP, 442

INSERT, 442

MERGE, 442

REPLACE, 442

restrictions for databases, 451

unit-based scaling, 526

write XML data, 473

WriteXML function, 493

X

XML, 473

Aimms-generated, 481

attribute, 476

element, 476

schema, 479

schema mapping, 484

user-defined, 484

XOR, 376

XOR operator, 86, 179, 182

Z

ZERO special number, 72, 73

Bibliography

[Al03] F. Altenstedt, Memory consumption versus computational time in nested

benders decompostion for stochastic linear programmings, Tech. report,

Chalmers University of Technology, Göteborg, Sweden, 2003. 19.4.2

[Ba01] P. Baptiste, C. Le Pape, and W. Nuijten, Constraint-based scheduling,

Kluwer Academic Publishers, 2001. 22

[Be62] J.F. Benders, Partitioning procedures for solving mixed-variables pro-

gramming problems, Numerische Mathematic 4 (1962), 238–252. 21

[Bi97] J.R. Birge and F. Louveaux, Introduction to stochastic programming,

Springer, New York, 1997. 19

[BT09] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski, Robust optimization, Prince-

ton University Press, Princeton, N.J., 2009. 20, 20.3, 20.3

[Ch04] J.W. Chinneck, The constraint consensus method for finding approx-

imately feasible points in nonlinear programs, INFORMS Journal on

Computing 16 (2004), 255–265. 16.2, 17.2, 17.3.9

[De98] M. Dempster and R. Thompson, Parallelization and aggregation of

nested benders decomposition, Annals of Operations Research 81

(1998), 163–187. 19.4.2

[Du86] M.A. Duran and I.E. Grossmann, An outer-approximation algorithm for

a class of mixed-integer nonlinear programs, Mathematical Program-

ming 36 (1986), 307–339. 18, 18.2

[Fi10] M. Fischetti, D. Salvagni, and A. Zanette, A note on the selection of ben-

ders’ cuts, Mathematical Programming B 124 (2010), 175–182. 21.2,

21.5.3

[Fo94] R. Fourer and D.M. Gay, Experience with a primal presolve algorithm,

Large Scale Optimization: State of the Art (W.W. Hager, D.W. Hearn,

and P.M. Pardalos, eds.), Kluwer Academic Publishers, 1994. 17.1

[Ka87] A.H.G. Rinnooy Kan and G.T. Timmer, Stochastic global optimization

methods; part II: Multi level methods, Mathematical Programming 37

(1987), 57–78. 17.2

[Ka05] P. Kall and J. Mayer, Stochastic linear programming: Models, theory,

and computation, Springer, New York, 2005. 19

[Ma99] R.K. Martin, Large scale linear and integer optimization: A unified ap-

proach, Kluwer Academic Publishers, Norwell, 1999. 21.3

[Ne88] G.L. Nemhauser and L.A. Wolsey, Integer and combinatorial optimiza-

tion, John Wiley & Sons, New York, 1988. 21.3

[Qu92] I. Quesada and I.E. Grossmann, An lp/nlp based branch and bound algo-

Bibliography 685

rithm for bonvex minlp optimization problems, Computers and Chemi-

cal Engineering 16 (1992), 937–947. 18, 18.5

[Ro06] F. Rossi, P. Van Beek, and editors T. Walsh, Handbook of constraint

programming, Elsevier, 2006. 22

[Sa94] M.W.P. Savelsbergh, Preprocessing and probing techniques for mixed in-

teger programming problems, ORSA Journal on Computing 6 (1994),

445–454. 17.1

	About AIMMS
	Contents
	Preface
	What's new in AIMMS 4
	What is in the AIMMS documentation
	What is in the Language Reference
	The authors

	 Preliminaries
	Introduction to the AIMMS language
	The depot location problem
	Formulation of the mathematical program
	Data initialization
	An advanced model extension
	General modeling tips

	Language Preliminaries
	Managing your model
	Identifier declarations
	Lexical conventions
	Expressions and statements
	Data initialization

	 Non-Procedural Language Components
	Set Declaration
	Sets and indices
	Set declaration and attributes
	Simple sets
	Integer sets
	Relations
	Indexed sets

	INDEX declaration and attributes

	Parameter Declaration
	Parameter declaration and attributes
	Properties and attributes for uncertain data

	Set, Set Element and String Expressions
	Set expressions
	Enumerated sets
	Constructed sets
	Set operators
	Set functions
	Iterative set operators
	Set element expressions as singleton sets

	Set element expressions
	Intrinsic functions for sets and set elements
	Element-valued iterative expressions
	Lag and lead element operators

	String expressions
	String operators
	Formatting strings
	String manipulation
	Converting strings to set elements

	Numerical and Logical Expressions
	Numerical expressions
	Real values and arithmetic extensions
	List expressions
	References
	Arithmetic functions
	Numerical operators
	Numerical iterative operators
	Statistical functions and operators
	Financial functions
	Conditional expressions

	Logical expressions
	Logical operator expressions
	Numerical comparison
	Set and element comparison
	String comparison
	Logical iterative expressions

	Operator precedence
	MACRO declaration and attributes

	Execution of Nonprocedural Components
	Dependency structure of definitions
	Expressions and statements allowed in definitions
	Nonprocedural execution

	 Procedural Language Components
	Execution Statements
	Procedural and nonprocedural execution
	Assignment statements
	Flow control statements
	The IF-THEN-ELSE statement
	The WHILE and REPEAT statements
	Advanced use of WHILE and REPEAT
	The FOR statement
	The SWITCH statement
	The HALT statement
	The BLOCK statement

	Raising and handling warnings and errors
	Handling errors
	Raising errors and warnings
	Legacy: intrinsics with a return status
	Warnings

	The OPTION and PROPERTY statements

	Index Binding
	Binding rules

	Procedures and Functions
	Internal procedures
	Internal functions
	Calls to procedures and functions
	The APPLY operator

	External Procedures and Functions
	Introduction
	Declaration of external procedures and functions
	WIN32 calling conventions
	External functions in constraints
	Derivative computation

	C versus FORTRAN conventions

	 Sparse Execution
	The AIMMS Sparse Execution Engine
	Storage and basic operations of the execution engine
	The + operator: union behavior
	The * operator: intersection behavior
	The = operator: dense behavior
	Behavior of combined operations
	Summation
	Reordered views

	Modifying the sparsity
	Overview of operator efficiency

	Execution Efficiency Cookbook
	Reducing the number of elements
	Size reduction of one-dimensional sets
	Size reduction of multidimensional identifiers

	Analyzing and tuning statements
	Consider the use of FOR statements
	Ordered sets and the condition of a FOR statement
	Combining definitions and FOR loops
	Identifying lower-dimensional subexpressions
	Parameters with non-zero defaults
	Index ordering
	Set element ordering
	Using AIMMS' advanced diagnostics

	Summary

	 Optimization Modeling Components
	Variable and Constraint Declaration
	Variable declaration and attributes
	The Priority, Nonvar and RelaxStatus attributes
	Variable properties
	Sensitivity related properties
	Uncertainty related properties and attributes

	Constraint declaration and attributes
	Constraint properties
	SOS properties
	Solution pool filtering
	Indicator constraints, lazy constraints and cut pools
	Constraint levels, bounds and marginals
	Constraint suffices for global optimization
	Chance constraints

	Solving Mathematical Programs
	MathematicalProgram declaration and attributes
	Suffices and callbacks
	The SOLVE statement
	Infeasibility analysis
	Adding infeasibility analysis to your model
	Inspecting your model for infeasibilities
	Application to goal programming

	Implementing Advanced Algorithms for Mathematical Programs
	Introduction to the GMP library
	Managing generated mathematical program instances
	Dealing with degeneracy and non-uniqueness

	Matrix manipulation procedures
	When to use matrix manipulation
	Coefficient modification procedures
	Quadratic coefficient modification procedures
	Row modification procedures
	Column modification procedures
	More efficient modification procedures
	Modifying an extended math program instance

	Managing the solution repository
	Using solver sessions
	Synchronization events
	Multi-objective optimization
	Supporting functions for stochastic programs
	Supporting functions for robust optimization models
	Supporting functions for Benders' decomposition
	Creating and managing linearizations
	Customizing the progress window
	Examples of use
	Indexed mathematical program instances
	Sensitivity analysis
	Finding a feasible solution for a binary program
	Column generation
	Sequential linear programming

	Advanced Methods for Nonlinear Programs
	The AIMMS Presolver
	The AIMMS multistart algorithm
	Control parameters that influence the multistart algorithm
	Specifying an iteration limit
	Specifying a time limit
	Using multiple threads
	Deterministic versus opportunistic
	Getting multiple solutions
	Shrinking the clusters
	Combining multistart and presolver
	Using a starting point
	Improving the sample points
	Unbounded variables
	Solver progress

	AIMMS Outer Approximation Algorithm for MINLP
	Problem statement
	Basic algorithm
	Using the AOA algorithm
	Control parameters that influence the AOA algorithm
	Specifying a time limit
	Using the AIMMS Presolver
	Combining outer approximation with multistart
	Terminate if solution of relaxed model is integer
	Solving a convex model
	Starting point strategy for NLP subproblems

	The Quesada-Grossmann algorithm
	A first and basic implementation
	Alternative uses of the open approach

	Stochastic Programming
	Basic concepts
	Stochastic parameters and variables
	Scenario generation
	Distribution-based scenario generation
	Scenario-based tree generation

	Solving stochastic models
	Generating and solving the deterministic equivalent
	Using the stochastic Benders algorithm

	Robust Optimization
	Basic concepts
	Uncertain parameters and uncertainty constraints
	Chance constraints
	Adjustable variables
	Solving robust optimization models

	Automatic Benders' Decomposition
	Quick start to using Benders' decomposition
	Problem statement
	Benders' decomposition - Textbook algorithm
	Implementation of the classic algorithm
	Control parameters that influence the algorithm
	Primal versus dual subproblem
	Subproblem as pure feasibility problem
	Normalization of feasibility problem
	Feasibility problem mode
	Tightening constraints
	Using a starting point
	Using the AIMMS Presolver

	Implementation of the modern algorithm
	Implementation of the two phase algorithm

	Constraint Programming
	Constraint Programming essentials
	Variables in constraint programming
	Constraints in constraint programming

	Scheduling problems
	Activity
	Resource
	Functions on Activities and Scheduling constraints
	Problem schedule domain

	Modeling, solving and searching
	Constraint programming and units of measurement
	Solving a constraint program
	Search Heuristics

	Mixed Complementarity Problems
	Complementarity problems
	ComplementaryVariable declaration and attributes
	Declaration of mixed complementarity models
	Declaration of MPCC models

	Node and Arc Declaration
	Networks
	Node declaration and attributes
	Arc declaration and attributes
	Declaration of network-based mathematical programs

	 Data Communication Components
	Data Initialization, Verification and Control
	Model initialization and termination
	Reading data from external sources

	Assertions
	Data control
	Working with the set AllIdentifiers

	The READ and WRITE Statements
	A basic example
	Simple data transfer
	Set initialization and domain checking

	Syntax of the READ and WRITE statements

	Communicating With Databases
	The DatabaseTable declaration
	Indexed database tables
	Database table restrictions
	Data removal
	Executing stored procedures and SQL queries
	Database transactions
	Testing the presence of data sources and tables
	Dealing with date-time values

	Format of Text Data Files
	Text data files
	Tabular expressions
	Composite tables

	Reading and Writing Spreadsheet Data
	An example
	Function overview

	Reading and Writing XML Data
	XML in 10 points
	Introduction to XML support in AIMMS
	Reading and writing AIMMS-generated XML data
	Reading and writing user-defined XML data

	Text Reports and Output Listing
	The File declaration
	The PUT statement
	Opening files and output redirection
	Formatting and positioning PUT items
	Extended example

	The DISPLAY statement
	Structuring a page in page mode
	The standard output listing

	 Advanced Language Components
	Units of Measurement
	Introduction
	The Quantity declaration
	Associating units with model identifiers
	Unit analysis
	Unit analysis of procedures and functions

	Unit-based scaling
	Unit-based scaling of mathematical programs

	Unit expressions
	Unit-valued functions
	Converting unit expressions to numerical expressions

	Locally overriding units
	Globally overriding units through Conventions
	Unit-valued parameters

	Time-Based Modeling
	Introduction
	Calendars
	Horizons
	Creating timetables
	Data conversion of time-dependent identifiers
	Implementing a model with a rolling horizon
	Format of time slots and periods
	Date-specific components
	Time-specific components
	Period-specific components
	Support for time zones and daylight saving time

	Converting time slots and periods to strings
	Working with elapsed time
	Working in multiple time zones

	The AIMMS Programming Interface
	Introduction
	Obtaining identifier attributes
	Managing identifier handles
	Communicating individual identifier values
	Accessing sets and set elements
	Executing AIMMS procedures
	Passing errors and messages
	Raising and handling errors
	Opening and closing a project
	Thread synchronization
	Interrupts
	Model Edit Functions

	Model Structure and Modules
	Introduction
	Model declaration and attributes
	Section declaration and attributes
	Module declaration and attributes
	LibraryModule declaration and attributes
	Runtime Libraries and the Model Edit Functions

	Appendices
	Distributions, statistical operators and histogram functions
	Discrete distributions
	Continuous distributions
	Distribution operators
	Sample operators
	Scaling of statistical operators
	Creating histograms

	Additional Separation Procedures for Benders' Decomposition
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	Bibliography

