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About AIMMS

AIMMS was introduced as a new type of mathematical modeling tool in 1993 —
an integrated combination of a modeling language, a graphical user inter-
face, and numerical solvers. AiMMS has proven to be one of the world’s
most advanced development environments for building optimization-based
decision support applications and advanced planning systems. Today, it is
used by leading companies in a wide range of industries in areas such as sup-
ply chain management, energy management, production planning, logistics,
forestry planning, and risk-, revenue-, and asset- management. In addition,
AIMMS is used by universities worldwide for courses in Operations Research
and Optimization Modeling, as well as for research and graduation projects.

AIMMS is far more than just another mathematical modeling language. True,
the modeling language is state of the art for sure, but alongside this, AIMMS
offers a number of advanced modeling concepts not found in other languages,
as well as a full graphical user interface both for developers and end-users.
AIMMS includes world-class solvers (and solver links) for linear, mixed-integer,
and nonlinear programming such as BARON, CPLEX, CONOPT, GUROBI, KNITRO,
PATH, SNOPT and XA, and can be readily extended to incorporate other ad-
vanced commercial solvers available on the market today. In addition, con-
cepts as stochastic programming and robust optimization are available to in-
clude data uncertainty in your models.

Mastering AIMMS is straightforward since the language concepts will be intu-
itive to Operations Research (OR) professionals, and the point-and-click graph-
ical interface is easy to use. AIMMS comes with comprehensive documentation,
available electronically and in book form.

AIMMS provides an ideal platform for creating advanced prototypes that are
then easily transformed into operational end-user systems. Such systems can
than be used either as

m stand-alone applications, or
m optimization components.
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Types of AIMMS
applications



About AIMMS

Application developers and operations research experts use AiMMS to build
complex and large scale optimization models and to create a graphical end-
user interface around the model. AiMMs-based applications place the power of
the most advanced mathematical modeling techniques directly into the hands
of end-users, enabling them to rapidly improve the quality, service, profitabil-
ity, and responsiveness of their operations.

Independent Software Vendors and OEMs use AIMMS to create complex and
large scale optimization components that complement their applications and
web services developed in languages such as C++, Java, .NET, or Excel. Appli-
cations built with AiMMs-based optimization components have a shorter time-
to-market, are more robust and are richer in features than would be possible
through direct programming alone.

Companies using AiMMS include

= ABN AMRO m Merck

m Areva s Owens Corning
m Bayer m Perdigao

m Bluescope Steel m Petrobras

m BP m Philips

m CST m PriceWaterhouseCoopers
m ExxonMobil m Reliance

m Gaz de France m Repsol

m Heineken m Shell

m Innovene m Statoil

m Lufthansa m Unilever

Universities using AiMMs include Budapest University of Technology, Carnegie
Mellon University, George Mason University, Georgia Institute of Technology,
Japan Advanced Institute of Science and Technology, London School of Eco-
nomics, Nanyang Technological University, Rutgers University, Technical Uni-
versity of Eindhoven, Technische Universitat Berlin, UIC Bioengineering, Uni-
versidade Federal do Rio de Janeiro, University of Groningen, University of
Pittsburgh, University of Warsaw, and University of the West of England.

A more detailed list of AiMMS users and reference cases can be found on our
website www.aimms.com.

Stand-alone
applications

Optimization
components

AIMMS users
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Preface

The printed AiMMs documentation consists of three books

m AiMMS—The User’s Guide,
m AIMMS—The Language Reference, and
m AIMMS—Optimization Modeling.

The first two books emphasize different aspects in the use of the AIMMS sys-
tem, while the third book is a general introduction to optimization modeling.
All books can be used independently.

In addition to the printed versions, these books are also available on-line in the
ADOBE Portable Document Format (PDF). Although new printed versions of the
documentation will become available with every new functional AIMMS release,
small additions to the system and small changes in its functionality in between
functional releases are always directly reflected in the online documentation,
but not necessarily in the printed material. Therefore, the online versions of
the AiMMms books that come with a particular version of the system should
be considered as the authoritative documentation describing the functionality
regarding that particular AIMMS version.

Which changes and bug fixes are included in particular AiMMS releases are
described in the associated release notes.

What’s new in AIMMS 4

From AmMMSs 4.1 onwards, we will only publish this "What’s New” section on
our website. It can be found at the following location:

https://aimms.com/english/developers/downloads/product-information/new-features/

Three AIMMS
books

Available online

Release notes


https://aimms.com/english/developers/downloads/product-information/new-features/

Preface

What is in the AIMMS documentation

The AiMMms User’s Guide provides a global overview of how to use the AiMMS
system itself. It is aimed at application builders, and explores AIMMS’ capabil-
ities to help you create a model-based application in an easy and maintainable
manner. The guide describes the various graphical tools that the AIMMS sys-
tem offers for this task. It is divided into five parts.

m Part [—Introduction to AIMMS—what is AIMMS and how to use it.

m Part II—Creating and Managing a Model—how to create a new model in
AIMMS or manage an existing model.

m Part Ill—Creating an End-User Interface—how to create an intuitive and
interactive end-user interface around a working model formulation.

m Part IV—Data Management—how to work with cases and datasets.

m Part V—Miscellaneous—various other aspects of AiMmmMs which may be
relevant when creating a model-based end-user application.

The AiMMS Language Reference provides a complete description of the AiMMS
modeling language, its underlying data structures and advanced language con-
structs. It is aimed at model builders only, and provides the ultimate reference
to the model constructs that you can use to get the most out of your model
formulations. The guide is divided into seven parts.

m Part I—Preliminaries—provides an introduction to, and overview of, the
basic language concepts.

m Part [I—Nonprocedural Language Components—describes AIMMS’ basic
data types, expressions, and evaluation structures.

m Part Ill—Procedural Language Components—describes AIMMS’ capabili-
ties to implement customized algorithms using various execution and
flow control statements, as well as internal and external procedures and
functions.

m Part IV—Sparse Execution—describes the fine details of the sparse execu-
tion engine underlying the AIMMS system.

m Part V—Optimization Modeling Components—describes the concepts of
variables, constraints and mathematical programs required to specify an
optimization model.

m Part VI—Data Communication Components—how to import and export
data from various data sources, and create customized reports.

m Part VII—Advanced Language Components—describes various advanced
language features, such as the use of units, modeling of time and com-
municating with the end-user.
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The book on optimization modeling provides not only an introduction to mod-
eling but also a suite of worked examples. It is aimed at users who are new
to modeling and those who have limited modeling experience. Both basic con-
cepts and more advanced modeling techniques are discussed. The book is
divided into five parts:

m Part I—Introduction to Optimization Modeling—covers what models are,
where they come from, and how they are used.

m Part [I—General Optimization Modeling Tricks—includes mathematical
concepts and general modeling techniques.

m Part IlI—Basic Optimization Modeling Applications—builds on an under-
standing of general modeling principles and provides introductory appli-
cation-specific examples of models and the modeling process.

m Part IV—Intermediate Optimization Modeling Applications—is similar to
part III, but with examples that require more effort and analysis to con-
struct the corresponding models.

m Part V—Advanced Optimization Modeling Applications—provides appli-
cations where mathematical concepts are required for the formulation
and solution of the underlying models.

In addition to the three major AIMMS books, there are several separate docu-
ments describing various deployment features of the AiMMs software. They
are:

AIMMS—The Function Reference,

AIMMS—The COM Object User’s Guide and Reference,
AIMMS—The Excel Add-In User’s Guide, and

AIMMS—The Open Solver Interface User’s Guide and Reference.

These documents are only available in PDF format.

The AiMMS documentation is complemented with a number of help files that
discuss the finer details of particular aspects of the AiMMS system. Help files
are available to describe:

m the execution and solver options which you can set to globally influence
the behavior of the AIMMS’ execution engine,

m the finer details of working with the graphical modeling tools, and

m a complete description of the properties of end-user screens and the
graphical data objects which you can use to influence the behavior and
appearance of an end-user interface built around your model.

The AiMMS help files are both available as Windows help files, as well as in PDF
format.
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Two tutorials on AIMMS in PDF format provide you with some initial work-
ing knowledge of the system and its language. One tutorial is intended for
beginning users, while the other is aimed at professional users of AIMMS.

As the entire AIMMS documentation is available in PDF format, you can use the
search functionality of Acrobat Reader to search through all AiMMs documen-
tation for the information you are looking for.

AIMMS comes with an extensive model library, which contains a variety of ex-
amples to illustrate simple and advanced applications containing particular
aspects of both the language and the graphical user interface. You can find
the AtMMS model library in the Examples directory in the AiMMS installation
directory. The Examples directory also contains an AIMMS project providing an
index to all examples, which you can use to search for examples that illustrate
specific aspects of AIMMS.

What is in the Language Reference

Part I of the Language Reference introduces and illustrates the basic concepts
of the AiMMS language.

m Chapter 1—Introduction to the AIMMS language—provides you with a
quick overview of AiMMS’ modeling capabilities through a simple, and
completely worked out example model.

m Chapter 2—Language preliminaries—globally describes the basic struc-
ture of an AIMMS model, the available data types and execution state-
ments.

Part II introduces the fundamental concepts of sets and multidimensional pa-
rameters, and discusses the expressions and evaluation mechanisms available
for these data types.

m Chapter 3—Set declaration—discusses the declaration and attributes of
index sets.

m Chapter 4—Parameter declaration—describes the declaration and avail-
able attributes of scalar and multidimensional parameters which can be
used to store and manipulate data.

m Chapter 5—Set, set element and string expressions—provides a complete
overview of all expressions which evaluate to either a set, a set element
or a string.

m Chapter 6—Numerical and logical expressions—describes all expressions
which evaluate to a numerical or logical value, and also explains the con-
cept of macro expansion in AIMMS.
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Chapter 7—Execution of nonprocedural components—describes the de-
pendency and automatic execution structure of the system of functional
relationships formed by all defined sets and parameters.

Part III focuses on the procedural aspects of the AiMMS language which allow
you to implement you own algorithms, seamlessly making use of the advanced
built-in functionality already provided by AIMMS.

Chapter 8—Execution statements—provides a complete overview of all
assignment and flow control statements in AIMMS.

Chapter 9—Index binding—specifies the precise rules for the fundamen-
tal concept of index binding underlying AIMMS execution engine.
Chapter 10—Internal procedures and functions—explains how to declare
and call internal AiMMs procedures and functions.

Chapter 11—External procedures and functions—explains how functions
and procedures in an external DLL can be linked to and called from
within an existing AIMMS application.

Part IV of the reference guide tries to make you aware of the differences be-
tween a dense versus a sparse execution engine (as used by AIMMS). It provides
valuable insight into the inner workings of AiMMs and may help to implement
large-scale modeling applications in a correct and efficient manner.

Chapter 12—The AIMMS sparse execution engine—provides you with a
basic insight into the inner workings AIMMS sparse execution engine, and
provides a number of convenience operators to modify the semantics of
some operators.

Chapter 13— Execution efficiency cookbook—discusses various techniques
that you may apply to find and address performance issues in your
AIMMS models.

Part V of the reference guide discusses all concepts offered by Aimms for spec-
ifying and solving optimization models.

Chapter 14— Variable and constraint declaration—discusses the declara-
tion and attributes of variables and constraints.

Chapter 15—Solving mathematical programs—describes the steps nec-
essary for specifying and solving an optimization program in AIMMS.
Chapter 24—Node and arc declaration—discusses the declaration and at-
tributes of node and arc types available in AIMMS to specify single com-
modity network flow models.

Chapter 17—Advanced methods for nonlinear programs—discusses the
multistart algorithm and nonlinear presolver available in AiMmMs for non-
linear models.

Chapter 23—Mixed complementarity problems—describes the declaration
and attributes of complementarity variables, which can be used to spec-
ify mixed complementarity and MPCC models in AIMMS.
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Chapter 19—Stochastic programming—discusses the facilities in AIMMS
to generate stochastic models and associated scenario trees for existing
deterministic model formulations.

Chapter 20—Robust optimization—introduces the facilities in AIMMS to
generate and solve robust optimization models for existing deterministic
model formulations.

Chapter 16—Implementing advanced algorithms for mathematical pro-
grams—describes a library of procedures which allow you to implement
advanced algorithms for solving linear and mixed-integer linear program-
ming models.

Chapter 18—AIMMS Outer Approximation Algorithm for MINLP—intro-
duces an open approach to solving MINLP models using the well-known
outer approximation algorithm.

Part VI introduces the mechanisms provided by AiMMS to import data from
files and databases, as well as its capabilities to export data and produce stan-
dardized or customized text reports.

Chapter 25—Data initialization, verification and control—describes your
options to initialize the identifiers associated with an AiMMS model. It
also introduces the concept of assertions which can be used to verify
the consistency of data, as well as a number of data control statements
which can help you to keep the data in a consistent state.

Chapter 26— The READ and WRITE statements—describes the basic mecha-
nism offered by AiMmms for data transfer with various data sources.
Chapter 27—Communicating with databases—discusses the specific as-
pects of setting up a link between AiMMS and a database.

Chapter 28—Format of text data files—presents the various data formats
offered by AimmMs for initializing a model through a number of text data
files.

Chapter 29—Reading and Writing Spreadsheet Data—provides you with
an overview of AIMMS’ capabilities to exchange data with Excel or with
OpenOffice Calc workbooks.

Chapter 30—Reading and Writing XML Data—discusses AIMMS’ facilities
to read and write XML data from within AiMMS.

Chapter 31—Text reports and listing—describes the statements and for-
matting options available for producing standardized and customized
text reports.

Part VII of the reference guide introduces a number of advanced features avail-
able in AiMMS both in the area of modeling and communication with external
applications.

Chapter 32—Units of measurement—discusses the declaration and use
of units and unit conventions in an AiMMSs model both for checking the
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consistency of a model formulation, scaling of mathematical programs
and display of data in the interface and reports.

m Chapter 33— Time-based modeling—describes the advanced concepts in
AIMMS to deal with time-dependent data and models in a flexible and
easy manner.

m Chapter 34—The AIMMS programming interface—offers a complete de-
scription of the application programming interface (API) which can be
used to access AIMMS data structures and call AiMMS procedures from
within an external DLL or application.

m Chapter 35—Model structure and modules—discusses the organizational
data structures such as the main model, model sections and modules,
which can be used to supply the model with a logical structure, as well
as library modules, which facilitate model development by multiple de-
velopers.
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Chapter 1

Introduction to the AIMMS language

This chapter discusses a simple but complete modeling example containing
the most common components of a typical AiMmMms application. The aim is to
give a quick feel for the language, and to assist you to form a mental picture
of its functionality.

It is assumed that you are familiar with some basic algebraic notation. It is
important that you understand the notions of “summation,” “simultaneous
equations in many variables (unknowns),” and “minimizing or maximizing an
objective function, subject to constraints.” If you are not acquainted with these
notions, refer to the book AIMMS—Optimization Modeling.

This chapter uses a simple depot location problem to introduce the basic
AIMMS concepts necessary to formulate and solve the model. The task con-
sists of the following steps.

m Section 1.1 describes the depot location problem, introduces the set no-
tation, and illustrates how sets can be used to declare multidimensional
identifiers useful for modeling the problem in AiMMS.

m Section 1.2 discusses the formulation of a mathematical program that
can be used to compute the optimal solution of the problem.

m Section 1.3 briefly discusses data initialization, and explains how data
can be entered.

m Section 1.4 illustrates how you can use flow control statements in AIMMS
to formulate an algorithm for solving your problems in advanced ways.

m Section 1.5 discusses issues to consider when working with more com-
plex models.

1.1 The depot location problem

In translating any real-life problem into a valid AIMMS optimization model
(referred to as a mathematical program) several conceptual steps are required.
They are:

m describe the input and output data using sets and indexed identifiers,
m specify the mathematical program,
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Chapter 1. Introduction to the AIMMS language

specify procedures for data pre- and post-processing,
initialize the input data from files and databases,
solve the mathematical program, and

display the results (or write them back to a database).

The example in this chapter is based on a simple depot location problem which
can be summarized as follows.

Consider the distribution of a single product from one or more depots to
multiple customers. The objective is to select depots from a predefined
set of possible depots (each with a given capacity) such that
m the demand of each customer is met,
m the capacity of each selected depot is not exceeded, and
m the total cost for both depot rental and transport to the customers
is minimized.

In the above problem you can see that there are two entities that determine the
size of the problem: depots and customers. With these entities a number of
instances are associated, e.g. a particular instance of a depot could be ’Amster-
dam’. The precise collection of instances, however, may differ from run to run.
Therefore, when translating the problem into a symbolic model it is customary
and desirable not to make any explicit reference to individual instances. Such
high-level model specification can be accomplished through the use of sets,
each with an associated index for referencing arbitrary elements in that set.

The following set declarations in AiMMS introduce the two sets Depots and
Customers with indices d and c, respectively. AiMMS has a convenient graphical
model editor to create your model. It allows you to enter all model input
using graphical forms. However, in the interest of compactness we will use a
textual representation for declarations that closely resembles the contents of
a graphical form throughout this manual.

Set Depots {
Index : d;

}

Set Customers{
Index : c¢;

}

In most models there is input data that can be naturally associated with a
particular element or tuple of elements in a set. In AIMMS, such data is stored
in Parameters. A good example in the depot location problem is the quantity
Distance, which can be defined as the distance between depot d and customer
¢. To define Distance a index tuple (d,c) is required and it is referred to as the
associated IndexDomain of this quantity.

Problem
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In AIMMS, the identifier Distance is viewed as a Parameter (a known quantity),
and can be declared as follows.

Parameter Distance {
Index : (d,c);
}

In this example the identifier Distance is referred to as an ndexed identifier,
because it has a nonempty index domain.

Not all identifiers in a model need to be indexed. The following declarations
illustrate two scalar parameters which are used later.

Parameter MaxDeliveryDistance;
Parameter UnitTransportRate;

For real-life applications the collection of all possible routes (d,c) may be
huge. In practice, routes (d,c) for which the distance Distance(d,c) is big,
will never become a part of the solution. It, therefore, makes sense to exclude
such routes (d,c) from the entire solution process altogether. We can do this
by computing a set of PermittedRoutes which we will use throughout the sequel
of the example.

In AiMMS, the relation PermittedRoutes can be declared as follows.

Set PermittedRoutes {
Subset0f : (Depots, Customers);
Definition : {
{ (d,c) | Distance(d,c) <= MaxDeliveryDistance }
}

In the SubsetOf attribute of the above declaration it is indicated that the set
PermittedRoutes is a subset of the Cartesian product of the simple sets Depots
and Customers. The Definition attribute globally defines the set Permitted-
Routes as the set of those tuples (d, c) for which the associated Distance(d,c)
does not exceed the value of the scalar parameter MaxDeliveryDistance. AIMMS
will assure that such a global relationship is valid at any time during the ex-
ecution of the model. Note that the set notation in the Definition attribute
resembles the standard set notation found in mathematical literature.

Now that we have restricted the collection of permitted routes, we can use
the relation PermittedRoutes throughout the model to restrict the domain of
identifiers declared over (d,c) to only hold data for permitted routes (d,c).
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In AiMMS, the parameter UnitTransportCost can be declared as follows. Example

Parameter UnitTransportCost {
IndexDomain : (d,c) in PermittedRoutes;
Definition : UnitTransportRate * Distance(d,c);

}

This parameter is defined through a simple formula. Once an identifier has
its own definition, AiMMS will not allow you to make an assignment to this
identifier anywhere else in your model text.

As an effect of applying a domain restriction to the parameter UnitTransport-  Effects of
Cost, any reference to UnitTransportCost(d,c) for tuples (d,c) outside the set domain
PermittedRoutes is not defined, and AiMMs will evaluate this quantity to 0. In  restriction
addition, AiMMS will use the domain restriction in its GUI, and will not allow

you to enter numerical values of UnitTransportCost(d,c) outside of its domain.

To further define the depot location problem the following parameters are  Additional
required: parameter

declarations
m the fixed rental charge for every depot d,

m the available capacity of every depot d, and
m the product demand of every customer c.

The AiMMS declarations are as follows.

Parameter DepotRentalCost {
IndexDomain : d;

}

Parameter DepotCapacity {
IndexDomain : d;

}

Parameter CustomerDemand {
IndexDomain : c;

}

1.2 Formulation of the mathematical program

In programming languages like C it is customary to solve a particular problem  Constraint-
through the explicit specification of an algorithm to compute the solution. In  oriented
AIMMS, however, it is sufficient to specify only the Constraints which have to  modeling
be satisfied by the solution. Based on these constraints AIMMS generates the

input to a specialized numerical solver, which in turn determines the (optimal)

solution satisfying the constraints.
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In constraint-oriented modeling the unknown quantities to be determined are
referred to as variables. Like parameters, these variables can either be scalar
or indexed, and their values can be restricted in various ways. In the depot
location problem it is necessary to solve for two groups of variables.

m There is one variable for each depot d to indicate whether that depot is
to be selected from the available depots.

m There is another variable for each permitted route (d,c) representing the
level of transport on it.

In AiMMS, the variables described above can be declared as follows.

Variable DepotSelected {

IndexDomain : d;
Range : binary;
}
Variable Transport {
IndexDomain : (d,c) in PermittedRoutes;
Range :  nonnegative;
}

For unknown variables it is customary to specify their range of values. Various
predefined ranges are available, but you can also specify your own choice of
lower and upper bounds for each variable. In this example only predefined
ranges have been used. The predefined range binary indicates that the variable
can only assume the values 0 and 1, while the range nonnegative indicates that
the value of the corresponding variable must lie in the continuous interval
[0, o).

As indicated in the problem description in Section 1.1 a solution to the depot
location problem must satisfy two constraints:
m the demand of each customer must be met, and

m the capacity of each selected depot must not be exceeded.

In AIMMS, these two constraints can be formulated as follows.

Constraint CustomerDemandRestriction {

IndexDomain : «c;
Definition : Sum[ d, Transport(d,c) ] >= CustomerDemand(c);
}
Constraint DepotCapacityRestriction {
IndexDomain : d;
Definition : Sum[ c, Transport(d,c) ] <= DepotCapacity(d)*DepotSelected(d);
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The constraint CustomerDemandRestriction(c) specifies that for every customer
¢ the sum of transports from every possible depot d to this particular customer
must exceed his demand. Note that the Sum operator behaves as the standard
summation operator > found in mathematical literature. In AIMMS the domain
of the summation must be specified as the first argument of the Sum operator,
while the second argument is the expression to be accumulated.

At first glance, it may seem that the (indexed) summation of the quantities
Transport(d,c) takes place over all tuples (d,c). This is not the case. The un-
derlying reason is that the variable Transport has been declared with the index
domain (d,c) in PermittedRoutes. As a result, the transport from a depot d
to a customer c not in the set PermittedRoutes is not considered (i.e. not gen-
erated) by AimMs. This implies that transport to ¢ only accumulates along
permitted routes.

The interpretation of the constraint DepotCapacityRestriction(d) is twofold.

m Whenever DepotSelected(d) assumes the value 1 (the depot is selected),
the sum of transports leaving depot d along permitted routes may not
exceed the capacity of depot d.

m Whenever DepotSelected(d) assumes the value O (the depot is not se-
lected), the sum of transports leaving depot d must be less than or equal
to 0. Because the range of all transports has been declared nonnega-
tive, this constraint causes each individual transport from a nonselected
depot to be 0 as expected.

The objective in the depot location problem is to minimize the total cost re-
sulting from the rental charges of the selected depots together with the cost of
all transports taking place. In AiMMS, this objective function can be declared
as follows.

Variable TotalCost {
Definition : {
Sum[ d, DepotRentalCost(d)*DepotSelected(d) ] +
Sum[ (d,c), UnitTransportCost(d,c)*Transport(d,c) 1;

The variable TotalCost is an example of a defined variable. Such a variable will
not only give rise to the introduction of an unknown, but will also cause AIMMS
to introduce an additional constraint in which this unknown is set equal to its
definition. Like in the summation in the constraint DepotCapacityRestriction,
AIMMS will only consider the tuples (d,c) in PermittedRoutes in the definition
of the variable TotalCost, without you having to (re-)specify this restriction
again.
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Using the above, it is now possible to specify a mathematical program to find
an optimal solution of the depot location problem. In Aimwms, this can be
declared as follows.

MathematicalProgram DepotLocationDetermination {

Objective : TotalCost;
Direction : minimizing;
Constraints : AllConstraints;
Variables : Allvariables;
Type Tomip;

The declaration of DepotLocationDetermination specifies a mathematical pro-
gram in which the defined variable TotalCost serves as the objective function
to be minimized. All previously declared constraints and variables are to be part
of this mathematical program. In more advanced applications where there are
multiple mathematical programs it may be necessary to reference subsets of
constraints and variables. The Type attribute specifies that the mathematical
program is a mixed integer program (mip). This reflects the fact that the vari-
able DepotSelected(d) is a binary variable, and must attain either the value 0
or1.

After providing all input data (see Section 1.3) the mathematical program can
be solved using the following simple execution statement.

Solve DepotLocationDetermination ;

A SOLVE statement can only be called inside a procedure in your model. An
example of such a procedure is provided in Section 1.4.

1.3 Data initialization

In the previous section the entire depot location model was specified without
any reference

m to specific elements in the sets Depots and Customers, or
m to specific values of parameters defined over such elements.

As a result of this clear separation of model and data values, the model can
easily be run for different data sets.

A data set can come from various sources. In AIMMS there are six sources you
might consider for your application. They are:

m commercial databases,
m text data files,

m AIMMS case files,

m internal procedures,
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m external procedures, or
m the AIMMS graphical user interface (GUI).

These data sources are self-explanatory with perhaps the AIMMS case files as
an exception. AIMMS case files are obtained by using the case management
facilities of AIMMS to store data values from previous runs of your model.

The following fictitious data set is provided in the form of an text data file.
It illustrates the basic constructs available for providing data in text format.
In this file, assignments are made using the ’:=" operator and the keywords of
DATA TABLE and COMPOSITE TABLE announce the table format. The exclamation
mark denotes a comment line.

Depots := DATA { Amsterdam, Rotterdam };
Customers := DATA { Shell, Philips, Heineken, Unilever };

COMPOSITE TABLE

d DepotRentalCost DepotCapacity

| mmmmmmmm mddCCfif L
Amsterdam 25550 12500
Rotterdam 31200 14000

COMPOSITE TABLE

C CustomerDemand

| mmmmmmmom mmmm
Shell 10000
Philips 5000
Heineken 3000
Unilever 5000

Distance(d,c) := DATA TABLE
Shell  Philips Heineken Unilever
I mdl emmmmif mmmmmmmmmmme o

Amsterdam 100 200 50 150

Rotterdam 75 100 50 75
UnitTransportRate := 1.25 ;
MaxDeliveryDistance := 125 ;

Assuming that the text data file specified above was named "initial.dat", then
its data can easily be read using the following READ statement.

read from file "initial.dat" ;

Such READ statements are typically placed in the predefined procedure Main-
Initialization. This procedure is automatically executed at the beginning of
every session immediately following the compilation of your model source.

A simple data
set in text
format
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data
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When AIMMS encounters any reference to a set or parameter with its own def-
inition inside a procedure, AiMMs will automatically compute its value on the
basis of its definition. When used inside the procedure MainInitialization,
this form of data initialization can be viewed as yet another data source in
addition to the six data sources mentioned at the beginning of this section.

1.4 An advanced model extension

In this section a single procedure is developed to illustrate the use of execu-
tion control structures in AIMMS. It demonstrates a customized solution ap-
proach to solve the depot location problem subject to fluctuations in demand.
Understanding the precise algorithm described in this section requires more
mathematical background than was required for the previous sections. How-
ever, even without this background the examples in this section may provide
you with a basic understanding of the capabilities of AIMMS to manipulate its
data and control the flow of execution.

The mathematical program developed in Section 1.1 does not take into consid-
eration any fluctuations in customer demand. Selecting the depots on the basis
of a single demand scenario may result in insufficient capacity under changing
demand requirements. While there are several techniques to determine a solu-
tion that remains robust under fluctuations in demand, we will consider here
a customized solution approach for illustrative purposes.

The overall structure of the algorithm can be captured as follows.

m During each major iteration, the algorithm adds a single new depot to a
set of already permanently selected depots.

m To determine a new depot, the algorithm solves the depot location model
for a fixed number of scenarios sampled from normal demand distribu-
tions. During these runs, the variable DepotSelected(d) is fixed to 1 for
each depot d in the set of already permanently selected depots.

m The (monpermanent) depot for which the highest selection frequency was
observed in the previous step is added to the set of permanently selected
depots.

m The algorithm terminates when there are no more depots to be selected
or when the total capacity of all permanently selected depots first ex-
ceeds the average total demand incremented with the observed standard
deviation in the randomly selected total demand.

In addition to all previously declared identifiers the following algorithmic iden-
tifiers will also be needed:

m the set SelectedDepots, a subset of the set Depots, holding the already
permanently selected depots, as well as
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Chapter 1. Introduction to the AIMMS language

m the parameters AverageDemand(c), DemandDeviation(c), TotalAverageDe-
mand, NrOfTrials, DepotSelectionCount(d), CapacityOfSelectedDepots, To-
talSquaredDemandDifference and TotalDemandDeviation.

The meaning of these identifiers is either self-explanatory or will become clear
when you study the further specification of the algorithm.

At the highest level you may view the algorithm described above as a single
initialization block followed by a WHILE statement containing a reference to
two additional execution blocks. The corresponding outline is as follows.

<<Initialize algorithmic parameters>>

while ( Card(SelectedDepots) < Card(Depots) and
CapacityOfSelectedDepots < TotalAverageDemand + TotalDemandDeviation ) do
<<Determine depot frequencies prior to selecting a new depot>>
<<Select a new depot and update algorithmic parameters>>
endwhile;

The Aimms function Card determines the cardinality of a set, that is the number
of elements in the set.

The initialization blocks consists of assignment statements to give each rel-
evant set and parameter its initial value. Note that the assignments indexed
with d will be executed for every depot in the Depots, and no explicit FOR state-
ment is required.

TotalAverageDemand := Sum[ c, AverageDemand(c) 1];
SelectedDepots ={}

DepotSelectionCount(d) 1= 0;

CapacityOfSelectedDepots = 0;

TotalDemandDeviation = 0;
TotalSquaredDemandDifference := 0;

DepotSelected.NonVar(d) = 0;

With the exception of TotalAverageDemand, all identifiers are assigned their de-
fault value 0 or empty. This is superfluous the first time the algorithm is called
during a session, but is required for each subsequent call. The value of global
identifiers such as NrOfTrials, AverageDemand(c) and DemandDeviation(c) must
be set prior to calling the algorithm.

The suffix .NonVar indicates a nonvariable status. Whenever the suffix Depot-
Selected.NonVar(d) is nonzero for a particular d, the corresponding variable
DepotSelected(d) is considered to be a parameter (and thus fixed inside a math-
ematical program).
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Chapter 1. Introduction to the AIMMS language

The AiMMS program that determines the depot frequencies prior to selecting
a new depot consists of just five statements.

while ( LoopCount <= NrOfTrials ) do
CustomerDemand(c) := Normal(AverageDemand(c), DemandDeviation(c));

Solve DepotlLocationDetermination;
DepotSelectionCount(d | DepotSelected(d)) += 1;

TotalSquaredDemandDifference += Sum[ c, (CustomerDemand(c) - AverageDemand(c))"2 1];
endwhile;

Inside the WHILE statement the following steps are executed.

Determine a demand scenario.

Solve the corresponding mathematical program.

Increment the depot selection frequency accordingly.

Register squared deviations from the average for total demand.

The operator LoopCount is predefined in AiMMS, and counts the number of the
current iteration in any of AiIMMS’ loop statements. Its initial value is 1. The
function Normal is also predefined, and generates a number from the normal
distribution with known mean (the first argument) and known standard devi-
ation (the second argument). The operator += increments the identifier on the
left of it with the amount on the right. The operator "~ represents exponentia-
tion.

The AIMMS program to select a new depot and update the relevant algorithmic
parameters also consists of just five statements.

SelectedDepots += ArgMax[ d | not d in SelectedDepots,
DepotSelectionCount(d) 1;
CapacityOfSelectedDepots := Sum[ d in SelectedDepots, DepotCapacity(d) 1;

TotalDemandDeviation := Sqrt( TotalSquaredDemandDifference ) /
(Card(SelectedDepots) *NrOfTrials) ;

DepotSelected(d in SelectedDepots) = 1;
DepotSelected.NonVar(d in SelectedDepots) := 1;

In the above AiMMS program the following steps are executed.

m Determine the not already permanently selected depot with the highest
frequency, and increment the set of permanently selected depots accord-
ingly.

m Register the new current total capacity as the sum of all capacities of
depots that have been permanently selected.

m Register the new value of the estimated standard deviation in total de-
mand.
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Chapter 1. Introduction to the AIMMS language

m Assign 1 to all permanently selected depots, and fix their nonvariable
status accordingly.

The iterative operator ArgMax considers all relevant depots from its first argu-
ment, and takes as its value that depot for which the corresponding second ar-
guments is maximal. The AiMMs function Sqrt denotes the well-known square
root operation.

1.5 General modeling tips

The previous sections introduced you to optimization modeling in AiMMS. In
such a small application, the model structure is quite transparent and the
formulation in AiMMS is straightforward. This section discusses issues to con-
sider when your model is larger and more complex.

The AiMMS language is geared to strictly separate between model formulation
and the supply of its data. While this may seem unnatural at first (when your
models are still small), there are several major advantages in using this ap-
proach.

m By formulating the definitions and assignments associated with your
problem in a completely symbolic form (i.e. without any reference to
numbers or particular set elements) the intention of the expressions
present in your model is more apparent. This is especially true when
you have chosen clear and descriptive names for all the identifiers in
your model.

m With the separation of model and data it becomes possible to run your
model with several data sets. Such data sets may describe completely
different problem topologies, all of which is perfectly fine as long as
your model formulation has been set up transparently.

m Keeping your model free from explicit references to numbers or partic-
ular set elements improves maintainability considerably. Explicit data
references inside assignment statements and constraints are essentially
undocumented, and therefore subsequent changes in values are error-
prone.

Translating a real-life problem into a working modeling application is not al-
ways an easy task. In fact, finding a formulation or implementing a solution
method that works in all cases is quite often a demanding (but also a very
satisfying) intellectual challenge.
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Chapter 1. Introduction to the AIMMS language

Setting up a transparent model involves incorporating an appropriate level of
abstraction. For example, when modeling a specific plant with two production
units and two products, you might be tempted to introduce just four dedicated
identifiers to store the individual production values. Instead, it is better to
introduce a single generic identifier for storing production values for all units
and all products. By doing so, you incorporate genericity in your application
and it will be possible to re-use the application at a later date for a different
plant with minimum reformulation.

Finding the proper level of abstraction is not always obvious but it becomes
easier as your modeling experience increases. In general, it is a good strat-
egy to re-think the consequences—with an eye on the extensibility of your
application—before implementing the most straightforward data structures.
In most cases the time spent finding a more generic structure is paid back,
because the better structure helps you to formulate and extend the model in a
clear and structured way.

Transforming a small working demo application into a large scale real-life ap-
plication may result in problems if care is not taken to specify variables and
constraints in an accurate manner. In a small model, there is usually no run-
time penalty to poorly specified mathematical programs. In contrast, when
working with large multidimensional data sets, a poor formulation of a math-
ematical program can easily cause that

m the available memory resources are exhausted, or
m runtime requirements are not met.

Under these conditions, the physical constraints should be reassessed and ap-
propriate domains, parameter definitions and constraints added as outlined
below.

For large applications you should always ask the following questions.

m Have you adequately constrained the domains of high-dimensional iden-
tifiers? Often by reassessing the physical situation the domain range can
be further reduced. Usually such domain restrictions can be expressed
through logical conditions referring to other (input) identifiers.

m Can you predict, for whatever reason, that some index combinations are
very unlikely to appear in the solution of a mathematical program, even
though they should be allowed formally? If so, you might experiment
with omitting such combinations from their respective domains of defi-
nition, and see how this domain reduction reduces the size of the math-
ematical program and affects its solution.

As a result of carefully re-designing index domains you may find that your
model no longer exhausts available memory resources and runs in an accept-
able amount of time.
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In the depot location problem discussed in this chapter, the domain of the
variable Transport has already restricted to the set of allowed PermittedRoutes,
as computed on page 4. Thus, the mathematical program will never consider
transports on a route that is not desirable. Without this restriction, the math-
ematical program would consider the transports from every depot d to every
customer c. The latter may cause the mathematical program size to explode,
when the number of depots and customers become large.

Finally, you may run into mathematical programs where the runtime of a so-
lution method does not scale well even after careful domain definition. In this
case, it may be necessary to reformulate the problem entirely. One approach
may be to decompose the original mathematical program into subprograms,
and use these together with a customized sequential solution method to ob-
tain acceptable solutions. You can find pointers to many of such decomposi-
tion methods in the AiMMS Modeling Guide.
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Chapter 2

Language Preliminaries

This language reference describes the syntax and semantics of the AiMMS lan-
guage. It is recommended that you read the chapters in sequence, but this is
not essential. Both the contents and index are useful for locating the specifics
of any topic. Illustrative examples throughout the text will give you a quick
understanding of each subject.

2.1 Managing your model

AIMMS is a language for the specification and implementation of multidimen-
sional modeling applications. An AIMMS model consists of

m a declarative part which specifies all sets and multidimensional identi-
fiers defined over these sets, together with the fixed functional relation-
ships defined over these identifiers,

m an algorithmic part consisting of one or more procedures which de-
scribes the sequence of statements that transform the input data of a
model into the output data, and

m a utility part consisting of additional identifier declarations and proce-
dures to support a graphical end-user interface for your application.

The declarative part of a model in AIMMS may include the specification of
optimization problems containing simultaneous systems of equations. In the
algorithmic part you can call a special SOLVE statement to translate such opti-
mization problems to a format suitable for a linear or nonlinear solver.

Although optimization modeling will be an important part of most AIMMS ap-
plications, AIMMS is also a convenient tool for other types of applications.

m The purely symbolic representation of set and parameter definitions with
their automatic dependency structure provides spreadsheet-like func-
tionality but with the benefit of much greater maintainability.

m Because of its simple data structures and power of expression, AIMMS
lends itself for use as a rapid prototyping language.
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Although it is possible to create a simple end-user interface showing your
model’s data in the form of tables and graphs, a much more advanced user in-
terface is possible by exploiting the capabilities of the AiMMS interface builder.
Mostly, this involves the introduction of various additional sets and parame-
ters in your model, as well as the implementation of additional procedures to
perform special interface-related tasks.

Modeling in AiMMS is centered around a graphical tool called the model ex-
plorer. In the model explorer the contents and structure of your model is
presented in a tree-like fashion, which is also referred to as the model tree.
The model tree can contain various types of nodes, each with their own use.
They are:

m structuring sections, which you can use to partition the declarations and
procedures that are part of your model into logical groups,

m declaration sections which contain the declarations of the global identi-
fiers (like sets, parameters and variables) in your model, and

m procedures and functions which contain the statements that describe the
algorithmic part of your application.

When you start a new model AiMMs will automatically create a skeleton model
tree which is suitable for small applications. The skeleton contains the follow-
ing nodes:

m a single declaration section where you can store the declarations used in
your model,

m the predefined procedure MainInitialization which is called directly af-
ter compiling your model and can be used to initialize your model,

m the predefined procedure MainExecution where you can put all the state-
ments necessary to execute the algorithmic part of your application, and

m the predefined procedure MainTermination which is called just prior to
leaving ATMMS.

Whenever the number of declarations in your model grows too large to be
easily managed within a single declaration section, or when you want to divide
the execution associated with your application into several procedures, you
are free to change the skeleton model tree created by AIMMS. You can group
particular declarations into separate declaration sections with a meaningful
name, and introduce new procedures and functions.

When you feel that particular groups of declarations, procedures and functions
belong together in a logical manner, you are encouraged to create a new struc-
turing section with a descriptive name within the model tree, and store the
associated model components underneath it. When your application grows
in size, a clear hierarchical structure of all the information stored will help
tremendously to find your way within your application easily and quickly.
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The contents of a model is stored in one or more text files with the “.ams
(AtmMMs model source) extension. By default the entire model is stored in a
single file, but for each structural section you can indicate that you want to
store the subtree underneath it in a separate source file. This is especially
useful when particular parts of your application are shared with other AiMMS
applications, or when there are multiple developers, each responsible for a
particular part of the model.

A text is a sequence of characters. A text file contains such a text whereby
the characters are encoded into numbers. The mapping between these char-
acters in a text and these numbers in a file is called an encoding. The histori-
cally prevailing encoding is ASCII which defines the encoding for some control
characters, the English alphabet, digits, and frequently used punctuation char-
acters for the values 1 .. 127. However, as characters are stored in bytes, the
values 128 .. 255 are free and these are used at different locales for different
purposes. These locale specific extensions of ASCII are also called code pages.
As a consequence, the characters displayed of an ASCII file containing some of
the numbers 128 .. 255, depend on the active code page selected. The problem
here is that the contents of ASCII files were ambiguous when the code page to
be used was not known (see also en.wikipedia.org/wiki/Codepage). In or-
der to circumvent this problem, the Unicode consortium enumerated all char-
acters into more than 64 thousand so-called code points. The first 127 Uni-
code code points match the first 127 characters of ASCIL. These Unicode code
points can be encoded, again, in various ways in a file. To emphasize that
a particular number is a Unicode point, such a number is often denoted as
U+xxxx whereby xxxx is a hexadecimal number. An example Unicode encoding
is UTF8, which stores the first 127 code points in a single byte. This makes a
UTF8 file closely resemble ASCII when no values above 127 are used. To iden-
tify the Unicode encoding used in a file, a so-called Byte Order Mark (BOM)
can be used in the first few bytes of that file. See also www.unicode.org and
en.wikipedia.org/wiki/Byte_order_mark.

UTE8 is a popular encoding; it resembles ASCII for the first 127 code points
and can be used by applications deployed at different locales to unambigu-
ously exchange data. Most modern text editors, including the one in AIMMS,
are able to handle UTF8 text files. We recommend UTF8 encoding for AiMMS
files, especially when AIMMS is used inside international organizations. AIMMS
system files, including the .ams model file and the .aimms project file, use the
UTF8 encoding.

After each editing session AiMMs will only save the last version of your model
files, and will not retain a backup of the previous version of your model files.
You are therefore strongly encouraged to use a version control system to keep
a history of the changes you made to your model.
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In addition to the model files AIMMS stores a number of other files with each
model. They are:

m a project file containing the pages of the graphical (end-)user interface
that you have created for your application and all other relevant infor-
mation such as project options, user menus, fonts, etc., and

m a data tree file containing all the stored datasets and cases associated
with your application.

2.2 Identifier declarations

Identifiers are the unique names through which you can refer to entities in
your model. The most common identifier types in AIMMS are:

set—used for indexing parameters and variables,

parameter—for (multidimensional) data storage,

variable and arc—entities of constraints that must be determined,
constraint and node—relationships between variables or arcs, usually in
the form of (in)equalities,

mathematical program—an objective and a collection of constraints, and
m procedure and function—code segments to initiate execution.

The declarations of all identifiers, procedures and functions within an AIMMS
application can be provided by means of a uniform attribute notation. For
every node within the model tree you can view and change the value of these
attributes through a graphical declaration form. This form will show all the
attributes that are associated with a particular identifier type, along with their
values for the identifier at hand.

In this manual we have chosen to use a textual style representation of all
model declarations, which closely resembles the graphical representation in
the model tree. In view of the large number of declarations in this manual, we
found that a purely graphical presentation in the text was visually distracting.
In contrast, the adopted textual representation is succinct and integrates well
with the surrounding text.

With every declaration in a model you can associate a Text and a Comment at-
tribute. The Comment attribute is aimed at the modeler, and can be used to
describe the contents of a particular node in the model tree, or make remarks
that are relevant for later reference. The Text attribute is intended for use in
the graphical user interface and reporting. It can contain a single line descrip-
tion of the identifier at hand. Many objects in the AiMMS user interface allow
you to display this text along with the identifier value(s).
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Not only does an AiMMS model consist of sets, parameters and variables that
have been defined by you, and thus are specific for your application, AIMMS
also provides a number of predefined system identifiers. These identifiers
characterize either

m a set of all objects with a particular property, for instance the set of
Al1Identifiers or the set of Al1Cases, or

m the current value of a particular modeling aspect, for instance the pa-
rameter CurrentCase or the parameter CurrentPageNumber.

In most cases these identifiers are read-only, and get their value based on the
declarations and settings of your model.

The structuring sections in your model tree are also considered as AIMMS iden-
tifiers. The blanks in a section description are replaced by underscores to
form a legal AiMMS identifier name. The identifier thus formed is a subset of
Al1Identifiers. This subset contains all the model identifiers that have been
declared underneath the associated node. You can conveniently use such sets
in, for instance, the EMPTY statement to clean a entire group of identifiers in a
single statement, or to construct your own subsets of A11Identifiers using the
set operations available in AIMMS.

2.3 Lexical conventions

Before treating the more intricate features of the AIMMS language, we have to
discuss its lexical conventions. That is, we have to define the basic building
blocks of the AiMMs language. Each one is described in a separate paragraph.

The set of characters recognized by AiIMMS consists of the set of all printable
characters, together with the tab character. Tab characters are not expanded
by AiMMS. The character immediately following a tab character is positioned
at column 9, 17, 25, 33, etc. All other unprintable or control characters are
illegal. The presence of an illegal character causes a compiler error.

Numerical values are entered in a style similar to that in other computer lan-
guages. For data storage AIMMS supports the integer data type as well as the
real data type (floating point numbers). During execution, however, AiMMS will
always use a double precision floating point representation.

Following standard practice, the letter e denotes the scientific notation allow-
ing convenient representation of very large or small numbers. The number
following the e can only be a positive or negative integer. Two examples of the
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use of scientific notation are given by

1.2e5 = 1.2 x 10°> = 120, 000
2.72e —4 =2.72 x 10~* = 0.000272

In addition to the ordinary real numbers, AiMMS allows the special symbols
INF, -INF, UNDF, NA, and ZERO as numbers. The precise meaning and use of these
symbols is described later in Section 6.1.1.

Blanks cannot be used inside a number since AIMMS treats a blank as a sepa-
rator. Thus, valid examples of expressions recognized as numbers by AIMMS
are

0 0.0 .0 0. +1 1.

0.5 .5 +0.5 +.5 -0.3 -.3
2e10 2e+10 2.e10 0.3e-5 .3e-5 -.3e-05
INF -INF NA ZERO

The range of values allowed by AiMMS and the number of significant digits is
machine-dependent. AiMMS takes advantage of the accuracy of your machine.
This may cause different results when a single model is run on two different
machines. Expressions that cause arithmetic under- or overflow evaluate to
the symbols ZERO and INF, respectively. Functions and operators requiring in-
teger arguments also accept real numbers that lie within a machine-dependent
tolerance of an integer.

Identifiers are the unique names given to sets, indices, parameters, variables,
etc. Identifiers can be any sequence of the letters a-z, the digits 0-9 and the
underscore _. They must start with either a letter or an underscore. The
length of an identifier is limited to 255 characters. Examples of legal identifiers
include:

a b78 _C_
A_very_long_but_legal_identifier_containing_underscores

The following are not identifiers:

39 39id A-ident adb

In principle, AIMMS operates with a global namespace for all declared iden-
tifiers. By introducing modules into your model (see also Section 35.4), you
can introduce multiple namespaces, which can be convenient when a particu-
lar model section contains logic that can be shared by multiple AtMMS models.
Procedures and functions automatically create a separate namespace, allowing
for local identifiers with the same name as global identifiers in your model.
You can use the namespace resolution operator :: to refer to an identifier in a
particular namespace (see also Section 35.4).
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In general, you are not allowed to redeclare AiMmMS keywords as identifiers,
unless a keyword refers to a non-essential feature of the language. Whenever
you try to redeclare an existing AiMMS keyword, AiMMS will produce a compiler
error when a keyword cannot be redeclared, or will give you a one-time option
to redeclare a non-essential keyword as a model identifier. In the latter case,
the non-essential feature will be permanently unavailable within your project.

The AmMMS language is not case sensitive. This means that upper and lower
case letters can be mixed freely in identifier names but are treated identically
by AiMMS. However, AIMMS is case aware, in the sense that it will try to pre-
serve or restore the original case wherever possible.

Some AIMMS data types have additional data associated with them. You have
access to this extra data through the identifier name plus a suffix, where the
suffix is separated from the identifier by a dot. Examples of suffices are:

c.Derivative Transport.ReducedCost OutputFile.PageSize

You can use a suffix expression associated with a particular identifier as if it
were an identifier itself.

In addition, AiMMS also uses the dot notation to refer to the data associated
from another case file. An example is given below.

CaseDifference(i,j) := Transport(i,j) - ReferenceCase.Transport(i,j);

In this example the values of a variable Transport(i,j) currently in memory
are compared to the values in a particular reference case on disk, identified by
the case identifier ReferenceCase. You will find more information about case
references in Section 6.1.3.

Any constant or parameter in AIMMS must assume one of the following value
types:

m number (either integer or floating point),

m string,

m set element, or

m Unit expression.

All value types except unit expressions are discussed below. Unit expressions
are explained in Section 32.6.

Constants of string type in AiMmMs are delimited by a double quote character
“"”_ To include the double quote character itself in a string, it should be es-
caped by the backslash character “\” (see also Section 5.3.2). Strings can be
used as constants in expressions, as arguments of procedures and functions,
and in the initialization of string-valued parameters. The size of strings is
limited to 64 Kb.
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A set is a group of like elements. Sets can be simple (one-dimensional) or
a relation (multi-dimensional). The elements of a simple set are represented
either by

m an integer number,
m a single-quoted string of a length less than 255 characters, or
m an unquoted string subject to conditions explained below.

The elements of arelation are represented by tuples of such integers or strings.

The elements of an integer set can be used in expressions as if they were
integer numbers. Reversely, you can use integer-valued numerical expressions
to indicate an element of an integer set. Some operations with integer set
elements are ambiguous, and you have to indicate to AIMMS how you want
such operations to be interpreted. This is discussed in Section 3.2.2.

The characters allowed in a quoted string elements are the set printable char-
acters except for tab and newline.

For your convenience, the elements of a string set need not be delimited by a
single quote when all of the following conditions are met:

m the string used as a set element consists only of letters, digits, under-
scores and the sign characters “+” and “-,”

m the set element is not a reserved word or token, and

m the set element is used inside a constant expression such as a constant
enumerated set or list expression (see also Sections 5.1.1 and 6.1.2), or
inside table or a composite table used for the initialization of parameters
and variables (see also Sections 28.2 and 28.3).

String-valued set elements that are referenced explicitly under any circum-
stance other than the ones mentioned above, must be quoted unconditionally.
To include a single quote character in a set element, it should be preceded by
the backslash character “\”.

The following set elements are examples of set elements that can be used
without quotation marks under the conditions mentioned above:

labell 1998 1997-12 1997_12
january january-1998 h2so4 04-Mar-47

The following character strings are also valid as set elements, but must be
quoted in all cases.

"An element containing spaces’
"label with nested quotes: "a*b"’
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Contrary to integer set elements, string elements do not have an associated
number value. Thus, the string element '1993’ does not have the value 1993.
If you use string elements to represent numbers, you can use the Val function
to obtain the associated value. Thus, Val(’1993’) represents the number 1993.

The following delimiters are used by AIMMS:

m a space “ ” separates keywords, identifiers and numbers,

m a pair of single quotes “’” or double quotes “”” delimits set elements and

strings, respectively,

a semicolon “;” separates statements,

braces “{” and “}” denote the beginning and end of sets and lists,

a comma “,” separates elements of sets and lists,

parentheses “(” and “)” delimit expressions, tuples of indices and set

elements, as well as argument lists of functions and references, and

m square brackets “[” and “]” are used to delimit unit expressions as well
as numeric and element ranges. They can also be used as parenthe-
ses in expressions and argument lists of functions and references, and
for grouping elements in components of an element tuple (see also Sec-

tion 5.1.1).

In most other expressions parentheses and square brackets can be used inter-
changeably as long as they match. This feature is useful for making deeply
nested expressions more readable.

The following limits apply within AIMMS.

the length of a line is limited to 255 characters,

the number of set elements per set is at most 239,

the number of indices associated with an identifier is at most 32, and
the number of running indices used in iterative operations such as SUM
and FOR is at most 16.

2.4 Expressions and statements

The creation of an AiMMS model is implemented using two separate but inter-
acting mechanisms. They are:

m automatic updating of the functional relationships specified through ex-
pressions in the Definition attributes of sets and parameters in your
model, and

m manual execution of the statements that constitute the Body attribute of
the procedures and functions defined in your application.

The precise manner in which these components are executed, and the way
they interact, is discussed in detail in Chapters 7 and 8. This section discusses
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the general structure of an AiMMS model as well as the requirements for the
Definition and Body attributes.

The length of any particular line in the Definition attribute of an identifier
or the Body attribute of a procedure or function is limited to 255 characters.
Although this full line length may be convenient for data instantiation in the
form of large tables, it is recommended that you do not exceed a line length
of 80 characters in these attributes in order to preserve maximum readability.
Empty lines can be inserted anywhere for easier reading.

Expressions and statements in the Body attribute of a procedure or function can
be interspersed with comments that are ignored during compilation. AiMMS
supports two kinds of comments:

m the tokens “/*” and “*/” for a block comment, and
m the exclamation mark “!” for a one line comment.

]

Each block comment starts with a “/*” token, and runs up to the matching
“*/” token, and cannot be nested. It is a useful method for entering pieces
of explanatory text, as well as for temporarily commenting out one or more
execution statements. A one-line comment starts anywhere on a line with an
exclamation mark “!”, and runs up to the end of that line.

The value of a Definition attribute must be a valid expression of the appropri-
ate type. An expression in AIMMS can result in either

m a set,

a set element,

a string,

a numerical value,
a logical value, or
a unit expression.

Set, element and string expressions are discussed in full detail in Chapter 5,
numerical and logical expressions in Chapter 6, while unit expressions are
discussed in Chapter 32.

AIMMS statements in the body of procedures and functions constitute the al-
gorithmic part of a modeling application. All statements are terminated by
a semicolon. You may enter multiple statements on a single line, or a single
statement over several lines.

25

Line length and
empty lines

Commenting

Expressions

Statements



Chapter 2. Language Preliminaries

To specify the algorithmic part of your modeling application, the following
statements can be used:

assignments—to compute a new value for a data item,

the SOLVE statement—to solve a mathematical program for the values of
its variables,

flow control statements like IF-THEN-ELSE, FOR, WHILE, REPEAT, SWITCH, and
HALT—to manage the flow of execution,

the OPTION and Property statements—to set identifier properties and op-
tions dealing with execution, output, progress, and solvers,

the data control statements EMPTY, CLEANUP, READ, WRITE, DISPLAY, and PUT—
to manage the contents of internal and external data.

procedure calls—to execute the statements contained in a procedure.

The precise syntax of these execution statements is discussed in Chapters 8
and further.

2.5

Data initialization

The initialization of sets, parameters, and variables in an AiMMS application
can be done in several ways:

through the InitialData attribute of sets, and parameters,

by reading in data from an text file in AiMMs data format,

by reading in data from a previous AIMMS session stored in a binary case
file,

by reading in the data from an external ODBC-compliant database, or

by initializing an identifier through algebraic assignment statements.

When starting up your AIMMS application, AiMMs will initialize your model
identifiers in the following order.

Following compilation each identifier is initialized with the contents of
its InitialData attribute.

Subsequently, AiMMs will execute the predefined procedure MainInitial-
ization. You can use it to specify READ statements to read in data from
text files, case files or databases. In addition, it can contain any other
algebraic statement necessary to initialize one or more identifiers in your
model. Of course, you can also leave this procedure empty if you so
desire.

The full details of model initialization are discussed in Chapter 25.
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The InitialData attribute of an identifier can contain any constant set-valued,
set element-valued, string-valued, or numerical expression. In order to con-
struct such expressions (consisting of mostly tables and lists), AiMmMs offers
so-called data pages which can be created on demand. These pages help you
enter the data in a convenient and graphical manner.

Entering the
InitialData
attribute

27
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Chapter 3

Set Declaration

This chapter covers all aspects associated with the declaration and use of sets
in AtMMS models. The main topics are indexing with sets, simple sets with
strings, simple sets with integers, relations and indexed sets.

3.1 Sets and indices

Sets and indices give your AIMMS model dimension and depth by providing
a mechanism for grouping parameters, variables, and constraints. Sets and
indices are also used as driving mechanism in arithmetic operations such as
summation. The use of sets for indexing expressions helps to describe large
models in a concise and understandable way.

Consider a set of Cities and an identifier called Transport defined between
several pairs of cities (i, j), representing the amount of product transported
from supply city i to destination city j. Suppose that you are interested in the
quantities arriving in each city. Rather than adding many individual terms, the
following mathematical notation, using sets and indices, concisely describes
the desired computation of these quantities.

(Vj € Cities) Arrival; = Z Transport;;.
ieCities

This multidimensional index notation forms the foundation of the AiMMS mod-
eling language, and can be used in all expressions. In this example, i and j are
indices that refer to individual Cities.

A set in AIMMS

m has either strings or integers as elements,
m is either a simple set, or a relation, and
m is either indexed or not indexed.

This chapter

General

Example

Several types of
sets
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Sets can either have strings as elements (such as the set Cities discussed above),
or have integers as elements. An example of an integer set could be a set of
Trials represented by the numbers 1,...,n. The resulting integer set can then
be used to refer to the results of each single experiment.

A simple set is a one-dimensional set, such as the set Cities mentioned above,
while a relation or multidimensional set is the Cartesian product of a number
of simple sets or a subset thereof. An example of a relation is the set of possi-
ble Routes between supply and destination cities, which can be represented as
a subset of the Cartesian product Cities x Cities.

Sets in AIMMS are the basis for creating multidimensional identifiers in your
model. Through indices into sets you have access to individual values of these
identifiers for each tuple of elements. In addition, the indexing notation in
AIMMS is your basic mechanism for expressing iterative operations such as
repeated addition, repeated multiplication, sequential search for a maximum
or minimum, etc.

Simple sets may be indexed. An indexed set is a family of sets defined for every
element in the index domain of the indexed set. An example of an indexed set
is the set of transport destination cities defined for each supply city. On the
other hand, the set Cities discussed above is not an indexed set.

The contents of any simple can be sorted in AiMMS. Sorting can take place
either automatically or manually. Automatic sorting is based on the value of
some expression defined for all elements of the set. By using an index into a
sorted subset, you can access any subselection of data in the specified order.
Such a subselection may be of interest in your end-user interface or at a certain
stage in your model.

3.2 Set declaration and attributes

Each set has an optional list of attributes which further specify its intended
behavior in the model. The attributes of sets are given in Table 3.1. The
attributes IndexDomain is only relevant to indexed sets.

3.2.1 Simple sets

A simple set in AIMMS is a finite collection of elements. These elements are
either strings or integers. Strings are typically used to identify real-world ob-
jects such as products, locations, persons, etc.. Integers are typically used for
algorithmic purposes. With every simple set you can associate indices through
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Attribute Value-type See also
page

IndexDomain | index-domain 37

SubsetOf subset-domain

Index identifier-list

Parameter identifier-list

Text string 19

Comment comment string 19

Property NoSave, ETementsAreNumerical, ElementsAreLabels

Definition set-expression

OrderBy expression-list

Table 3.1: Set attributes

which you can refer (in succession) to all individual elements of that set in
indexed statements and expressions.

An example of the most basic declaration for the set Cities from the previous
example follows.

Set Cities {

Index HE

}

This declares the identifier Cities as a simple set, and binds the identifiers i
and j as indices to Cities throughout your model text.

Consider a set SupplyCities which is declared as follows:

Set SupplyCities {

SubsetOf : Cities;
Parameter : LargestSupplyCity;
Text : The subset of cities that act as supply city;

Definition : {
{1 | Exists( j | Transport(i,j) ) }

}
OrderBy HE
}
The “|” operator used in the definition is to be read as “such that” (it is ex-

plained in Chapter 5). Thus, SupplyCities is defined as the set of all cities from
which there is transport to at least one other city. All elements in the set are
ordered lexicographically. The set has no index of its own, but does have an el-
ement parameter LargestSupplyCity that can hold any particular element with
a specific property. For instance, the following assignment forms one way to
specify the value of this element parameter:

LargestSupplyCity := ArgMax( i in SupplyCities, sum( j, Transport(i,j) ) );

Most basic
example

More detailed

example
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Note that this assignment selects that particular element from the subset of
SupplyCities for which the total amount of Transport leaving that element is
the largest.

With the SubsetOf attribute you can tell AimMs that the set at hand is a subset
of another set, called the subset domain. For simple sets, such a subset domain
is denoted by a single set identifier. During the execution of the model AiMMS
will assert that this subset relationship is satisfied at all times.

Each simple set that is not a subset of another set is called a root set. As will
be explained later on, root sets have a special role in AiMMs with respect to
data storage and ordering.

An index takes the value of all elements of a set successively and in the order
specified by its declaration. It is used in operations like summation and in-
dexed assignment over the elements of a set. With the Index attribute you can
associate identifiers as indices into the set at hand. The index attributes of all
sets must be unique identifiers, i.e. every index can be declared only once.

A parameter declared in the Parameter attribute of a set takes the value of a
specific element of that set. Throughout the sequel we will refer to such a
parameter as an element parameter. It is a very useful device for referring to
set elements that have a special meaning in your model (as illustrated in the
previous example). In a later chapter you will see that an element parameter
can also be defined separately as a parameter which has a set as its range.

With the Text attribute you can specify one line of descriptive text for the
end-user. This description can be made visible in the graphical user interface
when the data of an identifier is displayed in a page object. You can use the
Comment attribute to provide a longer description of the identifier at hand. This
description is intended for the modeler and cannot be made visible to an end-
user. The Comment attribute is a multi-line string attribute.

You can make AiMMS aware that specific words in your comment text are in-
tended as identifier names by putting them in single quotes. This has the
advantage that AimMms will update your comment when you change the name
of that identifier in the model editor, or, that AIMMS will warn you when a
quoted name does not refer to an existing identifier.

With the OrderBy attribute you can indicate that you want the elements of a
certain set to be ordered according to a single or multiple ordering criteria.
Only simple sets can be ordered.
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A special word of caution is in place with respect to specifying an ordering
principle for root sets. Root sets play a special role within AiIMMS because
all data defined over a root set or any of its subsets is stored in the original
data entry order in which elements have been added to that root set. Thus,
the data entry order defines the natural order of execution over a particular
domain, and specifying the OrderBy attribute of a root set may influence overall
execution times of your model in a negative manner. Section 13.2.7 discusses
these efficiency aspects in more detail, and provides alternative solutions.

The value of the OrderBy attribute can be a comma-separated list of one or
more ordering criteria. The following ordering criteria (numeric, string or user-
defined) can be specified.

m If the value of the OrderBy attribute is an indexed numerical expression
defined over the elements of the set, AiMMS will order its elements in
increasing order according to the numerical values of the expression.

m If the value of the OrderBy attribute is either an index into the set, a set
element-valued expression, or a string expression over the set, then its
elements will be ordered lexicographically with respect to the strings as-
sociated with the expression. By preceding the expression with a minus
sign, the elements will be ordered reverse lexicographically.

m If the value of the OrderBy attribute is the keyword User, the elements will
be ordered according to the order in which they have been added to the
subset, either by the user, the model, or by means of the Sort operator.

When applying a single ordering criterion, the resulting ordering may not be
unique. For instance, when you order according to the size of transport taking
place from a city, there may be multiple cities with equal transport. You may
want these cities to be ordered too. In this case, you can enforce a more refined
ordering principle by specifying multiple criteria. AiMMS applies all criteria
in succession, and will order only those elements that could not be uniquely
distinguished by previous criteria.

The following set declarations give examples of various types of automatic
ordering. In the last declaration, the cities with equal transport are placed in a
lexicographical order.

Set LexicographicSupplyCities {
SubsetOf : SupplyCities;
OrderBy : 1i;

}

Set ReverselexicographicSupplyCities {
SubsetOf : SupplyCities;
OrderBy : - 1i;

}

Set SupplyCitiesByIncreasingTransport {
SubsetOf : SupplyCities;
OrderBy  : sum( j, Transport(i,j) );
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Set SupplyCitiesByDecreasingTransportThenLexicographic {
SubsetOf : SupplyCities;
OrderBy : - sum( j, Transport(i,j) ), i;

In general, you can use the Property attribute to assign additional properties to  The Property
an identifier in your model. The applicable properties depend on the identifier  attribute
type. Sets, at the moment, only support a single property.

m The property NoSave specifies that the contents of the set at hand will
never be stored in a case file. This can be useful, for instance, for inter-
mediate sets that are necessary during the model’s computation, but are
never important to an end-user.

m The properites ElementsAreNumerical and ElementsAreLabels are only rel-
evant for integer sets (see also Section 3.2.2). They will ignored for non-
integer sets.

The properties selected in the Property attribute of an identifier are on by de-  Dynamic
fault, while the nonselected properties are off by default. During execution of  property
your model you can also dynamically change a property setting through the selection
Property statement. The PROPERTY statement is discussed in Section 8.5.

If an identifier can be uniquely defined throughout your model by a single  The Definition
expression, you can (and should) use the Definition attribute to specify this attribute
global relationship. AIMMS stores the result of a Definition and recomputes

it only when necessary. For sets where a global Definition is not possible,

you can make assignments in procedures and functions. The value of the

Definition attribute must be a valid expression of the appropriate type, as

exemplified in the declaration

Set SupplyCities {
SubsetOf : Cities;
Definition : {
{1 | Exists( j | Transport(i,j) ) }
}

3.2.2 Integer sets

A special type of simple set is an integer set. Such a set is characterized by the  Integer sets
fact that the value of the SubsetOf attribute must be equal to the predefined set

Integers or a subset thereof. Integer sets are most often used for algorithmic

purposes.
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Elements of integer sets can also be used as integer values in numerical ex-
pressions. In addition, the result of an integer-valued expression can be added
as an element to an integer set. Elements of non-integer sets that represent
numerical values cannot be used directly in numerical expressions. To obtain
the numerical value of such non-integer elements, you can use the Val function
(see Section 5.2.1).

The interpretation of integer set elements will as integer values in numerical
expressions, raises an ambiguity for certain types of expressions. If anInteger
is an element parameter into an integer set anIntegerSet,

m how should AiMmMs handle the expression
if (anInteger) then
endif;

where anInteger holds the value '0’. On the one hand, it is not the empty
element, so if AiMMS would interpret this as a logical expression with a
non-empty element parameter, the if statement would evaluate to true.
If AiMmMs would interpret this as a numerical expression, the element
parameter would evaluate to the numerical value 0, and the if statement
would evaluate to false.

m how should AiMmMs handle the assignment

anInteger := anlnteger + 3;

if the values in anIntegerSet are non-contiguous? If AiMMS would inter-
pret anInteger as an ordinary element parameter, the + operator would
refer to alead operator (see also Section 5.2.3), and the assignment would
assign the third next element of anInteger in the set anIntegerSet. If
AmMMS would interpret anInteger as an numerical value, the assignment
would assign the numerical value of anInteger plus 3, assuming that this
is an element of anIntegerSet.

You can resolve this ambiguity assigning one of the properties ElementsAreLabels

and ElementsAreNumerical to anIntegerSet. If you don’t assign either property,
and you use one of these expressions in your model, Aimms will issue a warn-
ing about the ambiguity, and the end result might be unpredictable.

In order to fill an integer set AIMMS provides the special operator “..” to
specify an entire range of integer elements. This powerful feature is discussed
in more detail in Section 5.1.1.
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The following somewhat abstract example demonstrates some of the features
of integer sets. Consider the following declarations.

Parameter LowInt {

Range : Integer;

}

Parameter HighInt {
Range : Integer;

}

Set EvenNumbers {
Subset0f : Integers;
Index R
Parameter : LargestPolynomialValue;
OrderBy S H

}

The following statements illustrate some of the possibilities to compute in-
teger sets on the basis of integer expressions, or to use the elements of an
integer set in expressions.

I Fill the integer set with the even numbers between
! LowInt and HighInt. The first term in the expression
I ensures that the first integer is even.

EvenNumbers := { (LowInt + mod(LowInt,2)) .. HighInt by 2 };

I Next the square of each element i of EvenNumbers is added
| to the set, if not already part of it (i.e. the union results)

for (i | i <= HighInt ) do
EvenNumbers += i°2;
endfor;

I Finally, compute that element of the set EvenNumbers, for
! which the polynomial expression assumes the maximum value.

LargestPolynomialvalue := ArgMax( i, i"4 - 10*i"3 + 10%i"2 - 100%i );

By default, integer sets are ordered according to the numeric value of their el-
ements. Like with ordinary simple sets, you can override this default ordering
by using the OrderBy attribute. When you use an index in specifying the order
of an integer set, AIMMS will interpret it as a numeric expression.

3.2.3 Relations

A relation or multidimensional set is the Cartesian product of a number of
simple sets or a subset thereof. Relations are typically used as the domain
space for multidimensional identifiers. Unlike simple sets, the elements of a
relation cannot be referenced using a single index.

Example

Ordering
integer sets

Relation
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An element of a relation is called a tuple and is denoted by the usual math-
ematical notation, i.e. as a parenthesized list of comma-separated elements.
Throughout, the word index component will be used to denote the index of a
particular position inside a tuple.

To reference an element in a relation, you can use an index tuple, in which each
tuple component contains an index corresponding to a simple set.

The SubsetOf attribute is mandatory for relations, and must contain the subset
domain of the set. This subset domain is denoted either as a parenthesized
comma-separated list of simple set identifiers, or, if it is a subset of another
relation, just the name of that set.

The following example demonstrates some elementary declarations of a re-
lation, given the two-dimensional parameters Distance(i,j) and Transport-
Cost(i,3j). The following set declaration defines a relation.

Set HighCostConnections {
SubsetOf : (Cities, Cities);
Definition : {
{ (i,j) | Distance(i,j) > 0 and TransportCost(i,j) > 100 }

3.2.4 Indexed sets

An indexed set represents a family of sets defined for all elements in another
set, called the index domain. The elements of all members of the family must
be from a single (sub)set. Although membership tables allow you to reach the
same effect, indexed sets often make it possible to express certain operations
very concisely and intuitively.

A set becomes an indexed set by specifying a value for the IndexDomain at-
tribute. The value of this attribute must be a single index or a tuple of in-
dices, optionally followed by a logical condition. The precise syntax of the
IndexDomain attribute is discussed on page 42.

The following declarations illustrate some indexed sets with a content that
varies for all elements in their respective index domains.

Set SupplyCitiesToDestination {
IndexDomain : j;
Subset0f : Cities;
Definition : {
{1 | Transport(i,j) }
}
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Set DestinationCitiesFromSupply {
IndexDomain : i;
Subset0f : Cities;
Definition : {

{ j | Transport(i,j) }

}

}

Set IntermediateTransportCities {
IndexDomain : (i,3);

Subset0f : Cities;
Definition : DestinationCitiesFromSupply(i) * SupplyCitiesToDestination(j);
Comment : {

A11 intermediate cities via which an indirect transport
from city i to city j with one intermediate city takes place

}

The first two declarations both define a one-dimensional family of subsets of
Cities, while the third declaration defines a two-dimensional family of subsets
of Cities. Note that the * operator is applied to sets, and therefore denotes
intersection.

The subset domain of an indexed set family can be either a simple set identi-  Subset domains
fier, or another family of indexed simple sets of the same or lower dimension.
The subset domain of an indexed set cannot be a relation.

Declarations of indexed sets do not allow you to specify either the Index or  No default
Parameter attribute. Consequently, if you want to use an indexed set for index-  indices
ing, you must locally bind an index to it. For more details on the use of indices

and index binding refer to Sections 3.3 and 9.1.

3.3 INDEX declaration and attributes

Every index used in your model must be declared exactly once. You can declare  Direct versus
indices indirectly, through the Index attribute of a simple set, or directly using indirect

an Index declaration. Note that all previous examples show indirect declaration  declaration
of indices.

When you choose to declare an index not as an attribute of a set declaration, Index
you can use the Index declaration. The attributes of each single index declara-  declaration
tion are given in Table 3.2.

You can assign a default binding with a specific set to directly declared indices = The Range
by specifying the Range attribute. If you omit this Range attribute, the index attribute
has no default binding to a specific set and can only be used in the context of

local or implicit index binding. The details of index binding are discussed in

Section 9.1.



Chapter 3. Set Declaration

Attribute | Value-type See also
page

Range set-identifier

Text string 19

Comment comment string 19

Table 3.2: Index attributes

The following declaration illustrates a direct Index declaration.

Index c {

}

Range :

Customers;

Example
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Parameter Declaration

The word parameter does not have a uniform meaning in the scientific com-
munity. When you are a statistician, you are likely to view a parameter as an
unknown quantity to be estimated from observed data. In AIMMS the word
parameter denotes a known quantity that holds either numeric or string-valued
data. In programming languages the term variable is used for this purpose.
However, this is not the convention adopted in AIMMS, where, in the context of
a mathematical program, the word variable is reserved for an unknown quan-
tity. Outside this context, a variable behaves as if it were a parameter. The
terminology in AIMMS is consistent with the standard operations research ter-
minology that distinguishes between parameters and variables.

Rather than putting the explicit data values directly into your expressions, it
is a much better practice to group these values together in parameters and
to write all your expressions using these symbolic parameters. Maintaining a
model that contains explicit data is a painstaking task and error prone, because
the meaning of each separate number is not clear. Maintaining a model in
symbolic form, however, is much easier and frequently boils down to simply
adjusting the data of a few clearly named parameters at a single point.

Consider the set Cities introduced in the previous chapter and a parameter
FixedTransport(i,j). Suppose that the cost of each unit of transport between
cities i and j is stored in the parameter UnitTransportCost(i,j). Then the
definition of TotalTransportCost can be expressed as

TotalTransportCost := sum[(i,j), UnitTransportCost(i,j)*FixedTransport(i,j)];

Not only is this expression easy to understand, it also makes your model
extendible. For instance, an extra city can be added to your model by sim-
ply adding an extra element to the set Cities as well as updating the tables
containing the data for the parameters UnitTransportCost and FixedTransport.
After these changes the above statement will automatically compute Total-
TransportCost based on the new settings without any explicit change to the
symbolic model formulation.

Terminology

Why use
parameters

Example
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4.1 Parameter declaration and attributes

There are four parameter types in AiMMS that can hold data of the following  Declaration and

four data types:

m Parameter for numeric values,

m StringParameter for strings,

m ElementParameter for set elements, and
m UnitParameter for unit expressions.

Prior to declaring a parameter in the model editor you need to decide on its
data type. In the model tree parameters of each type have their own icon. The

attributes of parameters are given in Table 4.1.

Attribute Value-type See also
page
IndexDomain index-domain
Range range
Default constant-expression
Unit unit-expression
Property NoSave, Stochastic,
Uncertain, Random,
numeric-storage-property 45
Text string 19
Comment comment string 19, 32
Definiton expression 34
InitialData data enumeration 423
Uncertainty expression 46, 337
Region expression 46, 334
Distribution | expression 46, 340

Table 4.1: Parameter attributes

The following declarations demonstrate some basic parameter declarations

Parameter Population {

IndexDomain : 1i;
Range : [0,inf);
Unit ;[ 1000 1;
Text : Population of city i in thousands;
}
Parameter Distance {
IndexDomain : (i,j);
Range : [0,inf);
Unit [ km 1;
Text : Distance from city i to city j in km;

attributes

Basic examples
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ElementParameter cityWithLargestPopulation {

Range : cities;

Definition : argMax( i, Population( i ) );
}
StringParameter emergencyMessage {

InitialData : "Warning";
}
Quantity Currencies {

BaseUnit : dollar;

Conversions : euro -> dollar : # -> # * 1.3;
}

UnitParameter selectedCurrency {
InitialData : [euro];

}

For each multidimensional identifier you need to specify its dimensions by pro-
viding a list of index bindings at the IndexDomain attribute. Identifiers without
an IndexDomain are said to be scalar. In the index domain you can specify de-
fault or local bindings to simple sets. The totality of dimensions of all bindings
determine the total dimension of the identifier. Any references outside the in-
dex domain, either through execution statements or from within the graphical
user interface are skipped.

You can also use the IndexDomain attribute to specify a logical expression which
further restricts the valid tuples in the domain. During execution, assignments
to tuples that do not satisfy the domain condition are ignored. Also, evaluation
of references to such tuples in expressions will result in the value zero. Note
that, if the domain condition contains references to other data in your model,
the set of valid tuples in the domain may change during a single interactive
session.

Consider the sets ConnectedCities with default index cc and DestinationCities-
FromSupply(i) from the previous chapter. The following statements illustrate
a number of possible declarations of the two-dimensional identifier UnitTrans-
portCost with varying index domains.

Parameter UnitTransportCost {
IndexDomain : (i,3);
}
Parameter UnitTransportCostWithCondition {
IndexDomain : (i,j) in ConnectedCities;
}
Parameter UnitTransportCostWithIndexedDomain {
IndexDomain : (i, j in DestinationCitiesFromSupply(i));

}
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The identifiers defined in the previous example will behave as follows.

m The identifier UnitTransportCost is defined over the full Cartesian prod-

uct Cities x Cities by means of the default bindings of the indices i
and j. You will be able to assign values to every pair of cities (i,j), even
though there is no connection between them.

The identifier UnitTransportCostWithCondition is defined over the same
Cartesian product of sets. Its domain, however, is restricted by an ad-
ditional condition (i,j) in ConnectedCities which will exclude assign-
ments to tuples that do not satisfy this condition, or evaluate to zero
when referenced.

Finally, the identifier UnitTransportCostWithIndexedDomain is defined over
a subset of the Cartesian product Cities X Cities. The second element
j must lie in the subset DestinationCities(i) associated with i. AIMMS
will produce a domain error if this condition is not satisfied.

With the Range attribute you can restrict the values to certain intervals or

sets.

The Range attribute is not applicable to a StringParameter nor to a Unit-

Parameter. The possible values for the Range attribute are:

m one of the predefined ranges Real, Nonnegative, Nonpositive, Integer, or

Binary,

any one of the interval expressions [a, b], [a, b), (a, b], or (a,b), where
a square bracket implies inclusion into the interval and a round bracket
implies exclusion,

any enumerated integer set expression, e.g. {a .. b} covering all integers
from a until and including b,

a set reference, if you want the values to be elements of that set. For set
element-valued parameters this entry is mandatory.

The values for a and b can be a constant number, inf, -inf, or a parameter ref-
erence involving some or all of the indices on the index domain of the declared
identifier.

Consider the following declarations.

Parameter UnitTransportCost {

IndexDomain : (i,3);

Range ;[ UnitLoadingCost(i), 100 ];
}
Parameter DefaultUnitsShipped {

IndexDomain : (i,3);

Range N

}
}

{ MinShipment(i) .. MaxShipment(j) }

Set States {
Index TS

}

Set adjacentStates {
Subset0f : States;

Explanation

The Range
attribute

Example
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IndexDomain : s;
}
ElementParameter nextState {
IndexDomain : s;
Range : adjacentStates(s);
}

It limits the values of the identifier UnitTransportCost(i,j) to an interval from
UnitLoadingCost(i) to 100. Note that the lower bound of the interval has a
smaller dimension than the identifier itself. The integer identifier Default-
UnitsShipped(i,j) is limited to an integer range through an enumerated integer
range inside the set brackets.

In AimMMS, parameters that have not been assigned an explicit value are given a
default value automatically. You can specify the default value with the Default
attribute. The value of this attribute must be a constant expression. If you do
not provide a default value for the parameter, AIMMS will assume the following
defaults:

m O for numbers,

m 1 for unit-valued parameters,

m the empty string "" for strings, and

m the empty element '’ for set elements.

The Definition attribute of a parameter can contain a valid (indexed) numerical
expression. Whenever a defined parameter is referenced inside your model,
AIMMS will, by default, recompute the associated data if (data) changes to any
of the identifiers referenced in its definition make its current data out-of-date.
In the definition expression you can refer to any of the indices in the index
domain as if the definition was the right-hand side of an assignment statement
to the parameter at hand (see also Section 8.2).

The following declaration illustrates an indexed Definition attribute.

Parameter MaxTransportFrom {
IndexDomain : i;
Definition : Max(j, Transport(i,j));

Whenever you provide a definition for an indexed parameter, you should care-
fully verify whether and how that parameter is used in the context of one of
AIMMS’ loop statements (see also Section 8.3). When, due to changes in only a
slice of the dependent data of a definition during a previous iteration, AIMMS
(in fact) only needs to evaluate a single slice of a defined parameter during the
actual iteration, you should probably not be using a defined parameter. AIMMS’
automatic evaluation scheme for defined identifiers will always recompute the
data for such identifiers for the whole domain of definition, which can lead to
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severe inefficiencies for high-dimensional defined parameters. You can find a
more detailed discussion on this issue in Section 13.2.3.

By associating a Unit to every numerical identifier in your model, you can let
AmMMS help you check your model’s consistency. AIMMS also uses the Unit
attribute when presenting data and results in both the output files of a model
and the graphical user interface. You can find more information on the use of
units in Chapter 32.

The Property attribute can hold various properties of the identifier at hand.
The allowed properties for a parameter are NoSave or one of the numerical
storage properties Integer, Integer32, Integerl6, Integer8 or Double, in addi-
tion to the properties Stochastic, Uncertain, Random which are discussed in Sec-
tion 4.1.1.

m The property NoSave indicates whether the identifier values are stored in
cases. It is discussed in detail in Section 3.2.

m By default, the values of numeric parameters are stored as double preci-
sion floating point numbers. By specifying one of the storage properties
Integer, Integer32, Integerl6, Integer8, or Double AiMMS will store the
values of the identifier as (signed) integers of default machine length, 4
bytes, 2 bytes or 1 byte, or as a double precision floating point number
respectively. These properties are only applicable to parameters with an
integer range.

During execution you can change the properties of a parameter through the
Property statement. The syntax of the Property statement and examples of its
use can be found in Section 8.5.

With the Text attribute you can provide one line of descriptive text for the
end-user. If the Text string of an indexed parameter or variable contains a
reference to one or more indices in the index domain, then the corresponding
elements are substituted for these indices in any display of the identifier text.

4.1.1 Properties and attributes for uncertain data

The AiMMs modeling language allows you to specify both stochastic programs
and robust optimization models. Both methodologies are designed to deal
with models involving data uncertainty. In stochastic programming the uncer-
tainty is expressed by specifying multiple scenarios, each of which can define
scenario-specific values for certain parameters in your model. Stochastic pro-
gramming is discussed in full detail in Chapter 19. For robust optimization,
parameters can be declared to not have a single fixed value, but to take their
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values from an user-defined uncertainty set. Robust optimization is discussed
in Chapter 20.

The following Parameter properties are available in support of stochastic pro-
gramming and robust optimization models.

m The property Stochastic indicates that the identifier can hold stochastic
event data for a stochastic model. It is discussed in detail in Section 19.2.

m The property Uncertain indicates that the identifier can hold uncertain
values from an uncertainty set specified through the Uncertainty and/or
Region attributes. Uncertain parameters are used in AIMMS’ robust opti-
mization facilities, and are discussed in detail in Section 20.2.

m The property Random indicates that the identifier can hold random values
with respect to a distribution with characteristics specified through the
Distribution attribute. Random parameters are used in AIMMS’ robust
optimization facilities, and are discussed in detail in Section 20.3.

The Uncertainty and Region attributes are available if the parameter at hand
has been declared uncertain using the Uncertain property. Uncertain param-
eters are used by AIMMS’ robust optimization framework, and are discussed
in full detail in Section 20.2. With the Region attribute you can specify an un-
certainty set using one of the predefined uncertainty sets Box, ConvexHull or
E1lipsoid. The Uncertainty attribute specifies a relationship between the un-
certain parameter at hand, and one or more other (uncertain) parameters in
your model. The Uncertainty and Region attributes are not exclusive, i.e., you
are allowed to specify both, in which case AIMMS’ generation process of the ro-
bust counterpart will make sure that both conditions are satisfied by the final
solution.

The Distribution attribute is available if the parameter at hand has been de-
clared random using the Random property. Random parameters are used by
AIMMS’ robust optimization framework, and are discussed in full detail in Sec-
tion 20.3. With the Distribution attribute you can declare that the values for
the random parameter at hand adhere to one of the predefined distributions
discussed in Section 20.3.
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Chapter 5

Set, Set Element and String Expressions

Expressions are organized arrangements of operators, constants, sets, indices,
parameters, and variables that evaluate to either a set, a set element, a numer-
ical value, a logical value, a string value, or a unit value. Expressions form the
core of the AimMMs language. In the previous chapters you already have seen
some elementary examples of expressions.

In this chapter, set, set element and string expressions are presented in detail.
For expressions that evaluate to either numerical or logical values, you are
referred to Chapter 6. Expressions that evaluate to unit values are discussed
in Section 32.6

5.1 Set expressions

Set expressions play an important role in the construction of index domains
of indexed identifiers, as well as in constructing the domain of execution of
particular indexed statements. The AIMMS language offers a powerful set of
set expressions, allowing you to express complex set constructs in a clear and
concise manner.

A set expression is evaluated to yield the value of a set. As with all expressions
in AIMMS, set expressions come in two forms, constant and symbolic. Constant
set expressions refer to explicit set elements directly, and are mainly intended
for set initialization. The tabular format of set initialization is treated in Sec-
tion 28.2.

Symbolic set expressions are formulas that can be executed to result in a set.
The contents of this set can vary throughout the execution of your model de-
pending on the values of the other model identifiers referenced inside the
symbolic formulas. Symbolic set expressions are typically used for specifying
index domains. In this section various forms of set expressions will be treated.

Several types of
expressions

This chapter

Set expressions
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Symbolic set
expressions
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The simplest form of set expression is the reference to a set. The reference
can be scalar or indexed, and evaluates to the current contents of that set.

5.1.1 Enumerated sets

An enumerated set is a set defined by an explicit enumeration of its elements.
Such an enumeration includes literal elements, set element expressions, and
(constant or symbolic) element ranges. An enumerated set can be either a
simple or a relation. If you use an integer element range, an integer set will
result.

Enumerated sets come in two flavors: constant and symbolic. Constant enu-
merated sets are preceded by the keyword DATA, and must only contain literal
set elements. These set elements do not have to be contained in single quotes
unless they contain characters other than the alpha-numeric characters, the
underscore, the plus or the minus sign.

The following simple set and relation assignments illustrate constant enumer-
ated set expressions.

Cities := DATA { Amsterdam, Rotterdam, ’The Hague’, London, Paris, Berlin, Madrid } ;

DutchRoutes := DATA { (Amsterdam, Rotterdam ), (Amsterdam, ’'The Hague’),
(Rotterdam, Amsterdam ), (Rotterdam, ’The Hague’) } ;
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Any enumerated set not preceded by the keyword DATA is considered symbolic.
Symbolic enumerated sets can also contain element parameters. In order to
distinguish between literal set elements and element parameters, all literal
elements inside symbolic enumerated sets must be quoted.

The following two set assignments illustrate the use of enumerated sets that
depend on the value of the element parameters SmallestCity, LargestCity and
AirportCity.

ExtremeCities := { SmallestCity, LargestCity } ;

Routes := { (LargestCity, SmallestCity), (AirportCity, LargestCity ) } ;

The following two set assignments contrast the semantics between constant
and symbolic enumerated sets.

SillyExtremes := DATA { SmallestCity, LargestCity } ;
I contents equals { ’SmallestCity’, ’LargestCity’ }

ExtremeCities := { SmallestCity, LargestCity, ’'Amsterdam’ };
! contents equals e.g. { 'The Hague’, ’London’, ’Amsterdam’ }

The syntax of enumerated set expressions is as follows.

enumerated-set :

element-tuple : tuple-component :

} element-expression

element-range

element-expression

All elements in an enumerated set must have the same dimension.

By using the .. operator, you can specify an element range. An element range
is a sequence of consecutively numbered elements. The following set assign-
ments illustrate both constant and symbolic element ranges. Their difference
is explained below.

NodeSet := DATA { nodel .. nodel00 } ;

49

Symbolic
enumerated sets

Examples

Syntax

Element range



Chapter 5. Set, Set Element and String Expressions

FirstNode = 1;
LastNode 100;

IntegerNodes := { FirstNode .. LastNode } ;

The syntax of element ranges is as follows.

element-range :

range-bound 0 range-bound @ numerica/-expression}jé

range-bound :

prefix-string integer postfix-string

numerical-expression

A range bound must consists of an integer number, and can be preceded or
followed by a common prefix or postfix string, respectively. The prefix and
postfix strings used in the lower and upper range bounds must coincide.

If you use an element range in a static enumerated set expression (i.e. preceded
by the keyword DATA), the range can only refer to explicitly numbered elements,
which need not be quoted. By padding the numbered elements with zeroes,
you indicate that AtMMS should create all elements with the same element
length.

As the begin and end elements of a constant element range are literal ele-
ments, you cannot use a constant element range to create sets with dynami-
cally changing border elements. If you want to accomplish this, you should use
the ElementRange function, which is explained in detail in Section 5.1.4. Its use
in the following example is self-explanatory. The following set assignments
illustrate a constant element range and its equivalent formulation using the
ElementRange function.

NodeSet := DATA { nodel .. nodel00 } ;
PaddedNodes := DATA { node001 .. nodel00 } ;

NodeSet ElementRange( 1, 100, prefix: "node", fill:
PaddedNodes := ElementRange( 1, 100, prefix: "node", fill:

= o
(N
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Element ranges in a symbolic enumerated set can be used to create integer
ranges. Now, both bounds can be numerical expressions. Such a construct will
result in the dynamic creation of a number of integer elements based on the
value of the numerical expressions at the range bounds. Such integer element
ranges can only be assigned to integer sets (see Section 3.2.2). An example of
a dynamic integer range follows.

IntegerNodes := { FirstNode .. LastNode } ;

In this example IntegerNodes must be an integer set.

If the elements in the range are not consecutive but lie at regular intervals from
one another, you can indicate this by adding a BY modifier with the proper
interval length. For static enumerated sets the interval length must be a con-
stant, for dynamic enumerated sets it can be any numerical expression. The
following set assignments illustrate a constant and symbolic element range
with nonconsecutive elements.

EvenNodes := DATA { node2 .. nodel0O0 by 2 } ;
StepSize = 2;
EvenIntegerNodes := { FirstNode .. LastNode by StepSize } ;

When specifying element tuples in an enumerated set expression, it is possible
to create multiple tuples in a concise manner using cross products. You can
specify multiple elements for a particular tuple component in the cross prod-
uct either by grouping single elements using the [ and ] operators or by using
an element range, as shown below.

DutchRoutes := DATA { ( Amsterdam, [Rotterdam, ’The Hague'] ),

( Rotterdam, [Amsterdam, ’The Hague’] ) } ;
I creates { ( 'Amsterdam’, ’'Rotterdam’ ), ( ’'Amsterdam’, ’The Hague’ ),
! ( ’Rotterdam’, ’Amsterdam’ ), ( ’Rotterdam’, ’The Hague’ ) }

Network

DATA { ( nodel .. nodel00, nodel .. nodel00 ) } ;

The assignment to the set Network will create a set with 10,000 elements.

5.1.2 Constructed sets

A constructed set expression is one in which the selection of elements is con-
structed through filtering on the basis of a particular condition. When a con-
structed set expression contains an index, AIMMS will consider the resulting
tuples for every element in the binding set.
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The following set assignments illustrate some constructed set expressions, as-
suming that i and j are indices into the set Cities.

LargeCities := { i | Population(i) > 500000 } ;
Routes := { (i,j) | Distance(i,j) } ;
RoutesFromLargestCity := { (LargestCity, j) in Routes } ;
In the latter assignment route tuples are constructed from LargestCity (an

element-valued parameter) to every city j, where additionally each created tu-
ple is required to lie in the set Routes.

constructed-set :

(©-{inding domain}(3)

binding-domain :

binding-tuple @ “ Iogical—expressionT

binding-tuple : binding-element :

‘ element-expression

binding-element

l binding-element l

The tuple selection in a constructed set expression behaves exactly the same
as the tuple selection on the left-hand side of an assignment to an indexed
parameter. This means that all tuple components can be either an explicit
quoted set element, a general set element expression, or a binding index. The
tuple can be subject to a logical condition, further restricting the number of
elements constructed.

5.1.3 Set operators

There are four binary set operators in AIMMS: Cartesian product, intersection,
union, and difference. Their notation and precedence are given in Table 5.1.
Expressions containing these set operators are read from left to right and the
operands can be any set expression. There are no unary set operators.
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Operator Notation | Precedence
intersection * 3 (high)
difference - 2

union + 2
Cartesian product CROSS 1 (low)

Table 5.1: Set operators

The following set assignments to integer sets and Cartesian products of integer
sets illustrate the use of all available set operators.

S :=1{1,2,3,4} * {3,4,5,6} ;

Intersection of integer sets: {3,4}.

1,2} + {3,4} ;
1,3,4} + {2} + {1,2} ;

Union of simple sets:
{1,2,3,4}

S
S =

-

S :={1,2,3,4} - {2,4,5,7} ; Difference of integer sets: {1,3}.

T := {1,2} cross {1,2} ; The cross of two integer sets:

{14,0,1Q,2,2,1,@,20}.

The precedence and associativity of the operators is demonstrated by the as-
signments

T :=Across B - C; I Same as A cross (B - O).
T:=A-B*C+D; I Same as (A - (B * C)) + D.
T:=A-B*C+D*E; ! Sameas (A- B *QO)+ (D *E).

The operands of union, difference, and intersection must have the same di-
mensions.
T:={1,2,@3} * {@)N}; ! Same as {(1,3)}.
T:={1,2,Q,3)} + {G,7 | a@,j) > 1} ; ! Union of enumerated
I and constructed set of

! the same dimension.

T:= {(1,2),@,3)} + {1,2,3)} ; | ERROR: dimensions differ.

5.1.4 Set functions

A special type of set expression is a call to one of the following set-valued
functions

m ElementRange,

SubRange,
ConstraintVariables,
VariableConstraints, or
A user-defined function.

Example

Set functions
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The ETementRange and SubRange functions are discussed in this section, while
the functions ConstraintVariables and VariableConstraints are discussed in
Section 15.1. The syntax of and use of tags in function calls is discussed in
Section 10.2.

The ElementRange function allows you to dynamically create or change the con-  The function
tents of a set of non-integer elements based on the value of integer-valued ETementRange
scalars expressions.

The ElementRange function has two mandatory integer arguments. Arguments

m first, the integer value for which the first element must be created, and
m last, the integer value for which the last element must be created.

In addition, it allows the following four optional arguments.

m incr, the integer-valued interval length between two consecutive elements
(default value 1),

m prefix, the prefix string for every element (by default, the empty string),

m postfix, the postfix string (by default, the empty string), and

m fill, a logical indicator (0 or 1) whether the numbers must be padded with
zeroes (default value 1).

If you use any of the optional arguments you must use their formal argument
names as tags.

Consider the sets S and T initialized by the constant set expressions Example
NodeSet = DATA { nodel .. nodel00 } ;
PaddedNodes := DATA { node001 .. nodel00 } ;
EvenNodes  := DATA { node2 .. nodel00 by 2 } ;

These sets can also be created in a dynamic manner by the following applica-
tions of the ElementRange function.

NodeSet := ElementRange( 1, 100, prefix: "node", fill: 0 );
PaddedNodes := ElementRange( 1, 100, prefix: "node", fill: 1);
EvenNodes  := ElementRange( 2, 100, prefix: "node", fill: 0, incr: 2 );
The SubRange function has three arguments: The SubRange

. function
m a simple set,

m the first element, and
m the last element.

The result of the function is the subset ranging from the first to the last ele-
ment. If the first element is positioned after the last element, the empty set
will result.
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Assume that the set Cities is organized such that all foreign cities are con-
secutive, and that FirstForeignCity and LastForeignCity are element-valued
parameters into the set Cities. Then the following assignment will create the
subset ForeignCities of Cities

ForeignCities := SubRange( Cities, FirstForeignCity, LastForeignCity ) ;

5.1.5 Iterative set operators

Iterative operators form an important class of operators that are especially
designed for indexed expressions in AIMMS. There are set, element-valued,
arithmetic, statistical, and logical iterative operators. The syntax is always
similar.

iterative-expression :

ﬂ iterative-operator % binding-domain

expression

The first argument of all iterative operators is a binding domain. It consists of
a single index or tuple of indices, optionally qualified by a logical condition.
The second argument and further arguments must be expressions. These ex-
pressions are evaluated for every index or tuple in the binding domain, and
the result is input for the particular iterative operator at hand. Indices in the
expressions that are not part of the binding domain of the iterative operators
are referred to as outer indices, and must be bound elsewhere.

AIMMS possesses the following set-related iterative operators:

m the Sort operator for sorting the elements in a domain,

m the NBest operator for obtaining the n best elements in a domain accord-
ing to a certain criterion, and

m the Intersection and Union operators for repeated intersection or union
of indexed sets.

Sorting the elements of a set is a useful tool for controlling the flow of execu-
tion and for presenting reordered data in the graphical user interface. There
are two mechanism available to you for sorting set elements

m the OrderBy attribute of a set, and
m the Sort operator.
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The second and further operands of the Sort operator must be numerical,
element-valued or string expressions. The result of the Sort operator will con-
sist of precisely those elements that satisfy the domain condition, sorted ac-
cording to the single or multiple ordering criteria specified by the second and
further operands. Section 3.2 discusses the expressions that can be used for
specifying an ordering principle.

Note that the set to which the result of the Sort operator is assigned must have
the OrderBy attribute set to User (see also Section 3.2.1) for the operation to be
useful. Without this setting AiMMms will store the elements of the result set of
the Sort operator, but will discard the underlying ordering.

The following assignments will result in the same set orderings as in the ex-
ample of the OrderBy attribute in Section 3.2.

LexicographicSupplyCities := Sort( i in SupplyCities, i) ;
ReverseLexicographicSupplyCities := Sort( i in SupplyCities, -i );

SupplyCitiesByIncreasingTransport :=
Sort( i in SupplyCities, Sum( j, Transport(i,j) );

SupplyCitiesByDecreasingTransportThenLexicographic :=
Sort( i in SupplyCities, - Sum( j, Transport(i,j) ), i );

AimuMs will even allow you to sort the elements of a root set. Because the entire
execution system of AIMMS is built around a fixed ordering of the root sets,
sorting root sets may influence the overall execution in a negative manner. Sec-
tion 13.2.7 explains the efficiency considerations regarding root set ordering
in more detail.

You can use the NBest operator, when you need the n best elements in a set
according to a single ordering criterion. The syntax of the NBest is similar to
that of the Sort operator. The first expression after the binding domain is the
criterion with respect to which you want elements in the binding domain to be
ordered. The second expression refers to the number of elements n in which
you are interested.

The following assignment will, for every city 1, select the three cities to which
the largest transports emanating from i take place. The result is stored in the
indexed set LargestTransportCities(i).

LargestTransportCities(i) := NBest( j, Transport(i,j), 3 );
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With the Intersection and Union operators you can perform repeated set in-
tersection or union respectively. A typical application is to take the repeated
intersection or union of all instances of an indexed set. However, any set val-
ued expression can be used on the second argument.

Consider the following indexed set declarations.

Set IndSetl {
IndexDomain : sl;
Subset0f . S;

}

Set IndSet2 {
IndexDomain : sl;
Subset0f . S;

With these declarations, the following assignments illustrate valid uses of the
Union and Intersection operators.

SubS := Union( s1, IndSetl(sl) );
SubS := Intersection( sl, IndSetl(sl) + IndSet2(sl) );

5.1.6 Set element expressions as singleton sets

Element expressions can be used in a set expression as well. In the context of
a set expression, AIMMS will interpret an element expression as the singleton
set containing only the element represented by the element expression. Set
element expressions are discussed in full detail in Section 5.2.

Using an element expression as a set expression can equivalently be expressed
as a symbolic enumerated set containing the element expression as its sole
element. Whenever there is no need to group multiple elements, AIMMS allows
you to omit the surrounding braces.

The following set assignment illustrate some simple set element expressions
used as a singleton set expression.

| Remove LargestCity from the set of Cities
Cities -= LargestCity ;

| Remove first element from the set of Cities
Cities -= Element(Cities,1) ;

| Remove LargestCity and SmallestCity from Cities
Cities -= LargestCity + SmallestCity ;

I The set of Cities minus the CapitalCity
NonCapitalCities := Cities - CapitalCity ;
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5.2 Set element expressions

Set element expressions reference a particular element or element tuple model
from a set or a tuple domain. Set element expressions allow for sliced assign-
ment—executing an assignment only for a lesser-dimensional subdomain by
fixing certain dimensions to a specific set element. Potentially, this may lead
to a vast reduction in execution times for time-consuming calculations.

The most elementary form of a set element expression is an element param-
eter, which turns out to be a useful device for communicating set element
information with the graphical interface. You can instruct AIMMS to locate
the position in a table or other object where an end-user made changes to a
numerical value, and have AIMMS pass the corresponding set element(s) to an
element parameter. As a result, you can execute data input checks defined over
these element parameters, thereby limiting the amount of computation. This
issue is discussed in more detail in the help regarding the Identifier Selection
dialog.

AIMMS supports several types of set element expressions, including references
to parameters and (bound) indices, lag-lead-expressions, element-valued func-
tions, and iterative-expressions. The last category turns out to be a useful de-
vice for computing the proper value of element parameters in your model.

element-expression :

A auoredstament} -
% element-reference }—/
¥>{ iterative-expression }—/
L—{ operator-expression }—/

The format of list expressions are the same for element and numerical expres-
sions. They are discussed in Section 6.1.2.

An element reference is any reference to either an element parameter or a
(bound) index.
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5.2.1 Intrinsic functions for sets and set elements

AiMMS supports functions to obtain the position of an element within a set,
the cardinality (i.e. number of elements) of a set, the n-th element in a set, the
element in a non-compatible set with the identical string representation, and
the numerical value represented by a set element. If S is a set identifier, i an
index bound to S, I an element, and n a positive integer, then possible calls to
the Ord, Card, Element, ETementCast and Val functions are given in Table 5.2.

Function Value Meaning

Ord(i) integer Ordinal, returns the relative position of the
index i in the set S. Does not bind 1.

0ord(l,S) integer Returns the relative position of the element
lin set S. Returns zero if [ is not an element
of S.

Card(S) integer Cardinality of set S.

Element(S,n) element Returns the element in set S at relative po-
sition n. Returns the empty element tuple
if S contains less then n elements.

ETlementCast(S,l) element Returns the element in set S, which corre-
sponds to the textual representation of an
element [ in any other index set.

val(l) numerical | Returns the numerical value represented
by [, or a runtime error if [ cannot be in-
terpreted as a number

Max(ei,...,en) Max Returns the set element with the highest
ordinal

Min(eq,...,en) Min Returns the set element with the lowest or-
dinal

Table 5.2: Intrinsic functions operating on sets and set elements

The Ord, Card and Element functions can be applied to simple sets. In fact you
can even apply Card to parameters and variables—it simply returns the number
of nondefault elements associated with a certain data structure.

By default, AimMms does not allow you to use indices associated with one root
set hierarchy in your model, in references to index domains associated with
another root set hierarchy of your model. The function ElementCast allows
you to cross root set boundaries, by returning the set element in the root
set associated with the first (set) argument that has the identical name as the
element (in another root set) passed as the second argument. The function
ElementCast has an optional third argument create (values O or 1, with a default
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of 0), through which you can indicate whether you want elements which cannot
be cast to the indicated set must be created within that set. In this case, a call
to ElementCast will never fail. You can find more information about root sets,
as well as an illustrative example of the use of ElementCast, in Section 9.1.

In this example, we again use the set Cities initialized through the statement

Cities := DATA { Amsterdam, Rotterdam, ’The Hague’, London, Paris, Berlin, Madrid } ;

The following table illustrates the intrinsic element-valued functions.

Expression Result
Ord(’Amsterdam’, Cities) 1

Ord(’New York’, Cities) 0 (i.e. not in the set)
Card(Cities) 7
Element(Cities, 1) "Amsterdam’
Element(Cities, 8) ’’ (i.e. no 8-th element)

If your model contains a set with elements that represent numerical values,
you cannot directly use such elements as a numerical value in numerical ex-
pressions, unless the set is an integer set (see Section 3.2.2). To obtain the
numerical value of such set elements, you can use the Val function. You can
also apply the Val function to strings that represent a numerical value. In both
cases, a runtime error will occur if the element or string argument of the Val
function cannot be interpreted as a numerical value.

The element-valued Min and Max functions operate on two or more element-
valued expressions in the same (sub-)set hierarchy. If the arguments are ref-
erences to element parameters (or bound indices), then the Range attributes
of these element parameters or indices must be sets in a single set hierarchy.
Through these functions you can obtain the elements with the lowest and high-
est ordinal relative to the set equal to highest ranking range set in the subset
hierarchy of all its arguments. If one or more of the arguments are explicit
labels, then AiMMs will verify that these labels are contained in that set, or will
return an error otherwise. A compiler error will result, if no such set can be
determined (i.e., when the function call refers to explicit labels only).

5.2.2 Element-valued iterative expressions

AIMMS offers special iterative operators that let you select a specific element
from a domain. Table 5.3 shows all such operators that result in a set ele-
ment value. The syntax of iterative operators is explained in Section 5.1.5.
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The second column in this table refers to the required number of expression
arguments following the binding domain argument.

Name | # Expr. | Computes for all elements in the domain

First 0 the first element (tuple)
Last 0 the last element (tuple)
Nth 1 the n-th element (tuple)
Min 1 the value of the element expression for

which the expression reaches its minimum
ordinal value

Max 1 the value of the element expression for
which the expression reaches its maximum
ordinal value

ArgMin 1 the first element (tuple) for which the
expression reaches its minimum value
ArgMax 1 the first element (tuple) for which the

expression reaches its maximum value

Table 5.3: Element-valued iterative operators

The binding domain of the First, Last, Nth, Min, Max, ArgMin, and ArgMax operator
can only consist of a single index in either a simple set, and the result is a
single element in that domain. You can use this result directly for indexing or
referencing an indexed parameter or variable. Alternatively, you can assign it
to an element parameter in the appropriate domain.

The ArgMin and ArgMax operators return the element for which an expression
reaches its minimum or maximum value. The allowed expressions are:

m numerical expressions, in which case AIMMS performs a numerical com-
parison,

m string expressions, in which case AIMMS uses the normal alphabetic or-
dering, and

m element expressions, in which case AiIMMS compares the ordinal num-
bers of the resulting elements.

For element expressions, the iterative Min and Max operators return expression

values with the minimum and maximum ordinal value.

The following assignments illustrate the use of some of the domain related
iterative operators. The identifiers on the left are all element parameters.

FirstNonSupplyCity := First (i | not Exists(j | Transport(i,j)) ) ;
SecondSuppTyCity =Nth (i | Exists(j | Transport(i,j)), 2 ) ;
SmallestSupplyCity 1= ArgMin( i, Sum(j, Transport(i,j)) )
LargestTransportRoute := ArgMax( r, Transport(r) ) ;

Single index

Compared
expressions

Example
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Note that the iterative operators Exists and Sum are used here for illustra-
tive purposes, and are not set- or element-related. They are treated in Sec-
tions 6.2.5 and 6.1.6, respectively.

5.2.3 Lag and lead element operators

There are four binary element operators, namely the lag and lead operators
+, ++, - and --. The first operand of each of these operators must be an el-
ement reference (such as an index or element parameter), while the second
operand must be an integer numerical expression. There are no unary element
operators.

Lag and lead operators are used to relate an index or element parameter to
preceding and subsequent elements in a set. Such correspondence is well-
defined, except when a request extends beyond the bounds of the set.

There are two kinds of lag and lead operators, namely noncircular and circular
operators which behave differently when pushed beyond the beginning and
the end of a set.

m The noncircular operators (+ and -) consider the ordered set elements
as a sequence with no elements before the first element or after the last
element.

m The circular operators (++ and --) consider ordered set elements as a
circular chain, in which the first and last elements are linked.

Let S be a set, i a set element expression, and k an integer-valued expression.
The lag and lead operators +, ++, -, -- return the element of S as defined in
Table 5.4. Please note that these operators are also available in the form of +=,
-=, ++= and --=. The operators in this form can be used in statements like:

CurrentCity := ’Amsterdam’;
CurrentCity --= 1; ! Equal to CurrentCity := CurrentCity -- 1;

Lag/lead expr. | Meaning
i+k The element of S positioned k elements after 1i; the
empty element if there is no such element.
i++k The circular version of i + k.
i-—k The member of S positioned k elements before 1; the
empty element if there is no such element.
i——k The circular version of i — k.

Table 5.4: Lag and lead operators
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For elements in integer sets, AIMMS may interpret the + and - operators either
as lag/lead operators or as numerical operators. Section 3.2.2 discusses the
way in which you can steer which interpretation AiMmms will employ.

You cannot always use lag and lead operators in combination with literal set
elements. The reason for this is clear: a literal element can be an element of
more than one set, and in general, unless the context in which the lag or lead
operator is used dictates a particular (domain) set, it is impossible for AiMMms
to determine which set to work with.

Lag and lead operators are frequently used in indexed parameters and vari-
ables, and may appear on the left- and right-hand side of assignments. You
should be careful to check the correct use of the lag and lead operators to
avoid making conceptual errors. For more specific information on the lag and
lead operators refer to Section 8.2, which treats assignments to parameters
and variables.

Consider the set Cities initialized through the assignment

Cities := DATA { Amsterdam, Rotterdam, ’The Hague’, London, Paris, Berlin, Madrid } ;

Assuming that the index i and the element parameter CurrentCity both cur-
rently refer to 'Rotterdam’, Table 5.5 illustrates the results of various lag/lead
expressions.

Lag/lead expression Result
i+l "The Hague’
i+6 Y
i++6 "Amsterdam’
i++7 "Rotterdam’
i-2 ”
i--2 "Madrid’
CurrentCity+2 "London’
"Rotterdam’ + 1 ERROR

Table 5.5: Example of lag and lead operators

5.3 String expressions

String expressions are useful for

m creating descriptive texts associated with particular set elements and
identifiers, or
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m forming customized messages for display in the graphical user interface
or in output reports.

This section discusses all available string expressions in AIMMS.

String-expression :

—ﬂ constant-string-expression F»

% operator-expression }—/
;{ element-expression }—/

The format of list expressions are the same for string-valued and numerical
expressions. They are discussed in Section 6.1.2.

5.3.1 String operators

There are three binary string operators in AIMMS, string concatenation (+ oper-
ator), string subtraction (- operator), and string repetition (* operator). There
are no unary string operators.

The simplest form of composing strings in AIMMS is by the concatenation of
two existing strings. String concatenation is represented as a simple addition
of strings by means of the + operator.

In addition to string concatenation, AIMMS also supports subtraction of two
strings by means of the - operator. The result of the operation s; — s» where
s1 and sp are string expressions will be the substring of s; obtained by

m omitting s, on the right of s; when s; ends in the string s», or
m just s; otherwise.

You can use the multiplication operator * to obtain the string that is the result
of a given number of repetitions of a string. The left-hand operand of the
repetition operator * must be a string expression, while the right-hand operand
must be an integer numerical expression.
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The following examples illustrate some basic string manipulations in AIMMS. Examples
"This is " + "a string" I "This is a string"
"Filename.txt" - ".txt" ! "Filename"
"Filename" - "oxt” I "Filename"
w__n x5 [ "

5.3.2 Formatting strings

With the FormatString function you can compose a string that is built up from  The function
combinations of numbers, strings and set elements. Its arguments are: FormatString

m a format string, which specifies how the string is composed, and
m one or more arguments (number, string or element) which are used to
form the string as specified.

The first argument of the function FormatString is a mixture of ordinary text  The format
plus conversion specifiers for each of the subsequent arguments. A conversion  string
specifier is a code to indicate that data of a specified type is to be inserted as

text. Each conversion specifier starts with the % character followed by a letter

indicating its type. The conversion specifier for every argument type are given

in Table 5.6.

Conversion Argument type
specifiers
%s String expression
%e Element expression
%f Floating point number
%9 Exponential format number
%i Integer expression
%N Numerical expression
%U Unit expression
%% % sign

Table 5.6: Conversion codes for the FormatString function

When using the %f or %g conversion specifier you explicitly choose a floating  Floating point
point or exponential format, respectively. The %n conversion specifier makes vs. exponential
this choice for you. If the absolute value of the corresponding argument is  format
greater or equal to 1, %n assures that you get the shortest representation of %f

or %g (or even %i if the argument value is integral). However when a non zero

width is specified, AIMMS assumes that the alignment of the decimal point is

important and thus %n will stick to the use of the floating point format as long

as that fits within the given width. If the absolute value of the corresponding
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argument is less than 1, %n uses the floating point format as long as the result
shows at least 1 significant digit.

In the example below, the current value of the parameter Smallval and LargeVal  Example
are 10 and 20, the current value of CapitalCity is the element ’Amsterdam’, and

UnitPar is a unit-valued parameter with value kton/hr. The following calls to
FormatString illustrate its use.

"The numbers 10 and 20"

"The numbers 10 and 20"

"The string is printed”

"The element Amsterdam"

"The unit is kton/hr"

"The number 3.141"

"The large number 1.000e+06"
"The integer 10"

"The fraction 0.010"

"The fraction 1.000e-04"

FormatString("The numbers %i and %i", 10, 20)
FormatString("The numbers %i and %i", Smallval, LargeVal)
FormatString("The string %s", "is printed")
FormatString("The element %e", CapitalCity)
FormatString("The unit is %u", UnitPar)

FormatString("The number %n", 4*ArcTan(1))
FormatString("The Targe number %n", le+6)
FormatString("The integer %n", 10)

FormatString("The fraction %n", 0.01)

FormatString("The fraction %n", 0.0001)

By default, AiMMs will use a default representation for arguments of each type.  Modification
By modifying the conversion specifier, you further dictate the manner in which  flags

a particular argument of the FormatString function is printed. This is done by

inserting modification flags in between the %-sign and the conversion character.

The following modification directives can be added:

m flags:
< for left alignment
<> for centered alignment
for right alignment
add a plus sign (nonnegative numbers)

. add a space (instead of the above + sign)

0 fill with zeroes (right-aligned numbers only)

t print number using thousand separators, using local convention
for both the thousand separator and decimal separator. Control-
ling these separators is via the options Number 1000 separator and
Number decimal separator.

m field width: the converted argument will be printed in a field of at least
this width, or wider if necessary

m dot: separating the field width from the precision

m precision: the number of decimals for numbers, or the maximal number
of characters for strings or set elements.

It is important to note that the modification flags must be inserted in the order  Note the order
as described above.
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Both the field width and precision of a conversion specifier can be either an
integer constant, or a wildcard, *. In the latter case the FormatString expects
one additional integer argument for each wildcard just before the argument of
the associated conversion specifier. This allows you to compute and specify
either the field width or precision in a dynamic manner. If you do not specify
a precision as modification directive, the default precision is taken from the
option Listing_number_precision. Similarly, the default width is taken from the
option Listing_number_width.

The following calls to FormatString illustrate the use of modification flags.
FormatString("The number %>+08i", 10) I "The number +0000010"
FormatString("The number %>t8i", 100000) I "The number 100,000"
FormatString("The number %> 8.2n", 4*ArcTan(1l)) I "The number 3.14"
FormatString("The number %> *.*n", 8,2,4*ArcTan(1)) ! "The number 3.14"
FormatString("The element %<5e", CapitalCity) ! "The element Amsterdam"
FormatString("The element %<>5.3e", CapitalCity) ! "
FormatString("The Tlarge number %10.1n", le+6) !

"The element Ams
"The Targe number 1000000.0"

AIMMS offers a number of special characters to allow you to use the full range
of characters in composing strings. These special characters are contained in
Table 5.7.

Special character | text code | Meaning

\f FF Form feed

\t HT Horizontal tab

\n LF Newline character

\" " Double quote

A\ \ Backslash

\n n character n (001 < n < 65535)

Table 5.7: Special characters

Examples of the use of special characters within FormatString follow.

FormatString("%i \037 \t %i %%", 10, 11) 1 "10 % 11 %"
FormatString("This is a \"%s\" ", "string") ! "This is a "string

non

With the functions StringToUpper, StringToLower and StringCapitalize you can
convert the case of a string to upper case, to lower case, or capitalize it, as
illustrated in the following example.

StringToUpper("Convert to upper case") | "CONVERT TO UPPER CASE"
StringToLower ("CONVERT to Tower case") I "convert to lower case"
StringCapitalize("capitalIZED senTENCE") ! "Capitalized sentence"
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5.3.3 String manipulation

In addition to the FormatString function, AIMMS offers a number of other func-
tions for string manipulation. They are:

m Substring to obtain a substring of a particular string,

m StringlLength to determine the length of a particular string,

m FindString to obtain the position of the first occurrence of a particular
substring,

m FindNthString to obtain the position of the n-th occurrence of a particular
substring, and

m StringOccurrences to obtain the number of occurrences of a particular
substring.

With the SubString function you can obtain a substring from a particular begin
position m to an end position n (or to the end of the string if the requested end
position exceeds the total string length). The positions m and n can both be
negative (but with m < n), in which case AimMs will start counting backwards
from the end of the string. Examples are:

SubString("Take a substring of me", 8, 16)
SubString("Take a substring of me", 18, 100)
SubString("Take a substring of me", -5, -1)

I returns "substring"
I returns "of me"
! returns "of me"

The function StringLength can be used to determine the length of a string in
AIMMS. The function will return 0 for an empty string, and the total number
of characters for a nonempty string. An example follows.

StringLength("Guess my length") ! returns 15

With the functions FindString and FindNthString you can determine the posi-
tion of the second argument, the key, within the first argument, the search
string. The functions return zero if the key is not contained in the search
string. The function FindString returns the position of the first occurrence of
the key in the search string starting from the left, while the function FindNth-
String will return the position of the n-th appearance of the key. If n is nega-
tive, the function FindNthString will search backwards starting from the right.
Examples are:

FindString ("Find a string in a string", "string" ) ! returns 8
FindNthString  ("Find a string in a string", "string", 2 ) ! returns 20
FindNthString  ("Find a string in a string", "string", -1 ) ! returns 20
FindString ("Find a string in a string", "this string") ! returns 0
FindNthString  ("Find a string in a string", "string", 3 ) ! returns 0
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By default, the functions FindString and FindNthString will use a case sensitive
string comparison when searching for the key. You can modify this behavior
through the option Case_Sensitive_String_Comparison.

The function StringOccurrences allows you to determine the number of occur-
rences of the second argument, the key, within the first argument, the search
string. You can use this function, for instance, to delimit the number of calls
to the function FindNthString a priori. An example follows.

StringOccurrences("Find a string in a string", "string" ) ! returns 2

5.3.4 Converting strings to set elements

Converting strings to new elements to or renaming existing elements in a set
is not an uncommon action when end-users of your application are entering
new element interactively or when you are obtaining strings (to be used as set
elements) from other applications through external procedures. AiMMS offers
the following support for dealing with such situations:

m the procedure SetETementAdd to add a new element to a set,

m the procedure SetElementRename to rename an existing element in a set,
and

m the function StringToETement to convert strings to set elements.

The procedure SetElementAdd lets you add new elements to a set. Its arguments
are:

m the set to which you want to add the new element,

m an element parameter into set which holds the new element after addi-
tion, and

m the stringname of the new element to be added.

When you apply SetElementAdd to a root set, the element will be added to that
root set. When you apply it to a subset, the element will be added to the subset
as well as to all its supersets, up to and including its associated root set.

Through the procedure SetElementRename you can provide a new name for an
existing element in a particular set whenever this is necessary in your applica-
tion. Its arguments are:

m the set which contains the element to be renamed,
m the element to be renamed, and
m the stringname to which the element should be renamed.

After renaming the element, all data defined over the old element name will be
available under the new element name.
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With the function StringToElement you can convert string arguments into (ex-
isting) elements of a set. If there is no such element, the function evaluates to
the empty element. Its arguments are:

m the set from which the element corresponding to stringname must be
returned,

m the stringname for which you want to retrieve the corresponding ele-
ment, and

m the optional create argument (values 0 or 1, with a default of 0) indicating
whether nonexisting elements must be added to the set.

With the create argument set to 1, a call to StringToETement will always return
an element in set. Alternatively to setting the create argument to 1, you can
call the procedure SetETementAdd to add the element to the set.

The following example illustrates the combined use of StringToElement and
SetElementAdd. It checks for the existence of the string parameter CityString
in the set Cities, and adds it if necessary.

ThisCity := StringToElement( Cities, CityString );
if ( not ThisCity ) then

SetElementAdd( Cities, ThisCity, CityString );
endif;

Alternatively, you can combine both statements by setting the optional create
argument of the function StringToElement to 1.

ThisCity := StringToElement( Cities, CityString, create: 1 );

Reversely, you can use the %e specifier in the FormatString function to get a
pure textual representation of a set element, as illustrated in the following
assignment.

CityString := FormatString("%e", ThisCity );
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Chapter 6

Numerical and Logical Expressions

AIMMS has a comprehensive set of built-in numerical and logical operators
which allow you quickly and concisely express the details of your model. The
subject of Macros, which are a parametric form of expression, is also explained.
For expressions that evaluate to sets, set elements or strings, see Chapter 5.

6.1 Numerical expressions

Like any expression in AIMMS, a numerical expression can either be a constant
or a symbolic expression. Constant expressions are those that contain refer-
ences to explicit set elements and values, but do not contain references to
other identifiers. Constant expressions are mostly intended for the initializa-
tion of sets, parameters and variables. Such an initialization must conform to
one of the following formats:

a scalar value,

a list expression,

a table expression, or
a composite table.

Table expressions and composite tables are mostly used for data initialization
from external files. They are discussed in Chapter 28.

Symbolic expressions are those expressions that contain references to other
AIMMS identifiers. They can be used in the Definition attributes of sets, pa-
rameters and variables, or as the right-hand side of assignment statements.
A1MmMS provides a powerful notation for expressions, and complicated numer-
ical manipulations can be expressed in a clear and concise manner.

This chapter
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numerical
expressions
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numerical-expression :

S constant} g
4{ operator-expression }7
4{ iterative-expression }7
4{ conditional-expression }7
4{ logical-expression }7
L»@—{ numerical-expression W

6.1.1 Real values and arithmetic extensions

Traditional arithmetic is defined on the real line, R = (—o0, o), which does not
contain either +o or —co. AIMMS’ arithmetic is defined on the set R U {-INF,
INF, NA, UNDF, ZERO} and summarized in Table 6.1. The symbols INF and -INF are
mostly used to model unbounded variables. The symbols NA and UNDF stand for
not available and undefined data values respectively. The symbol ZERO denotes
the numerical value zero, but has the logical value true (not zero).

Symbol | Description Logical | MapVal

value value
number | any valid real number 0
UNDF undefined (result of an arithmetic error) 1 4
NA not available 1 5
INF +00 1 6
-INF —00 1 7
ZERO numerically indistinguishable from 1 8

zero, but has the logical value of one.

Table 6.1: Extended values of the AiMmMs language

AIMMS treats these special symbols as ordinary real numbers, and the results
of the available arithmetic operations and functions on these symbols are de-
fined. The values INF, -INF and ZERO are accessible by the user and are dealt
with as expected: 1 + INF evaluates to INF, 1/INF to O, 1 + ZERO to 1, etc. How-
ever, the values of INF and -INF are undetermined and therefore, it makes no
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sense to consider INF/INF, —INF + INF, etc. These expressions are therefore
evaluated to UNDF. A runtime error will occur if the value UNDF is assigned to an
identifier.

The symbol ZERO behaves like zero numerically, but its logical value is one. Us-
ing this symbol, you can make a distinction between the default value of 0 and
an assigned ZERQO. As an illustration, consider a distance matrix with distances
between selected factory-depot combinations. A missing distance value evalu-
ates to 0, and could mean that the particular factory-depot combination should
not be considered. A ZERO value in that case could be used to indicate that the
combination should be considered even though the corresponding distance is
zero because the depot and factory happen to be one facility.

Whenever the values 0 and ZERO appear in the same expression with equal
priority, the value of ZERO prevails. For example, the expressions 0 + ZERO
or max(0,ZERO) will both result in a numerical value of ZERO. In this way, the
logically distinctive effect of ZERO is retained as long as possible. You should
note, however, that AiMMS will evaluate the multiplication of 0 with any special
number to 0.

The symbol NA can be used for missing data. The interpretation is “this number
is not yet known”. Any operation that uses NA and does not use the symbol
UNDF will also produce the result NA. AIMMS can reason with this value as it
propagates the value NA through its computations and assignments. The only
exception is the condition in control flow statements where it must be known
whether the result of that condition is equal to 0.0 or not, see also Section 8.3.

The symbol UNDF cannot be input directly by a user, but is, besides an error
message, the result of an undefined or illegal arithmetic operation. For exam-
ple, 1/ZERO, 0/0, (-2)70.1 all result in UNDF. Any operation containing the UNDF
symbol evaluates to UNDF.

6.1.2 List expressions

A listis a collection of element-value pairs. In a list a single element or range of
elements is combined with a numerical, element-, or string-valued expression,
separated by a colon. List expressions are the numerical extension of enumer-
ated set expressions. The elements to which a value is assigned inside a list,
are specified in exactly the same manner as in an enumerated set expression
as explained in Section 5.1.1.
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enumerated-list :

|' 6 element-tuple % expression

By preceding the list expression with the keyword DATA, it becomes a constant
list expression, in a similar fashion as with constant set expressions (see Sec-
tion 5.1.1). In a constant list expression, set elements need not be quoted and
the assigned values must be constants. All other list expressions are symbolic,
in which both the elements and the assigned values are the result of expression
evaluation.

The following assignments illustrate the use of list expressions.

m The following constant list expression assigns distances to tuples of
cities.
Distance(i,j) := DATA {
(Amsterdam, Rotterdam ) : 85 [km] ,
(Amsterdam, ’The Hague’) : 65 [km] ,
(Rotterdam, ’The Hague’) : 25 [km]
}s

m The following symbolic list expression assigns a certain status to every
node in a number of dynamically computed ranges.

NodeUsage(i) := {
FirstNode .. FirstNode + Batch - 1 : ’InUse’ s
FirstNode + Batch .. FirstNode + 2*Batch - 1 : ’StandBy’ ,
FirstNode + 2*Batch .. LastNode : "Reserve’
Y

6.1.3 References

Sets, parameters and variables can be referred to by name resulting in a set-,
set element-, string-valued, or numerical quantity. A reference can be scalar or
multidimensional, and index positions may contain either indices or element
expressions. By specifying a case reference in front, a reference can refer to
data from cases that are not in memory.

reference:

y
ﬂ case-reference @ﬁ identifier-part T@—L element-expression g—@—f
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identifier-part :

module-prefix

A scalar set, parameter or variable has no indexing (dimension) and is refer-  Scalar versus
enced simply by using its identifier. Indexed sets, parameters and variables indexed
have dimensions equal to the number of indices.

The right-hand sides of the following assignments are examples of references  Example
to scalar and indexed identifiers.

MainCity

’Amsterdam’ ;

DistanceFromMainCity(i) := Distance( MainCity, i );

SecondNextCity (i) NextCity( NextCity(i) );

NextPeriodStock(t) Stock( t +1);

The last two references, which make use of lag and lead operators and element  Undefined
parameters, may sometimes be undefined. When used in an expression such  references
undefined references evaluate to the empty set, zero, the empty element, or the

empty string, depending on the value type of the identifier. When an undefined

lag or lead operator or element parameter occurs on the left-hand side of an

assignment, the assignment is skipped. For more details, refer to Section 8.2.

When your model contains one or more Modules, your model will be supplied Referring to
multiple additional namespaces besides the global namespace, one for each  module
module. Identifiers declared within a module are, by default, not contained identifiers
in the global namespace. To refer to such identifiers outside the module, you

have to prefix the identifier name with a module-specific prefix and the ::

namespace resolution operator. Modules and the namespace resolution opera-

tor are discussed in full detail in Section 35.4.

When a reference is preceded by a case reference, AiIMMS will not retrieve the  Referring to
requested identifier data from the case in memory, but from the case file as-  other cases
sociated with the case reference. Case references are elements of the (prede-

fined) set Al1Cases, which contains all the cases available in the data manager

of AimMms. The AiMMms User’s Guide describes all the mechanisms that are

available and functions that you can use to let an end-user of your application

select one or more cases from the set of all available cases. Case referencing

is useful when you want to perform advanced case comparison over multiple

cases.
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The following computes the differences of the values of the variable Transport
in the current case compared to its values in all cases in the set CurrentCase-
Selection.

for ( c in CurrentCaseSelection ) do
Difference(c,i,j) := c.Transport(i,j) - Transport(i,j) ;
endfor;

During execution, AiIMMS will (temporarily) retrieve the values of Transport
from all requested cases to compute the difference with the data of the current
case.

6.1.4 Arithmetic functions

A1mMS provides the commonly used standard arithmetic functions such as the
trigonometric functions, logarithms, and exponentiations. Table 6.2 lists the
available arithmetic functions with their arguments and result, where x is an
extended range arithmetic expressions, m, n are integer expressions, i is an
index, [ is a set element, I is a set identifier, and e is a scalar reference.

Special caution is required when one or more of the arguments in the functions
are special symbols of AiIMMS’ extended range arithmetic. If the value of any of
the arguments is UNDF or NA, then the result will also be UNDF or NA. If the value
of any of the arguments is ZERO and the numerical value of the result is zero,
the function will return ZERO.

6.1.5 Numerical operators

Using unary or binary numerical operators you can construct numerical ex-
pressions that consist of multiple terms and/or factors. The syntax follows.

operator-expression :

expression H binary-operator H expression

unary-operator H expression

The order of precedence of the standard numerical operators in AIMMS is given
in Table 6.3. Parentheses may be used to override the precedence order. Ex-
pression evaluation is from left to right.
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Function Meaning

Abs(x) absolute value | x|

Exp(x) eX

Log(x) log, (x) for x > O,UNDF otherwise

Log10(x) log,o(x) for x > 0, UNDF otherwise
Max(x1,...,Xn) max(xi,...,xXn) (Mm>1)

Min(x1,...,Xn) min(xi,...,xn) (Mm>1)

Mod(x1,x2) x1 mod x» € [0,x2) for xo > 0 or € (x2,0] for x» <0
Div(x1,x2) x1 div xp

Sign(x) sign(x) =+1ifx >0, -1if x <0andO0if x =0
Sqr(x) x2

Sqrt(x) J/x for x > 0, UNDF otherwise

Power(xy,x2)

xfz, alternative for x"y (see Section 6.1.5)

ErrorF(x) % [ e‘% dt

Cos(x) cos(x); x in radians

Sin(x) sin(x); x in radians

Tan(x) tan(x); x in radians

ArcCos(x) arccos(x); result in radians
ArcSin(x) arcsin(x); result in radians
ArcTan(x) arctan(x); result in radians
Degrees(x) converts x from radians to degrees
Radians(x) converts x from degrees to radians
Cosh(x) cosh(x)

Sinh(x) sinh(x)

Tanh(x) tanh(x)

ArcCosh(x) arccosh(x)

ArcSinh(x) arcsinh(x)

ArcTanh(x) arctanh(x)

Card(I[, suffix])
Ord(i)

cardinality of (suffix of) set, parameter or variable I
ordinal number of index i in set I (see also Table 5.2)

Oord(l[,I]) ordinal number of element [ in set I
Ceil(x) [x] = smallest integer > x
Floor(x) [x | = largest integer < x
Precision(x,n) | x rounded to n significant digits
Round(x) x rounded to nearest integer

Round(x,n)

x rounded to n decimal places left (n < 0) or right
(n > 0) of the decimal point

Trunc(x) truncated value of x: Sign(x)*xFloor(Abs(x))
NonDefault(e) 1 if e is not at its default value, O otherwise
MapVal(x) MapVal value of x according to Table 6.1

Table 6.2: Intrinsic numerical functions of AIMMS
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Operator | Meaning Precedence

Unary

+ positive n/a

- negative n/a
Binary

" exponentiation 3 (high)

¥ multiplication 2

/ division 2

+ addition 1

- subtraction 1 (low)

Table 6.3: Numerical operators

The expression
pl + p2 * p3 / p4"p5

is parsed by AIMMS as if it had been written
pl + [(p2 * p3) / (p4"p5)]

In general, it is better to use parentheses than to rely on the precedence and
associativity of the operators. Not only because it prevents you from making
unwanted mistakes, but also because it makes your intentions clearer.

Special restrictions apply to the exponential operator “*”. AIMMS accepts the
following combinations of left-hand side operand (called the base), and right-
hand side operand (called the exponent):

a positive base with a real exponent,

a negative base with an integer exponent,

a zero base with a positive exponent, and

a zero base with a zero exponent results in one (as controlled by the
option power_0.0).

6.1.6 Numerical iterative operators

Iterative operators are used to express repeated arithmetic operations, such as
summation, in a concise manner. The arithmetic iterative operators supported
by AimMmMS are listed in Table 6.4. The second column in this table refers to
the required number of expression arguments following the binding domain
argument, while the last column refers to the result of the operator in case of
an empty domain.

Example

Exponential
operator

Arithmetic
iterative
operators
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Name | # Expr. | Computes over all elements in the domain | Default
Sum 1 the sum of the expression 0
Prod 1 the product of the expression 1
Count 0 the total number of elements in the domain 0
Min 1 the minimum value of the expression INF
Max 1 the maximum value of the expression -INF

Table 6.4: Arithmetic iterative operators

The Min and Max operators return the minimum or maximum value of an ex- Compared
pression. The allowed expressions are: expressions

m numerical expressions, in which case AIMMS returns the lowest or high-
est numerical values,

m string expressions, in which case AIMMS returns the strings which are
first or last with respect to the normal alphabetic ordering, and

m element expressions, in which case AIMMS returns the elements with the
lowest or highest ordinal numbers (see also Section 5.2.1).

The following assignments are valid examples of the use of the arithmetic = Example
iterative operators.
NumberOfRoutes Count( (i,j) | Distance(i,j) ) ;

NettoTransport(i) Sum( j, Transport(i,j) - Transport(j,i) ) ;
MaximumTransport(i) := Max( j, Transport(i,j) ) ;

6.1.7 Statistical functions and operators

AmMMS provides the most commonly used distributions. They are listed in  Distributions
Table 6.5, together with the required type of arguments and a description of

the result. You can find a more detailed description of these distributions in

Appendices A.1 and A.2. When called as functions inside your model, they

behave as random number generators.

You can set the seed of the random number generators for all distributions us-  Setting the seed
ing the execution option seed. By setting the seed explicitly you can guarantee
that your model results are reproducible.

Each distribution in Table 6.5 can be used as an argument for four operators:  Cumulative
DistributionCumulative and DistributionInverseCumulative, and their deriva-  distributions
tives DistributionDensity and DistributionInverseDensity. In the explanation and their
below it is assumed that x € [0,1], x € (—o,»), and X a random variable derivatives
distributed according to the given distribution distr.

m DistributionCumulative(distr,x) computes the probability P(X < x).
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Distribution

Meaning

Binomial(p,n)
NegativeBinomial(p,r)
Poisson(A)

Geometric(p)
HyperGeometric(p,n,N)

Binomial distribution with probability p and
number of trials n

Negative Binomial distribution with
probability p and number of successes v
Poisson distribution with rate A

Geometric distribution with probability p
Hypergeometric distribution with initial
probability of success p, number of trials n
and population size N

Uniform(min,max)

Triangular(B, min, max)

Beta(w, 8, min, max)

Uniform distribution with lower bound min
and upper bound max

Triangular distribution with shape S, lower
bound min, and upper bound max, where

B = (Xpeak — min) / (max — min)

Beta distribution with shapes «, 8, lower
bound min, and upper bound max

LogNormal (B, min, s)
Exponential(min,s)
Gamma(f, min, s)
Weibul1(B, min,s)

Pareto(f,1,s)

Lognormal distribution with shape S, lower
bound min, and scale s

Exponential distribution with lower bound
min and scale s

Gamma distribution with shape S, lower
bound min, and scale s

Weibull distribution with shape B, lower
bound min, and scale s

Pareto distribution with shape S, location [,
and scale s (lower bound = [ + s)

Normal(u, o)

Logistic(u,s)
ExtremeValue(l,s)

Normal distribution with mean y and
standard deviation o

Logistic distribution with mean p and scale s
Extreme Value distribution with location 1
and scale s

Table 6.5: Distributions available in AIMMS

m DistributionInverseCumulative(distr,x) computes the smallest x such
that the probability P(X < x) > «, except for &« = 0 which returns the
lowest possible value for X.

m DistributionDensity(distr,x) computes for continuous distributions the
probability density limy,o P(x < X < x+«) /. For discrete distributions,
the operator is only defined for integer values of x and returns P (X = x).

m DistributionInverseDensity(distr,x) is the derivative of DistributionIn-
verseCumulative. For more details you are referred to Appendix A.3.
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For the continuous distributions in Table 6.5 AIMMS can compute the deriva-
tives of the cumulative and inverse cumulative distribution functions. As a
consequence, you may use these functions in the constraints of a nonlinear
model when the second argument is a variable.

The following statements demonstrate how the distributions can be used to

perform statistical tasks.

1. Draw a random number from a distribution.

Draw :
Draw :

Normal(0,1);
Uniform(LowestValue, HighestValue);

2. Compute the probability of at most 10 successes out of 50 trials, with a
0.25 probability of success.

ProbabiTlity := DistributionCumulative( Binomial(0.25,50), 10 );

3. Compute a two-sided 90% confidence interval of a Normal(0,1) distribu-

tion.
LeftBound := DistributionInverseCumulative( Normal(0,1), 0.05);
RightBound := DistributionInverseCumulative( Normal(0,1), 0.95);

The distributions, listed in Table 6.5, make it possible for you to execute a
stochastic experiment based on your model representation. In order to ana-
lyze the subsequent results, AIMMS provides a number of statistical iterative
operators which are listed in Table 6.6. The second column in this table refers
to the required number of expression arguments following the binding domain
argument. For the most common sample operators, AIMMS provides distribu-
tion operators to calculate the corresponding expected values, assuming the
sample is drawn from a given distribution. These distribution operators are
listed in Table 6.7. A more detailed description of these operators is provided
in Appendix A.

Assume that p is an index into a set that has been used to index a number
of experiments resulting in observables x(p) and y(p). Then the following
assignments demonstrate the use of the statistical operators in AIMMS.

MeanX = Mean(p, x(p));
MeanX 1= Mean(p | x(p), x(p));
DeviationX := SampleDeviation(p, x(p));

CorrelationXY := Correlation(p, x(p), y(p));

In case the x values are drawn from a Binomial(0.6,8) distribution the ex-
pected value of MeanX is given by

ExpectedMeanX := DistributionMean(Binomial(0.6,8));

Use in
constraints

Example

Statistical
operators

Example
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Name # Expr. | Computes over all elements in the domain
Mean, 1 the (arithmetic) mean

GeometricMean 1 the geometric mean

HarmonicMean 1 the harmonic mean

RootMeanSquare 1 the root mean square

Median 1 the median

SampleDeviation 1 the standard deviation of a sample
PopulationDeviation 1 the standard deviation of a population
Skewness 1 the coefficient of skewness

Kurtosis 1 the coefficient of kurtosis

Correlation 2 the correlation coefficient
RankCorrelation 2 the rank correlation coefficient

Table 6.6: Statistical sample operators

For all distributions, the units of measurement (see also Chapter 32) of param-
eters and result should be consistent. The unit relationships for each distri-
bution are described in Appendix A in full detail. In the presence of units of
measurement within your model, AiMmms will perform a unit consistency check.

For easy visualization of statistical data, AiMmMs offers support for creating
histograms based on a large collection of observed values. Through a number
of predefined procedures and functions, AiMMs allows you to flexibly create
interval-based histogram data, which can easily be displayed, for instance, us-
ing the standard (graphical) AiMmMs bar chart object. For further information
about creating and displaying histograms, as well as an illustrative example,
you are referred to section A.6 in the Appendix.

In addition to the distribution and statistical operators listed above, AIMMS
also offers support for the most common combinatoric calculations. Table 6.8
contains the list of combinatoric functions that are available in AiMMS.

6.1.8 Financial functions

AIMMS provides an extensive library of financial functions for a variety of fi-
nancial applications. The available functions can be classified as follows.

m Functions for the computation of the depreciation of assets using var-
ious methods such as fixed-declining balance method, double-declining
balance method, etc.

m Functions for computing various quantities regarding investments that
consist of a series of constant or variable periodic cash flows. The com-
puted quantities include present value, net present value, future value,
internal rate of return, interest and principal payments, etc.

Units of
measurement

Histogram
support

Combinatoric
functions

Financial
functions
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Name Computes for a given distribution
DistributionMean the (arithmetic) mean
DistributionDeviation | the (standard) deviation
DistributionVariance |the variance (the square of the deviation)
DistributionSkewness | the coefficient of skewness
DistributionKurtosis |the coefficient of kurtosis

Table 6.7: Statistical distribution operators

m Functions for computing various security-related quantities of, for in-
stance, discounted securities, securities that pay periodic interest and
securities that pay interest at maturity. The computed quantities include
yield, interest rate, redemption, price, accrued interest, etc.

The precise description of all financial functions available in AIMMS is not in-
cluded in this Language Reference. You can find a complete list of the available
financial functions on pages ?? and further of the AiMmMs Function Reference.
The Function Reference provides a description as well as the prototype of ev-
ery financial function present in AIMMS.

6.1.9 Conditional expressions

There are two ways to specify expressions that adopt different values depend-
ing on one or more logical conditions. The ONLYIF operator is the simpler and
operates as it sounds. The IF-THEN-ELSE expression is more powerful in its
ability to distinguish several cases.

conditional-expression :

onlyif-expression

if-then-else-expression

The simplest way of specifying a conditional expression is to use the ONLYIF
operator. Its syntax is given by

onlyif-expression :

ﬂ expression ONLYIF logical-expression F

The ONLYIF expression evaluates to the arithmetic expression in the first argu-
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Function Meaning
Factorial(n) n!
Combination(n,m) (::l)
Permutation(n,m) | m!- (ZV‘L)

Table 6.8: Combinatoric functions

ment if the logical condition of the second argument is true. Otherwise, it is
zero. The “$” symbol can be used as a synonym for the ONLYIF operator.

A simple example of the use of the ONLYIF operator is given by the assignment  Example

AverageVelocity := (Distance / TravelTime) ONLYIF TravelTime ;

or equivalently, using the $ operator,

AverageVelocity := (Distance / TravelTime) § TravelTime ;

Both expressions evaluate to Distance / TravelTime if TravelTime assumes a
nonzero value, or to zero otherwise. In Section 12.2 you will see that this
particular expression can be written even more concisely using the sparsity
modifier “$”.

A much more flexible way for specifying conditional expressions is given by  IF-THEN-ELSE

the IF-THEN-ELSE operator. The syntax of the IF-THEN-ELSE expression is given expressions
below.

if-then-else-expression : Syntax

logical-expression

expression

- ELSE expression T{ENDIF}»

The IF-THEN-ELSE expression works like a switch statement—a series of ELSEIFs  Explanation
can be used to denote numerous special cases. The value of the IF-THEN-ELSE
expression is the first numerical expression for which the corresponding logi-
cal condition is true. If none of the conditions are true, then the value will be
the numerical expression after the ELSE keyword if present or zero otherwise.
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A simple illustration of the use of the IF-THEN-ELSE construction is given by
the assignments

AverageVelocity := IF TravelTime THEN Distance / TravelTime ENDIF ;

which is equivalent to the ONLYIF expression above. A more elaborate example
is given by the assignment

WeightedDistance(i) :=
IF Distance(i) <= 100 THEN Distance(i)
ELSEIF Distance(i) <= 200 THEN (100 + Distance(i)) / 2
ELSEIF Distance(i) <= 300 THEN (250 + Distance(i)) / 3
ELSE 550 / 3
ENDIF ;

The expression takes the value associated with the first logical expression that
is true.

6.2 Logical expressions

Logical expressions are expressions that evaluate to a logical value—0.0 for
false and 1.0 for true. AiMMS supports several types of logical expressions.

logical-expression :

—4—{ operator-expression }7»
—»{ expression-relationship }—
—{ expression-inclusion }7
4{ string-relationship }7
4{ iterative-expression }7
—»{ numerical-expression }7
L»@——{ logical-expression F@—/

As AIMMS permits numerical expressions as logical expressions it is important
to discuss how numerical expressions are interpreted logically, and how logical
expressions are interpreted numerically. Numerical expressions that evaluate
to zero (0.0) are false, while all others (including ZERO, NA and UNDF) are true. A
false logical expression evaluates to zero (0.0), while a true logical expression
evaluates to one (1.0). If one or more of the operands of a logical operator
is UNDF or NA, the numerical value is also UNDF or NA. Note that AiMMS will not
accept expressions that evaluate to UNDF or NA in the condition in control flow

Example

Logical
expressions

Numerical
expressions
as logical
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statements, where it must be known whether the result of that condition is
equal to 0.0 or not (see also Section 8.3).

Table 6.9 illustrates the different interpretation of a number of numerical and
logical expressions as either a numerical or a logical expression. See also Ta-
ble 6.10 for the results associated with the AND operator.

Expression Numerical value | Logical value
32 > 1) 3.0 true
3%(1 > 2) 0.0 false
Q<2+ @<3 2.0 true
max((1 < 2),(2 < 3)) 1.0 true
2 AND 0.0 0.0 false
2 AND ZERO 1.0 true
2 AND NA NA true
UNDF < 0 UNDF true

Table 6.9: Numerical and logical values

6.2.1 Logical operator expressions

AMMS supports the unary logical operator NOT and the binary logical operators
AND, OR, and XOR. Table 6.10 gives the logical results of these operators for zero
and nonzero operands.

Operands Result

a b aAND b |aORb | aXO0Rb|NOTa

0 0 0 0 0 1

0 nonzero 0 1 1 1
nonzero 0 0 1 1 0
nonzero | Nonzero 1 1 0 0

Table 6.10: Logical operators

The precedence order of these operators from highest to lowest is given by
NOT, AND, OR, and XOR respectively. Whenever the precedence order is not imme-
diately clear, it is advisable to use parentheses. Besides preventing unwanted
mistakes, it also make your model easier to understand and maintain.
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The expression

NOT a AND b XOR c OR d

is parsed by AIMMS as if it were written

((NOT a) AND b) XOR (c OR d).

Due to the sparse execution system underlying AIMMS it is not guaranteed that
logical expressions containing binary logical operators are executed in a strict
left-to-right order. If you are a C/C++ programmer (where logical conditions
are executed in a strict left-to-right order), you should take extra care to ensure
that your logical conditions do not depend on this assumption.

6.2.2 Numerical comparison

Numerical relationships compare two numerical expressions, using one of the
relational operators =, <>, >, >=, <, or <=. Numerical inclusions are equivalent
to two numerical relationships, and indicate whether a given expression lies
within two bounds.

expression-relationship :

ﬂ expression H relational-operator H expression F

expression-inclusion :

expression 'I expression I'

expression

expression

For two real numbers x and y the result of the comparison x = y, where =
denotes any relational operator, depends on two tolerances

m Equality_Absolute_Tolerance (denoted as &), and
m Equality_Relative_Tolerance (denoted as &;).

You can set these tolerances through the options dialog box. Their default
values are 0 and 10~'3, respectively. If the number &y y is given by the formula

Ex,y = MaX(&q, & - X, & - V),

then the relational operators evaluate as shown in the Table 6.11.
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AIMMS expression | Evaluates as
x=y Ix —y| <é&xy
xX<>y Ix — | > &xy
x<=y X —Y <&xy
X<y X -y < —&xy

Table 6.11: Interpretation of numerical tolerances

For any combination of an ordinary real number with one of the special sym-
bols ZERO, INF, and -INF, the relational operators behave as expected. If any of
the operands is either NA or UNDF, relationships other than = and <> also eval-
uate to NA or UNDF and hence, as a logical expression, to true. In addition, the
logical expressions INF = INF and -INF = -INF evaluate to true.

One can formulate numerous logical expressions to test for a zero value, and
one should be clear on the desired result. The following example makes the
point.

p_inv(i)
p_inv(i | p(i))
p_inv(i | p(i) <> 0) :

nmonmon
N
N~ N
k]
~

-

p—4

The first assignment will produce a runtime error when p(i) assumes a value
of 0 or ZERO. The second assignment will filter out the 0’s, but not the ZERO
values because ZERQ evaluates to the logical value “true”. The last assignment
will never produce runtime errors, because of the numerical comparison to 0.

6.2.3 Set and element comparison

AIMMS features very powerful logical set comparison operators. Not only can
sets and their elements be compared using relational operators, but you can
also check for set membership with the IN operator.

set-relationship :

expression-relationship

expression-inclusion

element-tuple @ set-primary

Set elements that lie in the same set can be compared according to their rela-
tive position inside that set. You can also compare the positions of arbitrary
set element expressions, as long as AIMMS is able to determine a unique do-
main set in which the comparison has to take place. The allowed relational
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operators are =, <>, <, <=, >, and >=. As with numerical expression, AIMMS also
allows you to specify an inclusion relationship as a form of repeated compari-
son to verify whether an element lies within two boundary elements.

The relational operators for element relationships are conveniently defined in
terms of the Ord function. Let S be a simple set, i and j indices or element
parameters in S, = any of the lag or lead operators +, ++, - or --, m and n
integer expressions, and 2 one of the operators =, <>, <, <=, >, or >=. The
relational operators = have the following definition for set elements, provided
that the set elements on both sides of the relational operator exist.

i+ m and j + n are both defined, and

itmzjitn e ) )
Ord(i £m,S) 2 0rd(j =n,S)

Note that this type of relational expression evaluates to “false” if one or both

of the operands do not refer to existing set elements.

Only elements that lie in the same set are comparable using the <, <=, >, and >=
operators. The = and <> operators can also be used when the operands merely
share the same root set.

The following set assignments demonstrate the correct use of element com-
parisons.

FuturePeriods := { t in Periods | CurrentPeriod <= t <= PlanningHorizon } ;

BandMatrix := { (i,j) | i - Bandwidth <= j <= i + BandWidth } ;

Set membership can be tested using the IN operator. This operator checks
whether a set element or an element tuple on the left-hand side is a member
of the set expression on the right-hand side. Both operands must have the
same root set.

Assume that all one-dimensional sets in the following two assignments share
the same root set Cities. Then these statements illustrate the correct use of
the logical IN operator.

NeighborhoodRoutes :
ExcludedCities :

(i,3) 1in Routes | j in NeighborhoodCities(i) } ;
i in ( SmallCities + ForeignCities ) } ;

= {
= {
Sets can be logically compared using any of the relational operators =, <>, <,
<=, > and >=. The inequality operators denote the usual subset relationships.

They replace the standard ”contained in” operators &, <, 2 and 2 which are
not available on many keyboards.
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The following statement illustrates a logical set comparison operator.

IF ( RoutesWithTransport <= NeighborhoodRoutes ) THEN
DialogMessage( "Solution only contains neighborhood transports" );
ENDIF;

6.2.4 String comparison

Besides their use for comparison of numerical, element- and set-valued expres-
sions, the relational operators =, <>, <, <=, >, and >= can also be used for string
comparison. When used for string comparison, AIMMS employs the usual lexi-
cographical ordering. String comparison in AIMMS is case sensitive by default,
i.e. strings that only differ in case are considered to be unequal. You can mod-
ify this behavior through the option Case_Sensitive_String_Comparison.

All the following string comparisons evaluate to true.

"The city of Amsterdam" <> "the city of amsterdam" ! Note case
"The city of Amsterdam" <> "The city of Amsterdam " ! Note Tast space
"The city of Amsterdam" < "The city of Rotterdam"

6.2.5 Logical iterative expressions

Logical iterative operators verify whether some or all elements in a domain
satisfy a certain logical condition. Table 6.12 lists all logical iterative operators
supported by AiMMS. The second column in this table refers to the required
number of expression arguments following the binding domain argument.

Name # Expr. | Meaning
Exists 0 true if the domain is not empty

Atleast 1 true if the domain contains at least n elements
Atmost 1 true if the domain contains at most n elements
Exactly 1 true if the domain contains at exactly n elements
ForAll 1 true if the expression is true for all elements in the

domain

Table 6.12: Logical iterative operators

The following statements illustrate the use of some of the logical iterative
operators listed in Table 6.12.

MuTtipleSupplyCities := { i | Atleast( j | Transport(i,j), 2 ) } ;

IF ( ForAT1( i, Exists( j | Transport(i,j) ) ) ) THEN
DialogMessage( "There are no cities without a transport"” );
ENDIF ;
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6.3 Operator precedence

In the previous sections we have introduced unary and binary operators for
several types of expressions, together with their relative precedence order. Ta-
ble 6.13 provides an overview of all of them. The last column lists the expres-
sion types in which the operator is used, where the letters “N”, “L”, “E”, and “S”
stand for Numerical, Logical, set Element and Set expressions, respectively.

Precedence | Name Type
14 ONLYIF $ N
13 ) N
12 + - (unary) N
11 ¥/ N,S
10 + - ++ -- (binary) N,E,S
9 CROSS S
8 IN L
7 <<=>>= =< L
6 NOT L
5 AND L
4 OR L
3 XOR L
2 | S
1 IF THEN ELSEIF ELSE ENDIF | N

Table 6.13: Operator precedence (highest to lowest)

6.4 MACRO declaration and attributes

The MACRO facility offers a mechanism for parameterizing expressions. Macros
are useful for enhancing the readability of models, and avoiding inconsisten-
cies in frequently used expressions.

Macros are declared as ordinary identifiers in your model. They can have ar-
guments. The attributes of a Macro declaration are listed in Table 6.14.

The Definiton attribute of a macro declaration is the replacement text that is
substituted when a macro is used in the model text. The (optional) Arguments
of a macro must be scalar entities. Unlike function arguments, however, you
do not have to declare Macro arguments as local identifiers. The Definition of
a macro must be a valid expression in its arguments.
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Chapter 6. Numerical and Logical Expressions

Attribute | Value-type See also page
Text string 19
Arguments argument-list

Comment comment string 19
Definition | expression 34

Table 6.14: Macro attributes

When you define a macro with arguments, the actual replacement text depends
on the arguments that are supplied to it, as illustrated in the following exam-
ple. Using the macro declaration

Macro MyAverage {
Arguments : (dom, expr);
Definition : Sum(dom, expr) / Count(dom);

}

the assignments

AverageTransport
AverageNZTransport

MyAverage( (i,j), Transport(i,j) );
MyAverage( (i,j) | Transport(i,j), Transport(i,j) );

are compiled as if they read:

AverageTransport = Sum( (i,j), Transport(i,j) ) / Count( (i,3) );
AverageNZTransport :=
Sum ( (i,3) | Transport(i,j), Transport(i,j) ) /
|

Count( (i,3) | Transport(i,j) );

When you use a macro with arguments, the actual arguments must be valid
expressions. As a result, there is no need to add additional braces to the re-
placement text of the macro, like, for instance, in the C programming language.
The following example illustrates this point.
Macro MyMult {

Arguments : (X,y);

Definition : x*y;

}

Using this macro, the expression
a + MyMult(b+c,d+e) + f

will evaluate to
a+ ((b+c)*(d+ e)) + f

instead of

a+b+cd+e+f

Example

Expression
substitution
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In many execution statements you have a choice to use either macros or de-
fined parameters as a mechanism to replace complicated expressions by de-
scriptive names. While a macro is purely substituted by its replacement text,
the current value of a defined parameter is stored and looked up when needed.
When deciding whether to use a macro or a defined parameter, you should con-
sider both storage and computational consequences. Macros are recomputed
every time they are referenced, and therefore there may be an unnecessary
time penalty if the macro is called with identical arguments in more than one
place within your model. When storage considerations are important, a macro
may be attractive since it does not introduce additional parameters.

You should also consider your choices when you use a macro with variables
as arguments in a constraint. In this case, you also have the option to use
a defined variable, or a defined Inline variable (see also Section 14.1). The
following considerations are of interest.

m A macro can produce different expressions of the same structure for dif-
ferent identifier arguments, but does not allow you to specify a domain
restriction that will reduce the number of generated columns in the ma-
trix.

m Defined and Inline variables support an index domain to restrict the
number of generated columns, but only allow an expression in terms of
fixed identifiers. Compared to a macro or an Inline variable, the number
of rows and columns increases for a defined variable, but if the variable
is referenced more than once in the other constraints, it will result in a
smaller number of nonzeros.

m An advantage of variables (both defined and InTine) over macros is that
their final values are stored by AiMMS, and can be retrieved in other
execution statements or in the graphical user interface, whereas a macro
has to be recomputed all the time.

Macro versus
defined
parameters

Macro versus
defined
variables
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Chapter 7

Execution of Nonprocedural Components

The collection of all set and parameter definitions form a system of functional
relationships which AiMMS keeps up-to-date automatically. This chapter dis-
cusses the dependency structure of the system, the kind of expressions and
statements allowed inside the definitions, and the way in which the relation-
ships are re-computed.

The nonprocedural execution mechanism discussed in this chapter resembles
the execution of spreadsheets. Definitions can be placed in any order by the
model builder, but the logical order of execution is determined by the sys-
tem. As a result, you can easily formulate spreadsheet-based applications in
the AiMMS modeling language by merely using definitions for sets and param-
eters. Of course, the modeling language in AIMMS goes beyond the modeling
paradigm of spreadsheets, as AIMMS also offers procedural execution which is
found in programming languages but not in spreadsheets.

7.1 Dependency structure of definitions

The definitions inside the declarations of global sets and parameters together
form a system of interrelated functional relationships. AIMMS automatically
determines the dependency between the defined identifiers and the inputs
that are used inside these relationships. Such dependencies can be depicted
in the form of a directed graph, called the dependency graph. From this de-
pendency graph, AiMMS determines the minimal set of identifiers that must be
recomputed—and in which order—to get the total system of functional rela-
tionships up-to-date.

Consider the system of definitions

d15e1+e2
d25d1+d3
d35€2+63

d4 Ee1+d2.

This chapter

Spreadsheets

Dependency
graph

Example



Chapter 7. Execution of Nonprocedural Components

Its dependency graph, with identifiers as nodes and dependencies as directed
arcs, looks as follows. Note that a change to the input parameter e3, for in-

NIV
\_/
%

stance, requires the re-computation of the defined parameters d», ..., ds—but
not of d;—to update the entire system.

The dependency graph associated with the set and parameter definitions must
be a-cyclic, i.e. must not contain circular references. In this case, every change
to one or more input parameters of defined sets or parameters will result in a
finite sequence of assignments to update the system. If the dependency graph
is cyclic, a simultaneous system of relations will result. Such a system may
not have a (unique) solution, and can only be solved by a specialized solver.
Simultaneous systems of relations are handled inside AiMmms through the use
of constraints and mathematical programs.

An illegal set of dependencies results if the definition of d; in the last example
is changed as follows.
d] Ed4+e1 + é».

This results in the following cyclic dependency graph. Now, a change to any

NIV
\_/
/

of the input parameters ey, ..., e3 will result in a simultaneous system for the
parameters d1, d» and dg.
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Chapter 7. Execution of Nonprocedural Components

AIMMS computes the dependency structure between the parameter and set def-
initions while compiling your model. If AiMMS detects a cyclic dependency, an
error will result, because AIMMS can, in general, not deal with cyclic dependen-
cies without relying on specialized numerical solvers. In that case you need to
remove the cyclic dependencies before you can execute the model without fur-
ther modifications. If you are unable to remove the cyclic dependencies, you
have essentially two alternatives. You can either formulate a mathematical
program, or define your own solution method inside a procedure.

The cyclic system can be turned into a mathematical program by changing the
parameters with cyclic definitions into variables. This results in a simultane-
ous system of equalities which can be solved through a SOLVE statement. The
declaration of mathematical programs is discussed in Chapter 15.

The alternative is to implement a customized solution procedure by breaking
the simultaneous system into a simulation with a feedback loop linking inputs
and outputs. To accomplish this, you must first remove the cyclic definitions
from the declarations, and then add a procedure that implements the feedback
loop. If you have sufficient knowledge of the process you are describing, this
route may result in fast convergence behavior.

AIMMS only allows a definition for globally declared sets and parameters. Con-
sequently, a single global dependency graph suffices to express the functional
relationships between all defined sets and parameters.

In addition, the dependency structure between set and parameter definitions is
purely based on symbol references. As a result, AIMMS’ automatic evaluation
scheme will always recompute an indexed (output) parameter depending on an
indexed (input) parameter in its entirety, even when only a single input value
has changed.

This evaluation behavior may lead to severe inefficiencies when you use a high-
dimensional defined parameter that is re-evaluated repeatedly during the ex-
ecution of a loop in your model. In such cases it is advisable to refrain from
using a definition for such a parameter, but replace it by one or more assign-
ments at the appropriate places in your model. This issue is discussed in full
detail in Section 13.2.3.

7.2 Expressions and statements allowed in definitions

In most applications, the functional relationship between input and output
identifiers in the definition of a set or a parameter can be expressed as an
ordinary set-valued, set element-valued or numerical expression. In rare occa-
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Chapter 7. Execution of Nonprocedural Components

sions where a functional relationship cannot be written as a single symbolic
statement, a function or procedure can be used instead.

In summary, you may use one of the following items in set and parameter
definitions:

a set-valued expression,

an element-valued expression,
a numerical expression,

a call to a function, or

a call to a procedure.

Under some conditions, expressions used in the definition of a particular pa-
rameter can contain references to the parameter itself. Such self-referencing
is allowed if the serial computation of the definition over all elements in the
index domain of the parameter does not result in a cyclic reference to the pa-
rameter at the individual level. This is useful, for instance, when expressing
stock balances in a functional manner with the use of lag operators.

The following definition illustrates a valid example of a self-reference.

Parameter Stock {
IndexDomain : t;
Definition : {
if ( t = FirstPeriod ) then BeginStock
else Stock(t-1) + Supply(t) - Demand(t) endif

}

If t is an index into a set Periods = {0..3}, and FirstPeriod equals 0, then at
the individual level the assignments with self-references are:

Stock(0) := BeginStock ;

Stock(1) := Stock(0) + Supply(1) - Demand(l) ;
Stock(2) := Stock(1) + Supply(2) - Demand(2) ;
Stock(3) := Stock(2) + Supply(3) - Demand(3) ;

Since there is no cyclic reference, the above definition is allowed.

You can use a call to either a function or a procedure to compute those defini-
tions that cannot be expressed as a single statement. If you use a procedure,
then only a single output argument is allowed. In addition, the procedure can-
not have any side-effects on other global sets or parameters. This means that
no direct assignments to other global sets or parameters are allowed.
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The identifiers referenced in the actual arguments of a procedure call, as well
as the global identifiers that are referenced in the body of the procedure, will
be considered as input parameters for the computation of the current defini-
tion. That is, data changes to any of these input identifiers will trigger the
re-execution of the procedure to make the definition up-to-date. The same
applies to functions used inside definitions.

The following two examples illustrate the use of functions and procedures in
definitions.

m Consider a function TotalCostFunction which has a single argument for
individual cost coefficients. Then the following declaration illustrates a
definition with a function reference.

Parameter TotalCost {

Definition : TotalCostFunction( CostCoefficient );

}

AiMMS will consider the actual argument CostCoefficient, as well any
other global identifier referenced in the body of TotalCostFunction as
input parameters of the definition of TotalCost.

m Similarly, consider a procedure TotalCostProcedure which performs the
same computation as the function above, but returns the result via a
(single) output argument. Then the following declaration illustrates an
equivalent definition with a procedure reference.

Parameter TotalCost {
Definition : TotalCostProcedure( CostCoefficient, TotalCost );

}

Whenever the values of a number of identifiers are computed simultaneously
inside a single procedure without arguments, then this procedure must be
referenced inside the definition of each and all of the corresponding identi-
fiers. If you do not reference the procedure for all corresponding identifiers, a
compile-time error will result. All other global identifiers used inside the body
of the procedure count as input identifiers.

Consider a procedure ComputeCosts which computes the value of the global
parameters FixedCost(m,p) and VariableCost(m,p) simultaneously. Then the
following example illustrates a valid use of ComputeCosts inside a definition.

Parameter FixedCost {
IndexDomain : (m,p);
Definition : ComputeCosts;

}

Parameter VariableCost {
IndexDomain : (m,p);
Definition  : ComputeCosts;

}

Omitting ComputeCosts in either definition will result in a compile-time error.
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7.3 Nonprocedural execution

Execution based on definitions is typically not controlled by the user. It takes
place automatically, but only when up-to-date values of defined sets or pa-
rameters are needed. Basically, execution can be triggered automatically from
within:

m the body of a function or procedure, or
m an object in the graphical user interface.

Consider a set or a parameter with a definition which is referenced in an exe-
cution statement inside a function or a procedure. Whenever the value of such
a set or parameter is not up-to-date due to previous data changes, AiMMS will
compute its current value just prior to executing the corresponding statement.
This mechanism ensures that, during execution of functions or procedures, the
functional relationships expressed in the definitions are always valid.

During execution AIMMS minimizes its efforts and updates only those values
of defined identifiers that are needed at the current point of execution. Such
lazy evaluation can avoid unnecessary computations and reduces computa-
tional time significantly when the number of dependencies is large, and when
relatively few dependencies need to be resolved at any particular point in time.

For the graphical objects in an end-user interface you may specify whether the
data in that object must be up-to-date at all times, or just when the page con-
taining the object is opened. AiMMs will react accordingly, and automatically
update all corresponding identifiers as specified.

Which definitions are automatically updated in the graphical user interface
whenever they are out-of-date, is determined by the contents of the prede-
fined set CurrentAutoUpdatedDefinitions. This set is a subset of the prede-
fined set A11Identifiers, and is initialized by AIMMS to the union of the sets
A11DefinedSets and Al1DefinedParameters by default.

To prevent auto-updating of particular identifiers in your model, you should
remove such identifiers from the set CurrentAutoUpdatedDefinitions. You can
change its contents either from within the language or from within the graph-
ical user interface. Typically, you should exclude those identifiers from auto-
updating whose computation takes a long time to finish. Instead of waiting
for their computation on every input change, it makes much more sense to
collect all input changes for such identifiers and request their re-computation
on demand.
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All identifiers that are not contained in CurrentAutoUpdatedDefinitions must be
updated manually under your control. AIMMS provides several mechanisms:

m you can call the UPDATE statement from within the language, or
m you can attach update requests of particular identifiers as actions to but-
tons and pages in the end-user interface.

The UPDATE statement can be used to update the contents of one or more iden-
tifiers during the execution of a procedure that is called by the user. In this
way, selected identifiers which are shown in the graphical user interface and
not kept up-to-date automatically, can be made up-to-date once the procedure
is activated by the user.

update-statement :

identifier

The following selections of identifiers are allowed in the UPDATE statement:

m identifiers with a definition,
m identifiers associated with a structural section in the model-tree, and
m identifiers in a subset of the predefined set AT1Identifiers.

The following execution statement inside a procedure will trigger AIMMS to
update the values of the identifiers FixedCost, VariableCost and TotalCost upon
execution.

Update FixedCost, VariableCost, TotalCost;
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Chapter 8

Execution Statements

This chapter describes the interaction between the nonprocedural and proce-
dural execution mechanisms in AiMMS. In addition, the major execution state-
ments like the assignment statement, the flow control statements, and the
OPTION statement are discussed. Other important execution statements such
as procedure calls, the SOLVE statement, as well as data control and display
statements are discussed in various other chapters.

8.1 Procedural and nonprocedural execution

The definitions specified inside the declarations of sets and parameters to-
gether form a system of functional relationships. As discussed in Chapter 7
AIMMS automatically determines the dependency between the identifiers that
are used inside these relationships. Based on the (required) a-cyclic depen-
dency structure between identifiers (see also Section 7.1), AIMMS knows the
exact order in which identifiers need to be computed. Execution based on defi-
nitions is not controlled by the user, but takes place automatically when values
are needed.

Procedures are self-contained programs with a body consisting of execution
statements. These statements typically determine the value of those identi-
fiers which cannot be defined using a single functional relationship. Execution
using procedures proceeds according to the order of execution statements en-
countered inside each procedure, and is therefore controlled by the user.

Whenever a set or a parameter with a definition is used in an execution state-
ment inside a procedure, and its value is not up-to-date due to previous data
changes, AiMmMs will compute its current value just prior to executing the cor-
responding statement. This updating facility in AiMmms forms the necessary
and powerful connection between automatic execution based on definitions
and user-initiated execution based on procedures.
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Chapter 8. Execution Statements

Procedural and nonprocedural execution both have their own natural role in an
AIMMS application. Identifier definitions are the most convenient way to define
unique functional relationships between various identifiers in your model—
and keep them up-to-date at all times. Procedures provide a powerful tool to
specify the algorithms that are needed to compute the identifier values without
a direct functional relationship. Procedural statements are also required to
communicate data between AIMMS and external data sources such as files and
databases.

AIMMS provides a rich set of execution statements that you can use to com-
pose your procedures. Available statements include a versatile assignment
statement, statements for data and option management, the most common
flow control statements, calls to other procedures, and a powerful SOLVE state-
ment to solve various types of optimization programs.

Statement :

——»{ assignment-statement }—»
L{ flow-control-statement }—/
L»{ data-control-statement }—/

8.2 Assignment statements
Assignment statements are used to set or change the values of sets, param-

eters and variables during the execution of a procedure or a function. The
syntax of an assignment statement is straightforward.

assignment-statement .

ﬂ data-selection H assignment-operator H expression @

data-selection :

(O-{oinding domain}-+(3)
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AIMMS offers several assignment operators. The standard replacement assign-
ment operator := replaces the value of all elements specified on the left hand
side with the value of the expression on the right hand side. The arithmetic
assignment operators +=, -=, *=, /= and "= combine an assignment with an
arithmetic operation. Thus, the assignments

a += b, a-=b, a *= b, a /=b, a’'=b
form a shorthand notation for the assignments

a:=a+b, a:=a-b a:=a*b a:=a/b a:i=a’b

Assignment is an index binding statement. AIMMS also binds unbound indices
in (nested) references to element-valued parameters that are used for index-
ing the left-hand side. Aimms will execute the assignment repeatedly for all
elements in the binding domain, and in the order as specified by the declara-
tion(s) of the binding set(s). The precise rules for index binding are explained
in Section 9.1.

In contrast to the binding domain of iterative operators and the FOR statements,
the binding domain of an indexed assignment can contain the full range of
element expressions:

m references to unbound indices, which will be bound by the assignment,

m references to scalar element parameters and bound indices,

m references to indexed element parameters, for which any nested un-
bound index will be bound as well,

m calls to element-valued functions, and

m element-valued iterative operators.

If the element expression inside the binding domain of an indexed assignment
is too lengthy, it may be better to use an intermediate element parameter to
improve readability.

Like any binding domain, the binding domain of an indexed assignment can
be subject to a logical condition. Such an assignment is referred to as a con-
ditional assignment, and is only executed for those elements in the binding
domain that satisfy the logical condition.

In addition, if the identifier on the left-hand side of the assignment has its own
domain restriction, then the assignment is limited to those elements of the
binding domain that satisfy this restriction. Assignments to elements outside
the restricted domain are not considered.
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The following five examples illustrate some simple assignment statements. In
all examples we assume that i and j are unbound indices into a set Cities, and
that LargestCity is an element parameter into Cities.

1. The first example illustrates a simple scalar assignment.

TotalTransportCost := sum[(i,j), UnitTransportCost(i,j)*Transport(i,j)]l;

The value of the scalar identifier on the left-hand side is replaced with
the value of the expression on the right-hand side.
2. The second example illustrates an index binding assignment.

UnitTransportCost(i,j) *= CostWeightFactor(i,j) ;

For all cities i and j in the index domain of UnitTransportCost , the old
values of the identifier UnitTransportCost(i,j) are multiplied with the
values of the identifier CostWeightFactor(i,j) and then used to replace
the old values.

3. The third example illustrates a conditional assignment.

Transport((i,j) | UnitTransportCost(i,j) > 100) := 0;

The zero assignment to Transport is made to only those cities i and j for
which the UnitTransportCost is too high.

4. The fourth example illustrates a sliced assignment, i.e. an assignment that
only changes the values of a lower-dimensional subspace of the index
domain of the left-hand side identifier.

Transport(LargestCity,j) := 0;

The sliced assignment in this example binds only the index j. The values
of the parameter Transport are set to zero from the city LargestCity to
every city j, but the values from every other city i to all cities j remain
unchanged.

5. The fifth example illustrates a nested index binding statement.

PreviousCity( NextCity(i) ) := 1;

The index i is bound, because it is used in the nested reference of the
element parameter NextCity(i), which in turn is used for indexing the
identifier PreviousCity. Note that, in a tour, city i by definition is the
previous city of the specific (next) city it is linked with.

Indexed assignments are executed in a sequential manner, i.e. as if it was re-
placed by a sequence of individual assignments to every element in the binding
domain. Thus, if Periods is the integer set {0 .. 3} with index t, then the in-
dexed assignment

Stock( t | t > 0 ) := Stock(t-1) + Supply(t) - Demand(t);

is executed (conceptually) as the sequence of individual statements

Example

Sequential
execution
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Stock(1l) := Stock(0) + Supply(1l) - Demand(1);
Stock(2) := Stock(1) + Supply(2) - Demand(2);
Stock(3) := Stock(2) + Supply(3) - Demand(3);

Therefore, in the right hand side expression it is possible to refer to elements
of the identifier on the left which have received their value prior to the exe-
cution of the current individual assignment. This type of behavior is typically
observed and wanted in stock balance type applications which use lag refer-
ences as shown above. The same argument also applies to assignments that
use element parameters for indexing on either the left- or right-hand side of
the assignment.

In addition to the indexed assignment, AIMMS also possesses a more general
FOR statement which repeatedly executes a group of statements for all ele-
ments in its binding domain (see also Section 8.3.4). If you are familiar with
programming languages like C or PASCAL you might be tempted to embed
every indexed assignment into one or more FOR statements with the proper do-
main. Although this will conceptually produce the same results, we strongly
recommend against it for two reasons.

m By omitting the FOR statements you improve to the readability and main-
tainability of your model code.

m By including the FOR statement unnecessarily you are effectively degrad-
ing the performance of your model, because AIMMS can execute an in-
dexed assignment much more efficiently than the equivalent FOR state-
ment.

Whenever you use a FOR statement unnecessarily, AIMMS will produce a com-
pile time warning to tell you that the code would be more efficient by removing
the FOR statement.

Consider the indexed assignment

Transport((i,j) | UnitTransportCost(i,j) > 100) := 0;

and the equivalent FOR statement

for ((i,j) | UnitTransportCost(i,j) > 100) do
Transport(i,j) := 0;
endfor;

Notice that the indexed assignment is more compact than the FOR statement
and is easier to read. In this example AiMMs will warn against this use of the
FOR statement, because it can be removed without any change in semantics,
and will lead to more efficient execution.

Indexed
assignment
versus FOR

Example
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When there are undefined references with lag and lead operators on the left-
hand side of an assignment (i.e. references that evaluate to the empty element),
the corresponding assignments will be skipped. The same is true if the iden-
tifier on the left contains undefined references to element parameters. No-
tice that this behavior is different from the behavior of a reference containing
undefined lag and lead expressions on the right-hand side of an assignment.
These evaluate to zero.

Consider the assignment to the parameter Stock above. It could also have been
written as

Stock(t+1) := Stock(t) + Supply(t+l) - Demand(t+l);

In this case, there is no need to add a condition to the assignment for t = 3.
The reference to t+1 is undefined, and hence the assignment will be skipped.
Similarly, the assignment

PreviousCity( NextCity(i) ) := i;

will only be executed for those cities i for which NextCity(i) is defined.

8.3 Flow control statements

Execution statements such as assignment statements, SOLVE statements or data
management statements are normally executed in their order of appearance in
the body of a procedure. However, the presence of control flow statements can
redirect the flow of execution as the need arises. AIMMS provides six forms of
flow control:

the IF-THEN-ELSE statement for conditional execution,

the WHILE statement for repetitive conditional execution,

the REPEAT statement for repetitive unconditional execution,

the FOR statement for repetitive domain-driven execution,

the SWITCH statement for branching on set and integer values,

the HALT and RETURN statement for terminating the current execution,

the SKIP and BREAK statements for terminating the current repetitive exe-
cution, and

m the BLOCK statement for visually grouping together multiple statements.
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flow-control-statement :

]

if-then-else-statement }—»

while-statement

repeat-statement

for-statement
switch-statement
halt-statement

return-statement

block-statement

‘él-l l‘
1

In the condition of flow control statements such as IF-THEN-ELSE, WHILE and
REPEAT it is needed to know whether the result is equal to 0.0 or not in order
to take the appropriate branch of execution. The special number NA has the
interpretation “not yet available” thus it is also not yet known whether it is
equal to 0.0 or not. The special number UNDF is the result of an illegal operation,
so its value cannot be known. Therefor, AimMs will issue an error message if
the result of a condition in these statements evaluates to NA or UNDF. Special
numbers and their interpretation as logical values are discussed in full detail
in Sections 6.1.1 and 6.2.

8.3.1 The IF-THEN-ELSE statement

The conditional IF-THEN-ELSE statement is used to choose between the exe-
cution of several groups of statements depending on the outcome of one or
more logical conditions. The syntax of the IF-THEN-ELSE statement is given in
the following diagram.

if-then-else-statement :

(eLserr)

Statement }
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AimMs will evaluate all logical conditions in succession and stops at the first
condition that is satisfied. The statements associated with that particular
branch are executed. If none of the conditions is satisfied, the statements
of the ELSE branch, if present, will be executed.

The following code illustrates the use of the IF-THEN-ELSE statement.

if ( not SupplyDepot ) then
DialogMessage( "Select a supply depot before solving the model" );
elseif ( Exists[ p, Supply(SupplyDepot,p) < Sum( i, Demand(i,p) ) ] ) then
DialogMessage( "The selected supply depot has insufficient capacity" );
else
solve TransportModel ;
endif ;

Note that in this particular example the evaluation of the ELSEIF condition
only makes sense when a SupplyDepot exists. This is automatically enforced
because the IF condition is not satisfied. Similarly, successful execution of
the ELSE branch apparently depends on the failure of both the IF and ELSEIF
conditions.

8.3.2 The WHILE and REPEAT statements

The WHILE and REPEAT statements group a series of execution statements and
execute them repeatedly. The execution of the repetitive loop can be termi-
nated by a logical condition that is part of the WHILE statement, or by means of
a BREAK statement from within both the WHILE and REPEAT statements.

while-statement :

»@\IHILE}»{ logical-expression @ |' -

JQ statement @»( ENDWHILE)~(; )~

repeat-statement :

—~(REPEAT ENDREPEAT )~(; )->

loop-string statement

Loop strings are discussed in Section 8.3.3.

Example
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The execution of a WHILE statement is subject to a logical condition that is veri-
fied each time the statements in the loop are executed. If the condition is false
initially, the statements in the loop will never be executed. In case the WHILE
loop does not contain a BREAK, HALT or RETURN statement, the statements inside
the loop must in some way influence the outcome of the logical condition for
the loop to terminate.

An alternative way to terminate a WHILE or REPEAT statement is the use of a
BREAK statement inside the loop. BREAK statements make it possible to abort
the execution at any position inside the loop. This freedom allows you to for-
mulate more natural termination conditions than would otherwise be possible
with just the logical condition in the WHILE statement. After aborting the loop,
AIMMS will continue with the first statement following it.

In addition to the BREAK statement, AIMMS also offers a SKIP statement. With
it you instruct AIMMS to skip the remaining statements inside the current it-
eration of the loop, and immediately return to the top of the WHILE or REPEAT
statement to execute the next iteration. The SKIP statement is an elegant alter-
native to placing the statements inside the loop following the SKIP statement
in a conditional IF statement.

skip-break-statement :
SKIP L‘Ioopstmhg WHEN )}> logical-expression kj*<::#>
BREAK

By adding a WHEN clause to either a BREAK or SKIP statement, you make its exe-
cution conditional to a logical expression. In practice, the execution of a BREAK
or SKIP statement is almost always subject to some condition.

This example computes the machine epsilon, which is the smallest number
that, when added to 1.0, gives a value different from 1.0. It is a measure of
the accuracy of the floating point arithmetic, and it is machine dependent.
We assume that meps is a scalar parameter, and that the numeric comparison
tolerances are set to zero (see also Section 6.2.2).

meps := 1.0;

while (1.0 + meps/2 > 1.0) do
meps /= 2;
endwhile;

Since the parameter meps is determined iteratively, and the loop condition will
eventually be satisfied, this example illustrates an appropriate use of the WHILE
loop.
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By applying a BREAK statement, the machine epsilon can be computed equiva-
lently using the following REPEAT statement.

meps := 1.0;

repeat
break when (1.0 + meps/2 = 1.0) ;
meps /= 2;

endrepeat;

The BREAK statement could also have been formulated in an equivalent but less
elegant manner without a WHEN clause:
if (1.0 + meps/2 = 1.0) then

break;
endif;

8.3.3 Advanced use of WHILE and REPEAT

Next to the common use of the WHILE and REPEAT statements described in the
previous section, AIMMS offers some special constructs that help you

m keep track of the number executed iterations automatically, and
m control nested arrangements of WHILE and REPEAT statements.

There are practical examples in which the terminating condition of a repetitive
statement may not be met at all or at least not within a reasonable amount
of work or time. A good example of this behavior are solution algorithms for
which convergence is likely but not guaranteed. In these cases, it is common
practice to terminate the execution of the loop when the total number of iter-
ations exceeds a certain limit.

In AimMS, such conditions can be formulated easily without the need to

m introduce an additional parameter,
m add a statement to initialize it, and
m increase the parameter every iteration of the loop.

Each repetitive statement keeps track of its iteration count automatically and
makes the number of times the loop is entered available by means of the pre-
defined operator LoopCount. Upon entering a repetitive statement AIMMS will
set its value to 1, and will increase it by 1 at the end of every iteration.

Whether the following sequence will converge depends on the initial value of x.
In the case where there is no convergence or if convergence is too slow, the
loop in the following example will terminate after 100 iterations.
while ( Abs(x-01dValue) >= Tolerance and LoopCount <= 100 ) do
Oldvalue := x ;
X = X2 - X3
endwhile ;
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So far, we have considered single loops. However, in practice it is quite com-
mon that repetitive statements appear in nested arrangements. To provide
finer control over the flow of execution in such situations, AiMmMs allows you
to label a particular repetitive statement with a loop string.

Using a loop string in conjunction with the BREAK and SKIP statements, it is pos-
sible to break out from several nested repetitive statements with a single BREAK
statement. The loop string argument can also be supplied to the LoopCount op-
erator so the break can be conditional on the number of iterations of any loop.
Without specifying a loop string, BREAK, SKIP and LoopCount refer to the current
loop by default.

The following example illustrates the use of loop strings and the LoopCount
operator in nested repetitive statements. It outlines an algorithm in which the
domain of definition of a particular problem is extended in every loop based
on the current solution, after which the new problem is solved by means of a
sequential solution process.

repeat "OuterlLoop"
. | Determine initial settings for sequential solution process

while( Abs( Solution - 01dSolution ) <= Tolerance ) do
01dSolution := Solution ;

. ! Set up and solve next sequential step ...

I ... but terminate algorithm when convergence is too slow
break "OuterLoop" when LoopCount >= LoopCount("OuterLoop™)"2 ;
endwhile;

. | Extend the domain of definition based on current solution,
! or break from the Toop when no extension is possible anymore.
endrepeat;

8.3.4 The FOR statement

The FOR statement is related to the use of iterative operators in expressions.
An iterative operator such as SUM or MIN applies a particular operation to all
expressions defined over a particular domain. Similarly, the FOR statement
executes a group of execution statements for all elements in its domain. The
syntax of the FOR statement is given in the following diagram.
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for-statement :

ORDERED
.ls”““.
UNORDERED

@ starementgﬂ ENDFOR}—Q}>

The binding domain of a FOR statement can only contain free indices, which
are then bound by the statement. All statements inside a FOR statement are
executed in sequence for the specific elements in the binding domain. Un-
less specified otherwise, the ordering of elements in the binding domain, and
hence the execution order of the FOR statement, is the same as the order of the
corresponding binding set(s).

FOR statements with an integer domain in the form of an enumerated set be-
have in a similar manner as the FOR statement in programming languages like
C or Pascal. Like the example below, FOR statements of this type are mostly
of an algorithmic nature, and the indices bound by the FOR statement typically
serve as an iteration count.

for ( nin { 1 .. MaxPriority } ) do

x.NonVar( i | x.Priority(i) <n ) :=1;
x.Relax ( i | x.Priority(i) =n ) := 0;
x.Relax (i | x.Priority(i) > n) := 1;

Solve IntegerModel;
endfor;

This example tries to solve a mixed-integer mathematical program heuristically
in stages. The algorithm first only solves for those integer variables that have
a particular integer priority, and then changes them to non-variables before
going on to the next priority. The suffices used in this example are discussed
in Section 14.1.

FOR statements with non-integer binding domains are typically used to process
the data of a model for all elements in a data-related domain. The use of a FOR
statement in such a situation is only necessary if the statements inside it form
a unit, for which sequential execution for each element in the domain of the
entire group of statements is essential. An example follows.
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for (i in Cities ) do
SmallestTransportCity := ArgMin( j, Transport(i,j) ) ;
DiscardedTransports  += Transport( i, SmallestTransportCity ) ;
Transport( i, SmallestTransportCity ) := 0 ;

endfor;

In this example the three assignments form an inseparable unit. For each
particular value of i, the second and third assignment depend on the correct
value of SmallestTransport in the first assignment.

If you are familiar with programming language like PASCAL and C, then the
use of FOR statements will seem quite natural. In AiMMS, however, FOR state-
ments are often not needed, especially in the context of indexed assignments.
Indexed assignments bind the free indices in their domain implicitly, resulting
in sequential execution of that particular assignment for all elements in its
domain. In general, such an index binding assignment is executed much more
efficiently than the same assignment placed inside an equivalent FOR statement.
In general, you should use FOR statements only when really necessary.

AmMMs will provide a warning when it detects unnecessary FOR statements in
your model. Typically FOR statement are not required when the loop only con-
tains assignments that do not refer to scalar identifiers (either numeric or
element-valued) to which assignments have been made inside the loop as well.
For instance, in the last example the FOR statement is essential, because the
assignment and use of the element parameter LargestTransportCity is inside
the loop.

The following example shows an unnecessary use of the FOR statement.
solve OptimizationModel;

I Mark variables with large marginal values
for (i) do
if ( Abs[x.Marginal(i)] > HighPrice ) then
Mark(i) := x.Marginal(i);
else
Mark(i) := 0.0;
endif;
endfor;

While this statement may seem very natural to C or Pascal programmers, in a
sparse execution language like AiMMS it should preferably be written by the
following simpler, and faster, assignment statement.

Mark(i) := x.Marginal(i) OnlyIf ( Abs[x.Marginal(i)] > HighPrice );
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With the optional keywords SPARSE, ORDERED and UNORDERED you can indicate
that AimMS should follow one of three possible strategies to execute the FOR
statement. If you do not explicitly specify a strategy, AIMMS will follow the
SPARSE strategy by default, and issue a warning when this strategy leads to
severe inefficiencies. You can find an explanation of each of the strategies, as
well as a description of the cases in which you may want to choose a specific
strategy in Section 13.2.2.

Like the WHILE and the REPEAT statements, FOR is a repetitive statement. Thus,
you can use the SKIP and BREAK statements and the LoopCount operator. In ad-
dition, you can identify a FOR statement with a loop string thereby controlling
execution in nested arrangements as discussed in the previous section.

The SKIP statement skips the remaining statements in the FOR loop and contin-
ues to execute the loop for the next element in the binding domain. The BREAK
statement will abort the execution of the FOR statement all together.

8.3.5 The SWITCH statement

The SWITCH statement is used to choose between the execution of different
groups of statements depending on the value of a scalar parameter reference.
The syntax of the SWITCH statement is given in the following two diagrams.

switch-statement :

~(NITCR) | reference }4B0) o e -

————~(ENDSWITCH 0

selector :

. quoted-element '
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The SWITCH statement can switch on two types of scalar parameter references:
set element-valued or integer-valued. When you try to switch on references to
string-valued or non-integer numerical parameters, AiIMMS will issue a compile
time error

Each selector in a SWITCH statement must be a comma-separated list of values or
value ranges, matching the type of the selecting scalar parameter. Expressions
and ranges used in a SWITCH statement must only contain constant integers and
set elements. Set elements used in a switch selector must be known at compile
time, i.e. the data initialization of the corresponding set must be a part of the
model description.

The optional DEFAULT selector matches every reference. Since AIMMS executes
only those statements associated with the first selector matching the value of
the scalar reference, it is clear that the DEFAULT selector should be placed last.

The following SWITCH statement takes different actions based on the model
status returned by a SOLVE statement.

solve OptimizationModel;

switch OptimizationModel.ProgramStatus do
’Optimal’, ’LocallyOptimal’ :
ObservedModelStatus := ’Solved’ ;

"Unbounded’, ’Infeasible’, ’IntegerInfeasible’, ’LocallyInfeasible’ :
ObservedModelStatus := ’Infeasible’ ;

"IntermediateInfeasible’, ’IntermediateNonInteger’, ’IntermediateNonOptimal’ :
ObservedModelStatus := 'Interrupted’ ;

default :
ObservedModelStatus := ’Not solved’ ;

endswitch ;

8.3.6 The HALT statement

With a HALT statement you can stop the current execution. You can use it, for
example, if your model has run into an unrecoverable error condition during
its execution, or if you simply want to skip the remaining statements because
they are no longer relevant in a particular situation.

Instead of the HALT statement you can also use the RETURN statement (see also
Section 10.1) to terminate the current execution. The HALT statement directly
jumps back to the user interface, but a RETURN statement in a procedure only
passes back control to the calling procedure and continues execution from
there.
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The syntax of the HALT statement follows.

halt-statement :

string-expression logical-expression T@o

You can optionally specify a string in the HALT statement that will be printed
in a message dialog box when execution has stopped. This is useful, for in-
stance, to pass on an appropriate message to the user when a particular error
condition has occurred.

You can make the execution of the HALT statement conditional on a WHEN clause.
If present, the current run will only be aborted if the condition after the WHEN
clause is satisfied.

The following example terminates the current run if the SOLVE statement does
not solve to optimality. When aborting, the user will be notified with an ex-
planatory message.

solve LinearOptimizationModel;

halt with "Execution aborted: model not solved to optimality"
when OptimizationModel.ProgramStatus <> 'Optimal’ ;

Note that the type of model termination initiated by calling the HALT state-
ment cannot be guarded against using AiIMMS’ error handling facilities (see Sec-
tion 8.4). An alternative to the HALT statement, which enables error handling, is
the RAISE statement discussed in Section 8.4.2. When you want to let the HALT
act as a RAISE statement, you can switch the option halt_acts_as_raise_error
on.

8.3.7 The BLOCK statement

A sequence of statements can be grouped together into a single statement
using the BLOCK statement, possibly serving one or more of the following pur-
poses:

m to emphasize the logical structure of the model,
m to execute a group of statements with different option settings, or
m to permit error handling on a group of statements (see Section 8.4).

The syntax of the BLOCK statement is as follows.
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block-statement :

Syntax
*<?LOCK>(~QMHERE opﬁon}*<::>*{expre5ﬂbn -
---—~(ENDBLOCK ~( ; )
Consider the following BLOCK statement containing a group of statements. Emphasizing

o . logical structure

block ! Initialize measured compositions as observable. in th del
CompositionObservable(nmf,c in MeasuredComponents(nmf)) := 1; In the mode
CompositionObservable(mf,mc) := 0;

if ( not CheckComputableFlows ) then

UnobservableComposition(nmf,c) := 1$(not CompositionObservable(nmf,c));
return 0;
endif;

CompositionCount(pu,c) :=

Count((f,g) | Admissable(pu,c,f,g) and CompositionObservable(g,c));
NewCount := Card ( CompositionObservable );
endblock ;

In the AiMMS syntax editor, a block can be displayed in either a collapsed or an
expanded state. When collapsed, the block will be displayed as follows, using
a single line comment following the BLOCK keyword as its description.

| Initialize measured compositions as ohserva.ble.| H

When in a collapsed state, AiMMs will show the contents of the block in a

tooltip if the mouse pointer is placed over the collapsed block, as illustrated
in the figure below.

| Initialize measured compositions as ohserva.ble.| H

Block. f fnrfvadire measwed compositions aF obsarvaiie,
CompositionObservable(nmf, c in MeasuredComponentsinmf)) 1= 1;
CompositionObservable(mf,mc) 1= 0;

if { not CheckComputableFlavs ) then
UnobservableComposition{nmf,c) := 1 § {nok CompositionObservablednmf, ci;
return O}

endif;
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During the execution of a block statement, the options in the WHERE clause
will have the specified values set at the beginning of the block statement, and
the old values restored at the end of the block statement. More on the for-
mat of option names and value settings can be found in Section 8.5. The
example below prints various parameters using various settings of the option
Listing-number_precision.

| The default value of the option Listing_number_precision is 3.

block ! Start printing numbers using 6 decimals.

where Listing_number_precision := 6 ;

display A, B ;

block ! Start printing numbers without decimals.
where Listing_number_precision :=0 ;

display C, D ; ! The output Tooks as if C and D are integers.
endblock ;
display E, F ; ! Back to printing numbers using 6 decimals.
endblock ;
display G, H ; ! Back to printing numbers using 3 decimals.

In the above example, a nested block statement is used to set the scope of
option settings; the inner block statement temporarily overrides the option
setting of the outer block statement, which overrides the global option set-
tings.

The OnError clause is one of the means of handling runtime errors in AIMMS.
It is discussed in detail in Section 8.4.1.

8.4 Raising and handling warnings and errors

During the development and deployment of an AIMMS application, unexpected,
possibly harmful, situations can arise. These situations are divided into errors
and warnings. An error is a situation that cannot be handled by the procedure
encountering it. A warning is a situation that can be handled by the procedure
encountering it, but might warrant further inspection by the model developer
or by the model user. Note that, even when a procedure cannot handle an error
itself, it should be able to recover from that error. In this section, you will find
AIMMS facilities to

m handle errors; to handle an error, AiMmms will give you access to the infor-
mation therein. A handler is a piece of AIMMS code that handles selected
errors and warnings. Errors and warnings can be communicated to han-
dlers higher in the execution stack.

m raise an error; not only AIMMS may detect situations warranting an error
or warning message, but also the application itself. For such situations
AIMMS provides a facility to raise custom errors from within your model.
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m handle a legacy situation; external and intrinsic AIMMS procedures may
return a status code indicating success or failure. Whenever a failure
status of an external and intrinsic procedure remains unnoticed, AIMMS
can automatically raise an error in such situations.

m extensively check the code; AIMMS can check your application for many
different kinds of situations that occassionally warrant a warning. It is
usually worthwhile to apply all these checks to your application.

8.4.1 Handling errors

In this subsection you will find an introduction to both the global and local er-
ror handling mechanisms available in AiMmMS. Global error handling, by means
of specifying a single handler procedure, is used to treat runtime errors oc-
curing anywhere inside the entire model that are not handled elsewhere. Local
error handling, by means of the OnError clause in a BLOCK statement, allows er-
ror handling of runtime errors occuring in a specific block of code. Global and
local error handling are the blocks on which the error handling framework in
AIMMS is built. At the end of this subsection, you will find a description of all
the intrinsic functions available for accessing and manipulating information
regarding errors.

To activate global error handling, the name of a handling procedure in your
model must be assigned to the option Global_error_handler. Such a procedure
must have a single element parameter argument err in the predeclared set
errh::PendingErrors. The global error handling procedure will be executed for
each pending error whenever an execution run has been terminated because
of errors that have not been handled elsewhere in the model. The global error
handler will also be called at the end of a finished execution run if there are
unhandled warnings. In this context, an execution run is any call to an AIMMS
procedure initiated either through the AimMs GUI or through the AiMms APL

Below a global error handling procedure MyErrorHandler is illustrated. The lines
in the body of the procedure are numbered to facilitate the explanation of the
example.

Procedure MyErrorHandler {

Arguments : err;
ElementParameter err {
Range 1 errh::PendingErrors;
Property : Input;
}
Body: {
1 if errh::Node(err) = ’DefP’ then
2 DialogMessage(errh: :Message(err) + "; resetting P to its default.");
3 Empty P ;
4 errh::MarkAsHandled(err);
5 elseif errh::InsideCategory(err,’I0’) then
6 errh::Adapt(err,message:"I0 error: please consult ...; "

Subsection
overview

Global error
handling

Example
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7 + errh::Message(err) ); ! Pass adapted message on to next handler.
8 else

9 I Errors not handled will be passed on to the error/warning window.

10 endif

The procedure starts with declaring the argument err as an element parameter
with the predeclared set errh::PendingErrors, with a subset of the predeclared
set Integers as its range. During an execution run, this set is filled with the
numbers of the errors and warnings raised. Each number refers to an error
or warning with various pieces of information therein, such as its error de-
scription, the node in which the error or warning occurred and its severity. In
addition, each error belongs to a category. All this information can be accessed
using intrinsic functions. The body of the procedure is now explained line by
line:

m line 1: The intrinsic function errh: :Node is used to determine whether or
not the error occurred inside the procedure DefP. This intrinsic function
returns the identifier or node in which the error occured as an element
of the predeclared set A11Symbols.

m lines 2, 3: If the error did happen inside the procedure DefP, the ap-
plication user is notified and P is reset to its default. The notification
uses the original error description obtained using the intrinsic function
errh::Message(err).

m line 4: Each handled error will be marked as such. When an error handler
finishes, it will delete the errors that have been marked as handled from
the predeclared set errh::PendingErrors.

m line 5: To discern the type of an error, errors are divided into categories.
For each error, the category to which it belongs can be obtained using the
function errh::Category(err). The error categories form a nested struc-
ture. For instance, both I0 and Generation errors are Execution errors.
The intrinsic function errh::InsideCategory(err) can be used to deter-
mine whether or not an error is within a particular category.

m lines 6, 7: Translate the error by adapting information. In this example,
only the message is actually adapted, but most parts of an error can be
adapted. Note that in this else branch, the function errh: :MarkAsHand1ed
is not called, the result being that the adapted error message will appear
in the messages/errors window.

m line 8: In this branch, the error is not handled. An error that has not been
handled when the error handler finishes will not be deleted. Instead, it is
being displayed in the messages/errors window.

Example
explanation
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The following template of a BLOCK statement illustrates local error handling by
means of the OnError clause.

1 BLOCK

2 statement_1 ;
3

4 statement_n ;
5 ONERROR err DO
6

7

8 ENDBLOCK ;

All errors occuring inside statement_1 ... statement_n on lines 2 ... 4 are handled
by the error handler on lines 6 and 7, where err is an element parameter of the
set errh::PendingErrors. Block statements can be nested, either directly in a
single body, or in other procedures called from within block statements. This
gives rise to a stack of error handlers as illustrated below. A detailed example
of alocal error handler is given in Section 35.6.

The global error handlers and the OnError error handlers are essential build-
ing blocks of the error handling framework of AiMMs. This error handling
framework is illustrated in Figure 8.1.

At the start of each execution run, a new stack of error handlers is created. At
the bottom of this stack is the standard handler To Global Collector. When
the option Global_error_handler is set, the specified procedure is placed on top
of this new stack. Additional handlers are placed on the stack by each OnError
clause in a nested BLOCK statement.

When raised, each error is set aside for handling by the topmost error handler.
When the number of errors set aside reaches the limit specified by the option
Errors_until_execution_interrupt, the execution is interrupted and resumes by
executing the code in the topmost error handler. When the execution is not
interrupted, but there are pending errors or warnings, the error handling code
is executed after the completion of the last statement prior to the BLOCK state-
ment.

A single statement may result in multiple error messages, for instance a solve
statement or a data assignment statement with several duplicate entries. Thus,
even if the option Errors_until_execution_interrupt is 1 (its default), multiple
errors may need to be handled. If multiple errors caused by a single statement
are handled inside the OnError clause of a BLOCK statement, the code within the
OnError clause will be executed unconditionally for every single error, unless
you explicitly break away from theOnError clause.
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Figure 8.1: Error flow through handlers

If you use a RETURN, HALT, BREAK or RAISE ERROR statement inside the OnError
clause, the handling of any subsequent errors or warnings will be stopped.
You are actually indicating that these further errors and warnings are no longer
of interest and thus they will be automatically set as handled. A plain BREAK
statement just breaks the error handling loop. If the Block statement is inside
an outer loop statement like FOR or WHILE and you want to break from that loop,
you need to use a loop string (see Section 8.3.3).

A plain Skip statement in the OnError clause simply skips the remaining state-
ments and continues with the next error that needs to be handled. You can
use a SKIP with a loop string to skip the statements of an outer loop statement.
This will break away from the OnError clause as described above.
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For each error, the error handling code will decide whether to handle that error
itself, let another handler handle the error, or ignore the error (as was already
illustrated in the example above).

Errors may also occur during the execution of the OnError clause or of a BLOCK
statement or the global error handling procedure. These errors are handled by
the next error handler in the stack of error handlers.

When an error reaches the handler To Global Collector, it is sent to the Error
and Warning Collector object which collects all errors that have fallen through
the various handlers (if any). Errors in the Error and Warning Collector can be
queried from within the AiMmms API or viewed from within the messages/errors
window of the AiMmMs GUL

Errors to be handled can be queried using the following predeclared identifiers
and intrinsic functions from the module ErrorHandTing with prefix errh:

m errh::PendingErrors: A predeclared set filled with the numbers of the
errors that can be handled at this point.

m errh: :IndexPendingErrors: An index of the above predeclared set.

m error parts: An error is made up of several parts; each of which can be
obtained separately using the intrinsic functions below. Each of the func-
tions below will raise an error of their own if err is not a valid error that
can be handled at that point.

m errh::Severity(err): An element in errh::AllErrorSeverities is
returned indicating the severity of the error.

m errh: :Message(err): A string containing the error description is
returned. This string is not empty.

m errh::Category(err): An element in errh::Al1ErrorCategories is
returned indicating the category of the error.

m errh::Code(err): The element in errh::ErrorCodes that is return-
ed by this function identifies the message code of the error. This
element name may be cryptic; as it is primarily used for identifica-
tion of the error within the AIMMS system.

m errh: :NumberOfLocations(err): The number of locations relevant
to this error. For compilation errors, there is typically only one rel-
evant location. For an AIMMS initialization error there are no rele-
vant locations. For an execution error the positions in all the active
procedures are recorded. For an error during file read, at least the
positions in the data file and the read statement are recorded. Sim-
ilarly, for an error during the generation of a constraint, at least
the constraint and the SOLVE statement are recorded as relevant po-
sitions.

m errh: :Node(err,loc): An element in AT1Symbols is returned for an
error location inside the model. The optional argument Toc defaults
to 1 and should be in the range { 1 .. NumberOfLocations } . The
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element returned by this function is non-empty except for the first
location when reading data from a file.

m errh::Attribute(err,loc): An element in ATTAttributeNames.

m errh::Line(err,loc): Aninteger indicating the line number of the
error in the attribute or file, or 0 if not known.

m errh::Column(err): An integer indicating the column position in
an erroneous line being read from a data file. All errors when read-
ing a data file are reported separately, such that the Toc argument
is not applicable.

m errh::Filename(err): A non-empty string is returned when read-
ing from a data file. All errors when reading a data file are reported
separately, and so the Toc argument is not applicable.

m errh::Multiplicity(err): An integer indicating the number of oc-
currences of this error. Two errors are considered equal if they
are equal in all of the following parts: Severity, Message, Category,
Code and the first location (if available). The first location is the
location in the file being read when the error occurs during a read
statement, otherwise it is the statement being executed.

m errh::CreationTime(err,fmt): A string representing the creation
time of the first occurrence of the error, formatted according to
time format fmt.

m errh: :InsideCategory(err,cat): Returns 1 if the error code of err falls
inside the category cat.

m errh::IsMarkedAsHandled(err): Returns 1 if the error is marked as han-
dled.

m errh::Adapt(err, severity, message, category, code) : The error err is
adapted with the components specified. Besides the mandatory argu-
ment err, there should be at least one other argument.

m errh::MarkAsHandled(err,actually): The error err is marked as handled
if the argument actually is non-zero. Marked errors will not be passed
to the next error handler. The default of the optional argument actually
is 1. Using 0 will remove the mark from the error.

A1MmMS logs all errors and warnings to the file aimms.err as they are raised. The
folder in which this file resides is controlled by the option Listing_and_tem-
porary_files. The number of backups retained of this file is controlled by the
option Number_of_log_file_backups.

8.4.2 Raising errors and warnings

The RAISE statement is used to

m raise an error regarding a situation that cannot be handled, or to
m raise a warning regarding a situation that can be handled but might war-
rant further investigation.
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The syntax of the RAISE statement is straightforward.

raise-statement :

»CRAISE ERROR } string-expression CODE )» element-expression T
WARNING

&)

In the following example an error is raised when the inflow of a node exceeds
its capacity.
if inflow > stockCap then

RAISE ERROR "Inflow exceeds stock capacity" CODE ’TooMuchInflow’ ;
endif ;

In order to enable an error handler to recognize the type of error being raised
by a RAISE statement, that statement allows an optional error code to be spec-
ified. This is an element in the set errh::ErrorCodes. If the specified element
does not yet exist, it is created and added to that set. The category of an error
raised by the RAISE statement is fixed to ’User’.

AiMMS uses the line/procedure in which the RAISE statement is specified as
the position information associated with the error. This permits the mes-
sages/errors window to open the attribute window of the procedure and place
the cursor on the statement where the problematic situation is detected.

Not only AiMmMms itself but also procedures written in AIMMS may recognize
situations that can be handled but might warrant closer inspection by the ap-
plication user. For this purpose, the RAISE statement can raise a warning, for
example:

if card( RawMaterialTraders ) = 0 then
RAISE WARNING "There are no raw material traders, this may lead to " +
"infeasibilities in the case of too many accepted deliveries." ;
endif ;

The handling of warnings generated by a RAISE statement is controlled by the
option Warning_user, with default common_warning_default. The control of warn-
ing handling is further explained in Subsection 8.4.4.
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8.4.3 Legacy: intrinsics with a return status

AmMMS external procedures and intrinsic procedures can both return a status
code indicating whether or not they were successful. A return value < 0.0
is interpreted as not successful, wheareas a return value > 0.0 is successful.
In addition, when they are not successful, the error message is often left in
CurrentErrorMessage, although this is only a guideline. The return value of a
call to an intrinsic procedure is either

m checked: As illustrated in the example:

retval := PageOpen(...) ;
if retval <= 0 then

. use CurrentErrorMessage ...
endif

m not checked: As illustrated in the example:

PageOpen(...) ;

In the context of the error handling facility available in AiMmMs, how should one
handle the “checked” and “not checked” procedure calls when the return value
is 0 and these procedures have not raised an error themselves? There are five
error handling methods available to choose from:

m ignore: An error is never raised for an error occurring inside such a
procedure, whether or not the return status is checked.

m raise_warning_when_not_checked: A warning is only raised if the return
status of an intrinsic procedure is not checked.

m raise_when_not_checked: An error is only raised if the return status of an
intrinsic procedure is not checked.

m raise_always_warning: A warning is raised whether or not the return sta-
tus is checked.

m raise_always: An error is raised whether or not the return status is
checked.

Which choice of error handling method is best depends on the application and
can be controlled using the options:

m Intrinsic_procedure_error_handling: for procedures with a return sta-
tus supplied by AiMmMs and
m External_procedure_error_handling: for externally supplied procedures.

The values of these options are the names of the error handling methods de-
scribed above. The default of both these options is raise_when_not_checked. For
projects created prior to the introduction of the error handling facilities in
AIMMS (i.e. created in AiMMS 3.9 or lower), these options generate the non-
default value raise_warning_.when_not_checked in order to notify the model de-
veloper but do not change the existing behavior of such projects significantly.
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8.4.4 Warnings

AIMMS recognizes and warns about several types of possibly problematic sit-
uations. These situations might warrant further investigation. As with most
other languages, AiIMMS warns against the use of identifiers before initializing
them. But unlike other languages, AiMMS also warns against the inconsistent
use of units of measurement (such as a comparison of a volume against a
weight), or of model formulations for which AiMMs can detect either com-
piletime or runtime issues that lead to sub-optimal performance or ambigu-
ous results. A selection of performance-related warnings is discussed in Sec-
tion 13.2.8.

The desired handling of each of these situations depends on the developer
and the application; varying from treating it as an error to fully ignoring it. To
permit complete flexibility, there is separate option to control the reporting of
each type of problematic situation recognized.

Although all warnings can be controlled individually, this is not the most con-
venient way to employ the diagnostics provided by these warnings. When en-
tertaining a new idea (quick prototyping), most modelers understandably do
not want to be bothered by various warnings and want to be able to turn them
all off. To facilitate this, all the warnings have been grouped into either com-
mon or strict warnings, and the associated options assume default value for
common and strict warnings. Thus, all diagnostic warnings can be switched
off by just changing the options that control these defaults. For normal de-
velopment work it is advisable to at least turn the common warnings on. In
addition, we would encourage to turn on the strict warnings during application
tests.

In order to implement the above scheme and still permit full flexibility, each
option controlling the detection of a type of problematic situation can take on
one of the following values:

m error: The situation is marked as an error and treated as an error.

m warning_handle: The warning is raised in the current error handler, but
does not count toward the interruption of normal execution.

m common_warning.-default: The value of the option Common_warning_-default
is used.

m warning_collect: The warning is raised in the Global_error_collector,
bypassing the stack of error handlers.

m strict_warning.default: The value of the option Strict.warning-default
is used.

m off: The warning is ignored.
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The default of these options is either common_warning_default or strict_warning-
_default, thereby effectively dividing these options into common and strict
groups. The range of options for common_warning_default and strict_warning._-
default is {off, warning_collect, warning-handle, error}. The default of the
option common_warning_default is warning_handle and the default of the option
strictwarning_default is off.

8.5 The OPTION and PROPERTY statements

Options are directives to AIMMS or to the solvers to execute a task in a par-
ticular manner. Options have a name and can assume a value that is either
numeric or string-valued. You can modify the value of an option from within
the graphical interface. The assigned value is stored along with the project. All
global options are set to their stored values at the beginning of each session.
During execution you can change option settings using the OPTION statement.

option-statement :

You can find a complete list of global options for AiIMMS and its solvers in the
help system.

The right-hand side of an OPTION statement must be a scalar expression of the
proper type. If the option expects a string value, AiMmMSs will accept both string-
or element-valued expressions. An example follows.

option Bound_Tolerance
Iteration_Limit

1.0e-6,
UserSettings(’IterationLimit’);

Some solver options are available for more than one solver. If you modify such
a solver option per se, AIMMS will modify the option for all solver that support
it. If you want to restrict the change to only a single solver, you can prefix the

option name by the name of the solver followed by a dot “.”, as illustrated in
the example below.

option ’'Cplex 12.9’.1p_method := ’dual simplex’;

This statement will set the option 1p_method of the solver that is known to
the system as 'Cplex 12.9’ equal to ’dual simplex’. The solver name can be
either a quoted solver name, or an element parameter into the predefined set
A11Solvers.
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Identifier properties can be turned on or off. All properties default to off,
unless they are turned on—either in the declaration of the identifier or in a
PROPERTY statement. During the execution of your model you can dynamically
change the default values of properties through the PROPERTY execution state-
ments.

property-statement :

{PROPERTYD—Q identifier@ property e % °
(on)

The properties of all identifier types can be found in the identifier declaration
sections. Not all property settings can be changed, e.g. you cannot dynamically
change the Input or Qutput property of arguments of functions and procedures.
In such cases, AiIMMS will produce a runtime error. An example of the PROPERTY
statement follows.

if ( Card(Cities) > 100 ) then
property IntermediateTransport.NoSave := on;
endif;

Once the set of Cities contains more than 100 elements, the identifier Interme-
diateTransport is no longer saved as part of a case file.

When the PROPERTY statement is applied to an index into a subset of the prede-
fined set A11Identifiers, AiMmms will change the corresponding property for all
identifiers in that subset.

The following example illustrates how the PROPERTY statement can be used to
obtain additional sensitivity data for a set SensitivityVariables of (symbolic)
variables that has been previously determined.

for ( var in SensitivityVariables ) do
property var.CoefficientRanges := on;
endfor;

Here, you request AIMMS to determine the smallest and largest values for the
objective coefficient of each variable in SensitivityVariables during the exe-
cution of a SOLVE statement such that the optimal basis remains constant (see
also Section 14.1.2).
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Index Binding

This chapter presents the index binding rules implemented in AiMmMS. These
rules play an essential role during most repetitive set operations. For standard
situations AIMMS behaves as expected. You should read this chapter if you are
interested in a formal discussion of the rules of the underlying semantics.

9.1 Binding rules

During execution, indices are used to traverse a set to repeatedly apply a spe-
cific operation on all elements of a set. These operations concern

indexed assignment statements,

FOR statements,

iterative operations like summation over a domain,
constraint generation,

arc generation, and

constructed set expression.

Index binding is the process by which AimMMSs repeatedly couples the value of
an index to elements of a specific set to execute repetitive operations.

There are three ways in which index binding takes place:

m local binding,
m default binding, and
m context binding.

Local binding takes place through the use of an IN modifier at the index binding
position as illustrated in the following example.

NettoTransport(i in SupplyCities, j in DestinationCitiesFromSupply(i)) :=
Transport(i,j) - Transport(j,i);

Instead of executing the assignment for all cities i and j, it is only executed
for those combinations for which city i is in SupplyCities and city j is in
DestinationCitiesFromSupply(i).
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Indices can have a default binding. This is the binding specified in a declara- Default binding
tion. You can specify a default binding either via the Index attribute of a set,

or via the Range attribute of an Index declaration. Whenever you use an index

with a default binding and do not specify a local binding, AiMMs will couple

this index to its default set automatically. The following example illustrates

default binding.

IntermediateTransportCitiesInBetween(i,j) :=
DestinationCitiesFromSupply(i) * SupplyCitiesToDestination(j);

Assuming that i and j have a default binding to the set Cities, the assignment
takes place for all tuples of cities (i,j).

Whenever you use an index that has no default binding and for which you Context binding
do not provide a local binding, AiMmMSs will try to determine a context binding

from the context. Assume that k is an index without a default binding. Further

assume that LargestTransport is an element parameter into Cities and indexed

over Cities. Then the following example is an illustration of context binding.

LargestTransport(k) := ArgMax( j, Transport(k,j) );

In this assignment AiMMS will automatically bind the index k to Cities, be-
cause the identifier LargestTransport has been declared with the index domain
Cities. Note that context binding will only work in indexed assignments.

Index binding can be nested through the use of indexed element-valued param-  Nested index
eters on the left-hand side of an assignment. The binding takes place in the  binding

way that you would expect, applying the same rules as for non-nested index

binding. For example, given the declarations

ElementParameter NextCity {
IndexDomain : 1;
Range : Cities;

}

ElementParameter PreviousCity {
IndexDomain : i;
Range : Cities;

}

the following assignment, which computes the value of PreviousCity given the
contents of NextCity, will bind the nested reference to the index 1.

PreviousCity( NextCity(i) ) := 1;

This binding is sparse, in the sense that the statement is only executed for
those i for which NextCity(i) assumes a nonempty value.
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In general, AIMMS will never accept the use of an index in references to indexed
identifiers when the binding set does not have the same root set as the index
domain of the identifier. This is even the case when the elements, referenced
in the particular statement, have identical names in both the binding set and
the index domain. Internally, AIMMS stores a set elements as a unique (integer)
number with respect to its root set, and uses this number for storing data for
that element in indexed identifiers. Thus, when the root sets of the binding
set and the index domain are not identical, the set element numbers will be
incompatible, preventing AiMMS from referencing the correct data.

When you want to use a binding set which is incompatible with the index do-
main of identifier on the left-hand side of an assignment, you should manually
create an element parameter which maps elements in one root to the corre-
sponding elements the other root set. Such a mapping can be easily created
using the function ElementCast (discussed in Section 5.2.1), as exemplified be-
low.

ElementMap(i) := ElementCast( IncompatibleRootSet, i );

Subsequently, you can use a nested binding through the element parameter
ElementMap to reference elements in the index domain of the identifier on the
left-hand side of an assignment, while still using the index i as a binding index,
as illustrated in the following statement.

IncompatibleParameter( ElementMap(i) ) := CompatibleParameter(i);

Conversely, when you want to use an incompatible set element in a parame-
ter reference on the right-hand side of an assignment, there is no direct need
to create a mapping parameter. In an expression on the right of an assign-
ment, you can use the function ElementCast directly at any index position, as
illustrated below.

CompatibleParameter(i) := IncompatibleParameter( ElementCast(IncompatibleRootSet, i) );

Note that you could have accomplished the same effect by creating a universal
set of which all other sets are subsets. As a result, all set elements are repre-
sented as unique integer numbers with respect to the same root set, allowing
the index domains of all identifiers to be referenced in a compatible manner.
However, often it is not very natural to do so, and the usage of a universal set
is likely to slow down the performance of AIMMS.

For most situations the result of index binding is self-evident and the behavior
of the system is as you would expect. Following are the precise rules for index
binding.

m Dominance rule: Whenever index binding takes place, local binding pre-
cedes default binding, which in turn precedes context binding. If no
method is applicable, a compile time error will result.
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m Intersection rule: In indexed assignments the binding set(s) should be
compatible with the index domain. The assignment will be performed for
all tuples on the left-hand side that lie in the intersection of the binding
set(s) and the index domain of the corresponding identifier.

m Ordering rule: Lag and lead operators, as well as the Ord and Element
functions operate according to the order of elements in the correspond-
ing binding set.
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Procedures and Functions

Functions and procedures are pieces of execution code dedicated to a specific
task that can be called either from within the graphical end-user interface or
from within the model text. Both functions and procedures in AIMMS can
have arguments. A function returns either a scalar value or an indexed set of
values, and can be used inside expressions. Procedures are more general than
functions in that they can have both multiple inputs and outputs. A procedure
invocation is a single statement in AIMMS, and can be used to modify the values
of global identifiers.

Any computation that is part of your application must be started from within
a procedure. For simple applications, execution from within the predefined
procedure MainExecution is usually sufficient to perform all tasks. However, in
more complicated applications there are often many entry points, and these
can best be implemented as separate procedures.

This chapter describes how to construct and use procedures and functions in
the AimMMs language. Such procedures and functions are called internal. In
Chapter 11 you will find additional material on how to link external functions
and procedures written in FORTRAN and C to your application.

10.1 Internal procedures

Internal procedures are pieces of execution code to perform a dedicated task.
For most tasks, and particularly large ones, it is strongly recommended that
you use procedures to break your task into smaller, purpose-specific tasks.
This provides code structure which is easier to maintain and run. Often it
is appropriate to write procedures to obtain input data from users, databases
and files, to execute data consistency checks, to perform side computations, to
solve a mathematical program, and to create selected reports. Procedures can
be called both inside the model text and inside the graphical user interface.
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Procedures are added by inserting a special type of node in the model tree.
The attributes of a Procedure specify its arguments and execution code. All
possible attributes of a Procedure node are given in Table 10.1.

Attribute | Value-type See also
page

Arguments | argument-list

Property UndoSafe

Body Statements 102

Comment comment string

Table 10.1: Procedure attributes

The arguments of a procedure are given as a parenthesized, comma-separated
list of formal argument names. These argument names are only the formal
identifier names without reference to their index domains. AiMMs allows for-
mal arguments of the following types:

m simple sets and relations, and
m scalar and indexed parameters (either element-valued, string-valued or
numerical).

The type and dimension of every formal argument is not part of the argument
list, and must be specified as part of the argument’s (mandatory) local decla-
ration in a declaration subnode of the procedure.

When you add new formal arguments to a procedure in the AiMmmMS Model Ex-
plorer, AIMMS provides support to automatically add these arguments as local
identifiers to the procedure. For all formal arguments which have not yet been
declared as local identifiers, AiMMs will pop up a dialog box to let you choose
from all supported identifier types. After finishing the dialog box, all new ar-
guments will be added as (scalar) local identifiers of the indicated type. When
an argument is indexed, you still need to add the proper IndexDomain manually
in the attribute form of the argument declaration.

If the declaration of a formal argument of a procedure contains a numerical
range, AiIMMS will automatically perform a range check on the actual argu-
ments based on the specified range of the formal argument.

In the declaration of each argument you can specify its type by setting one of
the properties

m Input,
m Output,
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m InOut (default), or
m Optional.

AIMMS passes the values of any Input and InOut arguments when entering the
procedure, and passes back the values of Output and InOut arguments. For this
reason an actual Input argument can be any expression, but actual Output and
InOut arguments must be parameter references or set references.

An argument can be made optional by setting the property Optional in its
declaration. Optional arguments are always input, and must be scalar. When
an optional argument is not provided in a procedure call, AtMmMS will pass its
default value as specified in its declaration.

In the Body attribute you can specify the sequence of AIMMS execution state-
ments that you want to be executed when the procedure is run. All statements
in the body of a procedure are executed in their order of appearance.

The following example illustrates the declaration of a simple procedure in
AIMMS. The body of the procedure has only been outlined.

Procedure ComputeShortestDistance {
Arguments : (City, DistanceMatrix, Distance);
Comment : {
"This procedure computes the distance along the shortest path
from City to any other city j, given DistanceMatrix."

}
Body: {
Distance(j) := DistanceMatrix(City,]j);
for ( j | not Distance(j) ) do
Compute the shortest path and the corresponding distance
for cities j without a direct connection to City.
*/
endfor
}

}

The procedure ComputeShortestDistance has three formal arguments, which
must be declared in a declaration subnode of the procedure. Their declara-
tions within this subnode could be as follows.

ElementParameter City {
Range : Cities;
Property : Input;

}

Parameter DistanceMatrix {
IndexDomain : (i,3);
Property : Input;

}

Parameter Distance {
IndexDomain : j;
Property : Output;
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From these declarations (and not from the argument list itself) AIMMS can
deduce that

m the first actual (input) argument in a call to ComputeShortestDistance must
be an element of the (global) set Cities,

m the second (input) argument must be a two-dimensional parameter over
Cities x Cities, and

m the third (output) arguments must be a one-dimensional parameter over
Cities.

As in the example above, arguments of procedures can be indexed identifiers
declared over global sets. An advantage is that no local sets need to be defined.
A disadvantage is that the corresponding procedure is not generic. Procedures
with arguments declared over global sets are preferred when the procedure is
uniquely designed for the application at hand, and direct references to global
sets add to the overall understandability and maintainability.

The index domain or range of a procedure argument need not always be de-
fined in terms of global sets. Also sets that are declared locally within the
procedure can be used as index domain or range of that procedure. When a
procedure with such arguments is called, AiMmMs will examine the actual argu-
ments, and pass the global domain set to the local set identifier by reference.
This allows you to implement procedures performing generic functionality for
which a priori knowledge of the index domain or range of the arguments is not
relevant.

When you pass arguments defined over local sets, AIMMS does not allow you to
modify the contents of these local sets during the execution of the procedure.
Because such local sets are passed by reference, this will prevent you from
inadvertently modifying the contents of the global domain sets. When you do
want to modify the contents of the global domain sets, you should pass these
sets as explicit arguments as well.

Whenever your model contains one or more Quantity declarations (see Sec-
tion 32.2), AiMMS allows you to associate units of measurements with every
argument. Similarly as the index domains of multidimensional arguments can
be expressed either in terms of global sets, or in terms of local sets that are
determined at runtime, the units of measurements of function and procedure
arguments can also be expressed either in terms of globally defined units, or in
terms of local unit parameters that are determined runtime by AiMMs. The unit
analysis of procedure arguments is discussed in full detail in Section 32.4.1.
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Besides the arguments, you can also declare other local scalar or indexed iden-
tifiers in a declaration subnode of a procedure or function in AiMMS. Local
identifiers cannot have a definition, and their scope is limited to the procedure
or function itself.

For each local identifier of a procedure or function that is not a formal argu-
ment, you can specify the option RetainsValue. With it you can indicate that
such a local identifier must retain its last assigned value between successive
calls to that procedure or function. You can use this feature, for instance, to
retain local data that must be initialized once and can be used during every
subsequent call to the procedure, or to keep track of the number of calls to a
procedure.

In addition to AIMMS execution statements, you can include references to
(named) execution subnodes to the body of a procedure. AIMMS supports
several types of execution subnodes. They can either contain just execution
statements or provide a graphical input form for complicated statements like
the READ, WRITE and SOLVE statement. The contents of the execution subnodes
will be expanded by AiMMS into the body of the procedure at the position of
their references.

By partitioning the body of a long procedure into several execution subnodes,
you can effectively implement the procedure in a self-documenting top-down
approach. While the body can just contain the outermost structure of the pro-
cedure’s execution, the implementation details can be hidden behind subnode
references with meaningful names.

In some situations, you may want to return from a procedure or function be-
fore the end of its execution has been reached. You use the RETURN statement
for this purpose. It can be subject to a conditional WHEN clause similar to the
SKIP and BREAK statements in loops. The syntax follows.

return-statement :

{RETU RI\D—U return-value WHEN )+ logical-expression }]r~®4

Procedures in AIMMS can have an (integer) return value, which you can pass by
means of the RETURN statement. You can use the return value only in a limited
sense: you can assign it to a scalar parameter, or use it in a logical condition in,
for instance, an IF statement. You cannot use the return value in a compound
numerical expression. For more details, refer to Section 10.3.
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In the Property attribute of internal procedures you can specify a single prop-
erty, UndoSafe. With the UndoSafe property you can indicate that the procedure,
when called from a page within the graphical end-user interface of a model,
should leave the stack of end-user undo actions intact. Normally, procedure
calls made from within the end-user interface will clear the undo stack, be-
cause such calls usually make additional modifications to (global) data based
on end-user edits.

The following list summarizes the main characteristics of AiIMMS procedures.

m The arguments of a procedure can be sets, set elements and parameters.

m The arguments, together with their attributes, must be declared in a local
declaration subnode.

m The domain and range of indexed arguments can be in terms of either
global or local sets.

m Each argument is of type Input, Output, Optional or InOut (default).

m Optional arguments must be scalar, and you must specify a default value.
Optional arguments are always of type Input.

m AIMMS performs range checking on the actual arguments at runtime,
based on the specified range of the formal arguments.

10.2 Internal functions

The specification of a function is very similar to that of a procedure. The
following items provide a summary of their similarities.

m Arguments, together with their attributes, must be declared in a local
declaration subnode.

m The domain and range of indexed arguments can be in terms of either
global or local sets.

m The units of arguments can be expressed in terms of globally defined
units of measurement, or in locally defined unit parameters.

m Optional arguments must be scalar, and you must specify a default value.

m AIMMS performs range checking on the actual arguments at runtime.

m Both functions and procedures can have a RETURN statement.

There are also differences between a function and a procedure, as summarized
below:

m Functions return a result that can be used in numerical expressions. The
result can be either scalar-valued or indexed, and can have an associated
unit of measurement.

m Functions cannot have side effects either on global identifiers or on their
arguments, i.e. every function argument is of type Input by definition.
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AIMMS only allows the (possibly multi-dimensional) result of a function to be  Not allowed in
used in constraints if none of the function arguments are variables. Allow- constraints
ing function arguments to be variables, would require AIMMS to compute the

Jacobian of the function with respect to its variable arguments, which is not

a straightforward task. External functions in AiMMS do support variables as

arguments (see also Section 11.4).

The Cobb-Douglas (CD) function is a scalar-valued function that is often used  Example: the
in economical models. It has the following form: Cobb-Douglas
function

where

a is the quantity produced,
cy is the factor input f,
ay is the share parameter satisfying ay > 0 and >.ray = 1.

In its simplest form, the declaration of the Cobb-Douglas function could look
as follows.

Function CobbDouglas {
Arguments : (a,c);
Range 1 nonnegative;
Body H
CobbDouglas := prod[f, c(f) a(f)]
}
}

The arguments of the CobbDouglas function must be declared in a local decla-
ration subnode. The following declarations describe the arguments.

Set InputFactors {
Index : f

}

Parameter a {
IndexDomain : f;

}

Parameter c {
IndexDomain : f;

}

The attributes of functions are listed in Table 10.2. Most of them are the same  Function
as those of procedures. attributes

By providing an index domain to the function, you indicate that the result of = Returning the
the function is multidimensional. Inside the function you can use the function  result

name with its indices as if it were a locally defined parameter. The result of

the function must be assigned to this ‘parameter’. As a consequence, the body

of any function should contain at least one assignment to itself to be useful.



Chapter 10. Procedures and Functions

Attribute Value-type See also
page

Arguments argument-list

IndexDomain | index-domain 42

Range range 43

Unit unit-expression 45

Property RetainsValue

Body Statements 102

Comment comment string

Table 10.2: Function attributes

Note that the RETURN statement cannot have a return value in the context of a
function body.

Through the Range attribute you can specify in which numerical, set, element or
string range the function should assume its result. If the result of the function
is numeric and multidimensional, you can specify a range using multidimen-
sional parameters which depend on all or only a subset of the indices specified
in the IndexDomain of the function. This is similar as for parameters (see also
page 43). Upon return from the function, AiMMs will verify that the function
result lies within the specified range.

Through the Unit attribute of a function you can associate a unit with the func-
tion result. AiIMMS will use the unit specified here during the unit consistency
check of each assignment to the result parameter within the function body,
based on the units of the global identifiers and function arguments that are
referenced in the assigned expression. In addition, AiMMS will use the value of
the Unit attribute during unit consistency checks of all expressions that con-
tain calls to the function at hand. You can find general information on the use
of units in Chapter 32. Section 32.4.1 focusses on unit consistency checking
for functions and procedures.

The Range
attribute

The Unit
attribute

142



Chapter 10. Procedures and Functions

The procedure ComputeShortestDistance discussed in the previous section can
also be implemented as a function ShortestDistance, returning an indexed re-
sult. In this case, the declaration looks as follows.

Function ShortestDistance {

Arguments . (City, DistanceMatrix);
IndexDomain : j;

Range : nonnegative;

Comment : {

"This procedure computes the distance along the shortest path
from City to any other city j, given DistanceMatrix."

}
Body : {
ShortestDistance(j) := DistanceMatrix(City,j);
for ( j | not ShortestDistance(j) ) do
Compute the shortest path and the corresponding distance
for cities j without a direct connection to City.
*/
endfor
}

10.3 Calls to procedures and functions

Functions and procedures must be called from within AIMMS in accordance
with the prototype as specified in their declaration. For every call to a function
or procedure, AiMMs will verify not only the number of arguments, but also
whether the arguments and result are consistent with the specified domains
and ranges.

Consider the procedure ComputeShortestDistance defined in Section 10.1. Fur-
ther assume that DistanceMatrix and ShortestDistanceMatrix are two-dimen-
sional identifiers defined over Cities x Cities. Then the following assignment
illustrates a valid procedure call.

for (i) do
ComputeShortestDistance(i, DistanceMatrix, ShortestDistanceMatrix(i,.)) ;
endfor;

As you will see later on, the “.” notation used in the third argument is a short-
hand for the corresponding domain set. In this instance, the corresponding
domain set of ShortestDistanceMatrix(i,.) is the set Cities.

In analyzing the resulting domains of the arguments, AIMMS takes into account
the following considerations.

m Due to the surrounding FOR statement the index i is bound, so that the
first argument is indeed an element in the set Cities.
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m The second argument DistanceMatrix is provided without an explicit do-
main. AIMMS will interpret this as offering the complete two-dimensional
identifier DistanceMatrix. As expected, the argument is defined over
Cities x Cities.

m Because of the binding of index i, the third argument ShortestDistance-
Matrix(i,.) results into the (expected) one-dimensional slice over the set
Cities in which the result of the computation will be stored.

Thus, the domains of the actual arguments coincide with the domains of the

formal arguments, and AIMMS can correctly compute the result.

Now consider the function ShortestDistance defined in Section 10.1. The fol- Example
lowing statement is equivalent to the FOR statement of the previous example. function call

ShortestDistanceMatrix(i,j) := ShortestDistance(i, DistanceMatrix)(j) ;

In this example index binding takes place through the indexed assignment.
Per city i AiMMs will call the function ShortestDistance once, and assign the
one-dimensional result (indexed by j) to the one-dimensional slice Shortest-
DistanceMatrix(i,j).

The general forms of procedure and function calls are identical, except that a  Call syntax
function reference can have additional indexing.

procedure-call :

© m@@T

function-call -

tagged-argument element-expression

Each actual argument can be Actual

) arguments
m any type of scalar expression for scalar arguments, and

m areference to an identifier slice of the proper dimensions for non-scalar
arguments.

Actual arguments can be tagged with their formal argument name used inside
the declaration of the function or procedure. The syntax follows.
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tagged-argument : actual-argument :
e

identifier-slice

ll' actual-argument

identifier-slice :

’
' set-expression '

For scalar and set arguments that are of type Input you can enter any scalar or  Scalar and set
set expression, respectively. Scalar and set arguments that are of type InOut or  arguments
Output must contain a reference to a scalar parameter or set, or to a scalar slice

of an indexed parameter or set. The latter is necessary so that AIMMS knows

where to store the output value.

identifier-part

Note that AiMMs does not allow you to pass slices of an indexed set as a set  No slices of
arguments to functions and procedures. If you want to pass the contents indexed sets
of a slice of an indexed set as an argument to a procedure or function, you

should assign the contents to a simple (sub)set instead, and pass that set as

an argument.

For multidimensional actual arguments AiMMS only allows references to iden-  Multi-
tifiers or slices thereof. Such arguments can be indicated in two manners. dimensional

) o ] ] . arguments
m If you just enter the name of a multidimensional identifier, AiIMMS as-

sumes that you want to pass the fully dimensioned data block associated
with the identifier.
m If you enter an identifier name plus
- a“. ",
- a set element, or
- a set expression
at each position in the index domain of the identifier, Aimms will pass

the corresponding identifier slice or subdomain.

When passing slices or subdomains of a multidimensional identifier argument,  The “.” notation
you can use the “.” shorthand notation at a particular position in the in-
dex domain. With it you indicate that AiMmms should use the correspond-
ing domain set of the identifier at hand at that index position. Recall the
argument ShortestDistanceMatrix(i,.) in the call to the procedure Compute-
ShortestDistance discussed at the beginning of this section. As the index do-
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main of ShortestDistanceMatrix is the set Cities x Cities, the “.” reference
stands for a reference to the set Cities.

By specifying an explicit set element or an element expression at a certain in-
dex position of an actual argument, you will decrease the dimension of the
resulting slice by one. The call to the procedure ComputeShortestDistance dis-
cussed earlier in this section illustrates an example of an actual argument con-
taining a one-dimensional slice of a two-dimensional parameter.

Note that AIMMS requires that the dimensions of the formal and actual argu-
ments match exactly.

By specifying a subset expression at a particular index position of an indexed
argument, you indicate to AIMMS that the procedure or function should only
consider the argument as defined over this subdomain.

Consider the Cobb-Douglas function discussed in the previous section, and
assume the existence of a parameter a(f) and a parameter c(f), both defined
over a set Factors. Then the statement

Result := CobbDouglas(a,c) ;

will compute the result by taking the product of exponents over all factors
f. If SubFactors is a subset of Factors, satisfying the condition on the share
parameter a(f), then the following call will compute the result by only taking
the product over factors f in the subset SubFactors.

Result := CobbDouglas( a(SubFactors), c(SubFactors) );

Whenever a formal argument refers to an indexed identifier defined over global
sets, it could be that an actual argument in a function or procedure call refers
to an identifier defined over a superset of one or more of these global sets. In
this case, AIMMS will automatically restrict the domain of the actual argument
to the domain of the formal argument. Likewise, if an index set of an actual
argument is a real subset of the corresponding global index set of a formal
argument, the values of the formal argument, when referred to from within the
body of the procedure, will assume the default value of the formal argument
in the complement of the index (sub)set of actual argument.

Whenever a formal argument refers to an indexed identifier defined over local
sets, the domain of the actual argument can be further restricted to a sub-
domain as in the example above. In any case, the (sub)domain of the actual
argument determines the contents of the local set(s) used in the formal argu-
ments. Note that consistency in the specified domains of the actual arguments
is required when a local set is used in the index domain of several formal
arguments.

Slicing

Dimensions
must match

Subdomains

Example

Global
subdomains

Local
subdomains
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In order to improve the understandability of calls to procedures and functions
the actual arguments in a reference may be tagged with the formal argument
names used in the declaration. In a procedure reference, it is mandatory to tag
all optional arguments which do not occur in their natural order.

Tagged arguments may be inserted at any position in the argument list, be-
cause AIMMS can determine their actual position based on the tag. The non-
tagged arguments must keep their relative position, and will be intertwined
with the (permuted) tagged arguments to form the complete argument list.

The following permuted call to the procedure ComputeShortestDistance illus-
trates the use of tags.

for (i) do
ComputeShortestDistance( Distance : ShortestDistanceMatrix(i,.),
DistanceMatrix : DistanceMatrix,
City i),
endfor;

As indicated in Section 10.1 procedures in AIMMS can return with an integer
return value. Its use is limited to two situations.

m You can assign the return value of a procedure to a scalar parameter in
the calling procedure. However, a procedure call can never be part of a
numerical expression.

m You can use the return value in a logical condition in, for instance, an IF
statement to terminate the execution when a procedure returns with an
error condition.

You can use a procedure just as a single statement and ignore the return value,
or use the return value as described above. In the latter case, AimMS will first
execute the procedure, and subsequently use the return value as indicated.

Assume the existence of a procedure AskForUserInputs(Inputs,Outputs) which
presents a dialog box to the user, passes the results to the OQutputs argument,
and returns with a nonzero value when the user has pressed the OK button in
the dialog box. Then the following IF statement illustrates a valid use of the
return value.

if ( AskForUserInputs( Inputs, Outputs ) )
then

... /* Take appropriate action to process user inputs */
else

... /* Take actions to process invalid user input */
endif ;
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10.3.1 The APPLY operator

In many real-life applications the exact nature of a specific type of compu-
tation may heavily depend on particular characteristics of its input data. To
accommodate such data-driven computations, AiMMs offers the APPLY opera-
tor which can be used to dynamically select a procedure or function of a given
prototype to perform a particular computation. The following two examples
give you some feeling of the possible uses.

In event-based applications many different types of events may exist, each
of which may require an event-type specific sequence of actions to process
it. For instance, a ship arrival event should be treated differently from an
event representing a pipeline batch, or an event representing a batch feeding a
crude distiller unit. Ideally, such event-specific actions should be modeled as
a separate procedure for each event type.

A common action in the oil-processing industry is the blending of crudes
and intermediate products. During this process certain material properties
are monitored, and their computation for a blend require a property-specific
blending rule. For instance, the sulphur content of a mixture may blend lin-
early in weight, while for density the reciprocal density values blend linear
in weight. Ideally, each blending rule should be implemented as a separate
procedure or function.

With the APPLY operator you can dynamically select a procedure or function
to be called. The first argument of the APPLY operator must be the name of
the procedure or function that you want to call. If the called procedure or
function has arguments itself, these must be added as the second and further
arguments to the APPLY operator. In case of an indexed-valued function, you
can add indexing to the APPLY operator as if it were a function call.

In order to allow AiMMS to perform the necessary dynamic type checking for
the APPLY operator, certain requirements must be met:

m the first argument of the APPLY operator must be a reference to a string
parameter or to an element parameter into the set Al1Identifiers,

m this element parameter must have a Default value, which is the name of
an existing procedure or function in your model, and

m all other values that this string or element parameter assumes must be
existing procedures or functions with the same prototype as its Default
value.
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Consider a set of Events with an index e and an element parameter named
CurrentEvent. Assume that each event e has been assigned an event type from
a set EventTypes, and that an event handler is defined for each event type. It
is further assumed that the event handler of a particular event type takes the
appropriate actions for that type. The following declarations illustrates this
set up.

ElementParameter EventType {

IndexDomain D e;
Range 1 EventTypes;
}
ElementParameter EventHandler {
IndexDomain : et in EventTypes;
Range 1 AllIdentifiers;
Default : NoEventHandlerSelected;
InitialData  {

DATA { ShipArrivalEvent : DischargeShip,
PipelineEvent : PumpoverPipelineBatch,
CrudeDistillerEvent : CrudeDistillerBatch }

}
}

The Default value of the parameter EventHandler(et), as well as all of the val-
ues assigned in the InitialData attribute, must be valid procedure names in
the model, each having the same prototype. In this example, it is assumed that
the procedures NoEventHandlerSelected, DischargeShip, PumpoverPipelineBatch,
and CrudeDistillerBatch all have two arguments, the first being an element of
a set Events, and the second being the time at which the event has to com-
mence. Then the following call to the APPLY statement implements the call to
an event type specific event handler for a particular event CurrentEvent at time
NewEventTime.

Apply( EventHandler(EventType(CurrentEvent)), CurrentEvent, NewEventTime );

When no event handler for a particular event type has been provided, the de-
fault procedure NoEventHandlerSelected is run which can abort with an appro-
priate error message.

When applied to functions, you can also use the APPLY operator inside con-
straints. This allows you, for instance, to provide a generic constraint where
the individual terms depend on the value of set elements in the domain of the
constraint. Note, that such use of the APPLY operator will only work in con-
junction with external functions, which allow the use of variable arguments
(see Section 11.4).

Consider a set of Products with index p, and a set of monitored Properties with
index g. With each property g a blend rule function can be associated such
that the resulting values blend linear in weight. These property-dependent
functions can be expressed by the element parameter BlendRule(q) given by
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ElementParameter BlendRule {

IndexDomain L q;
Range : AllIdentifiers;
Default : BlendLinear;
InitialData  {
DATA { Sulphur : BlendLinear,
Density : BlendReciprocal,

Viscosity : BlendViscosity }
}

Thus, the computation of the property values of a product blend can be ex-
pressed by the following single constraint, which takes into account the differ-
ing blend rules for all properties.

Constraint ComputeBlendProperty {
IndexDomain L q;
Definition  {
Sum[p, ProductAmount(p) * Apply(BlendRule(q), ProductProperty(p,q))] =
Sum[p, ProductAmount(p)] * Apply(BlendRule(q), BlendProperty(q))

}

Depending on the precise computation in the blend rules functions for every
property g, the APPLY operator may result in linear or nonlinear terms being
added to the constraint.
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External Procedures and Functions

Even though AMMS offers easy-to-use multidimensional data structures com-
bined with a powerful programming language, there are often good reasons to
relay parts of the execution of your model to external procedures and func-
tions written in e.g. C/C++ or FORTRAN. The capability to call external proce-
dures and functions in your AiMMS application allows you

m to re-use existing software (e.g. a library of financial functions, or a col-
lection of accurate, nonlinear process models),

m to speed up selected computations by making use of dedicated data
structures which are difficult to implement in AiMMSs itself, and

m to provide links to external data sources (e.g. on-line data feeds or pro-
prietary databases).

This chapter describes the steps you have to follow for linking libraries of
external procedures and functions to AiMMS. Such procedures and functions
can be used to manipulate AiMMS data during the execution of a model. In
addition, external libraries may contain functions that can be used inside the
constraints of a nonlinear mathematical program.

11.1 Introduction

The aim of this section is to give you a quick feel for the effort required to
make a link to an external function or procedure through a short illustrative
example linking a C implementation of the Cobb-Douglas function (discussed
in Section 10.2) into an AIMMS application. Section 34.1 contains a more elab-
orate example of an external procedure which uses AiMmMs API functions to
obtain additional information about the passed arguments.

The interface to external procedures and functions is arranged through special
ExternalProcedure and ExternalFunction declarations which behave just like in-
ternal procedures and functions. Instead of specifying a body to initiate inter-
nal AIMMS computations, the execution of external procedures and functions
is relayed to the indicated procedures and functions inside one or more DLL'’s.
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Getting started
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functions
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Consider the Cobb-Douglas function discussed in Section 10.2. Given the cardi-
nality n of the set InputFactors and two arrays a and ¢ of doubles representing
the one-dimensional input arguments of the Cobb-Douglas function (both de-
fined over InputFactors), the following simple C function computes its value.
double Cobb_Douglas( int n, double *a, double *c ) {

int i;

double CD = 1.0 ;

for (1 =0; 1 <nj i++)
D = D * pow(c[il,al[i]) ;

return CD;

}

In the sequel it is assumed that this function is contained in a DLL named
"Userfunc.d11".

In order to make the function available in AiIMMS you have to declare an
ExternalFunction CobbDouglasExternal, which just relays its execution to the
C implementation of the Cobb-Douglas function discussed above. The decla-
ration of CobbDouglasExternal looks as follows.

ExternalFunction CobbDouglasExternal {

Arguments : (a,0);

Range : nonnegative;

DLLName . "Userfunc.d11";

ReturnType : double;

BodyCall : Cobb_Douglas( card : InputFactors, array: a, array: C );

}

The arguments a and c must be declared in the same way as for the internal
CobbDouglas function discussed on page 141, with the exception that for the
external implementation we will also compute the Jacobian with respect to the
argument c(f). For this reason, the argument c(f) is declared as a Variable.
Set InputFactors {

Index : f
}
Parameter a {
IndexDomain : f;
}
Variable c {
IndexDomain : f;

}

The translation type “card” of the set argument InputFactors causes AIMMS
to pass the cardinality of the set as an integer value to the external function
Cobb_Douglas. The translation type “array” of the arguments a and c are in-
structions to AIMMS to pass these arguments as full arrays of double precision
values. As function arguments are always of type Input, AiIMMS will disregard
any changes made to the arguments by the external function. The double re-
turn value of the C function Cobb_Douglas will become the result of the function
CobbDouglasExternal.
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After the declaration of an external function or procedure you can use it as
if it were an internal function or procedure. Thus, to call the external func-
tion CobbDouglasExternal in the body of a procedure the following statement
suffices.

CobbDouglasValue := CobbDouglasExternal(a,c) ;

Of course, any two (possibly sliced) identifiers with single common index do-
main could have been used as arguments. AIMMS will determine this common
index domain, and pass its cardinality to the external function.

Unlike internal functions, external functions can be called inside constraints.
To accomplish this, the declaration has to be extended with a DerivativeCall
attribute. For this attribute you specify the external call that has to be made
when AIMMS also needs the partial derivatives of all variable arguments inside
constraints of mathematical programs. In the absence of a DerivativeCall at-
tribute, AiMMs will use a differencing scheme to estimate these derivatives.
The details of using external functions in constraints, as well as the obvious
extension to compute the derivative of the Cobb-Douglas function directly, are
given in Section 11.4.

Once you have developed a collection of external functions and procedures,
it may be a good idea to make this available in the form of a library for use
in AiMMS applications. In this way, the users of your library do not have to
spend any time translating their AIMMS arguments into external arguments of
the appropriate type in the external procedure and function declarations.

To provide a library as an entity on its own, you can store all the external
procedures and functions in a separate model section, and save this section as
a source file. The functions and procedures in the library can then be made
available by simply including this source file into a model.

When you want to protect the interface to your external library, you can ac-
complish this by encrypting the include file containing the function library
(see also the AimmMs User’s Guide). Thus, the interface to the external library
becomes invisible, effectively preventing misuse of the library outside AiMMsS.

11.2 Declaration of external procedures and functions

External procedures and functions are special types of nodes in the model
tree. They have the same attributes as internal procedures and functions with
the exception of the Body and Derivative attributes, which are replaced by the
attributes in Table 11.1.
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Attribute Value-type See also
page

D11Name string, file-identifier

ReturnType integer, double

Property FortranConventions, UndoSafe 140

BodyCall external-call

DerivativeCall | external-call

Table 11.1: Additional attributes of external procedures and functions

With the mandatory D11Name attribute you can specify the name of the DLL
which contains the external procedure or function to which you want to make
a link in your AiMMs application. The value of the attribute must be a string,
a string parameter, or a File identifier, representing the path to the external
DLL.

If you only specify a DLL name, AiMMS will search for the DLL in all directories
in the AIMMSUSERDLL environment variable, and the PATH environment variable on
Windows, or the LD_LIBRARY_PATH environment variables on Linux, respectively.
In addition, on Windows, AiMMs will also search for the DLL in the project
folder. If you specify a relative path including a folder (possibly ./), AiMmMms will
take this path relative to the project folder. If you specify an absolute path,
A1MMS will try to open the DLL at the specified location.

When you use a File identifier to specify an external DLL name, AIMMS will use
the Convention attribute of that File identifier (if specified) to pass numeric
values to any procedure or function in that DLL according to the specified unit
convention (see also Section 32.8). When the DLL name has not been specified
through a File identifier, or when its Convention attribute is left empty, AIMMS
will use the unit convention specified for the main model.

Without any such convention, AiMMS will use the default convention, i.e. ar-
guments will be scaled according to the unit specified for each argument, and
AmMMS will assume that the result of an external function is scaled accord-
ing to the unit specified in its Unit attribute. Unit analysis for functions and
procedures is discussed in full detail in Section 32.4.1.

The ReturnType indicates the type of any scalar numerical value returned by
the DLL function. The possible values are integer and double. AiMMS will
use the value returned by the DLL function either as the return value of the
ExternalProcedure, or as the (numerical) function value of the ExternalFunction,
whichever is applicable. If you do not specify the ReturnType attribute, AIMMS
will discard any value returned by the function.
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You cannot directly use the returned value of a DLL function as the function
value of an ExternalFunction when its return value is either an indexed param-
eter, a set, a set element or a string. In such cases you must pass the function
name as an additional external argument to the DLL function, and specify how
the function value must be dealt with.

Consider a C function Cobb_Douglas_Arg with prototype

void Cobb_Douglas_Arg( int n, double *a, double *c, double *CDValue );

which passes the Cobb-Douglas function value through the argument CDValue
instead of as the return value. In this example CDValue is a scalar, which could
have been passed as the result of the DLL function as well. The following
ExternalFunction declaration provides a link with Cobb_Douglas_Arg and obtains
its function value via the argument list.

ExternalFunction CobbDouglasArgument {

Arguments : (a,0);

Range : nonnegative;
D11Name : "Userfunc.d11";
BodyCall : {

Cobb_Douglas_Arg( card : InputFactors, array: a, array: c,
scalar: CobbDouglasArgument );

With the Property attribute you can specify through the FortranConventions
property whether the external function is based on FORTRAN calling conven-
tions. By default, AimMs will assume that the DLL function is written in a C-
like languages such as C, C++ or PASCAL. The precise differences between both
calling conventions are explained in full detail in Section 11.5. In addition, for
external procedures, you can specify the UndoSafe property. The semantics of
the UndoSafe property is discussed in Section 10.1.

As with internal procedures and functions, all formal arguments of an external
procedure or function must be declared as local identifiers. AIMMS supports
the following identifier types for formal arguments of external procedures and
functions:

m simple sets and relations,

m scalar and indexed Parameters,

m scalar and indexed Variables (external functions only), and
m Handles (external procedures only).
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Many details regarding the handling of arguments of internal procedures and
functions also apply to external procedures and functions. Thus, arguments
of external procedures and functions can be defined over global and local sets,
and their associated units of measurement can be specified in terms of either
global units or locally defined unit parameters, completely similar to internal
procedures and functions (see Section 10.1).

The Handle identifier type is only supported for formal arguments of external
procedures, i.e. it is not possible to declare global identifiers of type Handle.
The following rules apply:

m Handle arguments are always declared as scalar local identifiers,

m Handle arguments can only be passed to the DLL function as an integer
Handle (see below), and

m the actual argument in a call to the external procedure corresponding to
a formal Handle argument can be a (sliced) reference to an identifier in
your model of any type and of any dimension.

Handle arguments allow you to completely circumvent any type checking on
actual arguments with respect to the dimension and the respective index do-
mains of the corresponding formal arguments in the call to an external proce-
dure. As a result of this, however, the actual data transfer of Handle arguments
to the DLL function must completely take place via the AiMmmMs API (see also
Chapter 34).

In the mandatory BodyCal1 attribute you must specify the call to the DLL proce-
dure or function, to which the execution of the ExternalProcedure or Function
must be relayed. Such an external call specifies:

m the name of the DLL function or procedure that must be called, and
m how the actual AiMMS arguments must be translated into arguments suit-
able for the DLL function or procedure.

Any external call must be specified according to the syntax below. In the Model
Explorer, you can specify all components of the BodyCall attribute using a wiz-
ard which will guide you through most of the necessary detail.

external-call :

DLL-function external-argument
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external-argument :

translation-type

external-data-type

actual-external-argument }—»

translation-modifier

The mandatory translation type indicates the type of the external argument
into which the actual argument must be translated before being passed to the
external procedure. The following translation types are supported.

scalar: the actual scalar AIMMS argument is passed on as a scalar of the
indicated external data type.

Titeral: the literal specified in the external call is passed on as a scalar
of the indicated external data type, i.e. a Titeral argument does never
correspond to an actual AIMMS argument, but is specified directly in the
BodyCall attribute.

array: the AiIMMS argument is passed on as an array of values according
to the indicated translation type and external data type. The precise
manner in which the translation takes place is discussed below.

card: the cardinality of a set argument is passed on as an integer value.
The set argument can be either a set passed as an actual AIMMS argument
or the domain set of a multi-dimensional parameter passed as an actual
argument.

handle: an integer handle to a (sliced) set or parameter argument is
passed on. Within the external procedure you must use functions from
the AtMMS API (see also Chapter 34) to obtain the dimension, domain
and range associated with the handle, or to retrieve or change its data
values.

work: an array of the indicated type is passed as a temporary workspace
to the external procedure. The actual argument must be an integer ex-
pression and is interpreted as the size of the array to be passed on. This
translation type is useful for programmers of languages such as standard
F77 FORTRAN which lack facilities for dynamic memory allocation.

The actual external argument specified in an external argument of the BodyCall
attribute can be

a reference to a formal argument of the ExternalProcedure at hand (for
the scalar, array, card, handle and work translation types),

a reference to a domain set of a formal multi-dimensional argument of
the ExternalProcedure at hand (for the card translation type), or

an integer, double or string literal (such as 12345, 123.45 or "This is a
string") directly specified within the BodyCall attribute (for the Titeral
translation type).
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For every formal argument of an ExternalProcedure, you can specify its associ-
ated input-output type through the Input, InOut (default) or Output properties
in the Propert attribute of the local argument declaration. With it, you indicate
whether or not AiMmMs should consider any changes made to the argument by
the DLL function. For each input-output type, AiIMMs performs the following
actions:

m Input: AIMMS initializes the external argument, but discards all changes
made to it by the DLL function,

m InQut: AIMMS initializes the external argument, and passes back to the
model the values returned by the DLL function, or

m Output: AiMMS allocates memory for the external argument, but does not
initialize it; the values returned by the DLL function are passed back to
the model.

As with internal functions, all ExternalFunction arguments are Input by defi-
nition. The return value of an ExternalProcedure and the function value of an
ExternalFunction are considered as an (implicit) Qutput argument when passed
to the DLL function as an external argument.

In translating AIMMS arguments into values (or arrays of values) suitable as
arguments for an external procedure or function, AIMMS supports the external
data types listed in Table 11.2.

External data type | Passed as

integer 4-byte (signed) integer

double 8-byte double precision floating number
string C-style string

integer8 1-byte (signed) integer

integerl6 2-byte (signed) integer

integer32 4-byte (signed) integer

Table 11.2: External data types

Not all combinations of input-output types, translation types and external data
types are supported (or even useful). Table 11.3 describes all allowed combina-
tions, as well as the resulting argument type that is passed on to the external
procedure. The external data types printed in bold are the default, and can
be omitted if appropriate. Throughout the table, the data type integer can be
replaced by any of the other integer types integer8, integerl6 or integer32.
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Allowed types
translation | input- | data AIMMS argument Passed as
output
scalar input |integer |scalar expression integer
double double
string string
inout |integer |scalar reference integer pointer
output |double double pointer
string string
literal — integer | — integer
double double
string string
card — — set, parameter integer
array input |integer | parameter integer array
inout |double double array
output
integer | element parameter integer array
string |set string array
string | string/unit parameter |string array
handle input |— set, parameter, handle |integer
inout
output
work — integer | integer expression integer array
double double array

Table 11.3: Allowed combinations of translation, input-output and data types

When you are passing a multidimensional AiMmMs identifier to an external pro-
cedure or function as a array argument, AIMMS passes a one-dimensional
buffer in which all values are stored in a manner that is compatible with the
storage of multidimensional arrays in the language which you have specified
through the Property attribute. The precise array numbering conventions for
both C-like and FORTRAN arrays are explained in Section 11.5.

The strings communicated with your DLL have an encoding. This encoding is
set by the option external_string_character_encoding, which has a default of
UTF8. This option can be overridden by using the Encoding attribute of string
parameters, similar to the Encoding attribute of a File, see Page 497. On Win-
dows, using the encoding UTF-16LE and on Linux, using the encoding UTF-32LE,
the strings are passed as a wchar_t* array, otherwise the strings are passed as
a char * array.

When you pass a scalar or multidimensional output string argument, AIMMS
will pass a single char buffer of fixed length, or an array of such buffers. The
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length is determined by the option external function string buf size. The
default of this option is 2048. You must use the C function strcpy or a similar
function to copy the string data in your DLL to the appropriate char buffer
associated with the output string argument.

When considering your options on how to pass a high-dimensional parameter
to an external procedure, you will find that passing it as an array is often not
the best solution. Not only will the memory requirements grow rapidly for
increasing dimension, but also running over all elements in the array inside
your DLL function may turn out to be a very time-consuming process. In such
a case, it is much better practice to pass the argument as an integer handle,
and use the AiMmMSs API functions discussed in Section 34.4 to retrieve only the
nondefault values associated with the handle. You can then set up your own
sparse data structures to deal with high-dimensional parameters efficiently.

In addition to the translation types, input-output types and external data types
you can specify one or more translation modifiers for each external argument.
Translation modifiers allow you to slightly modify the manner in which AimMMs
will pass the arguments to the DLL function. AIMMS supports translation mod-
ifiers for specifying the precise manner in which

m special values,
m the data associated with handles, and
m set elements,

are passed.

When a parameter or variable that you want to pass to an external DLL contains
special values like ZERO or INF, AiMmMs will, by default, pass ZERO as 0.0, INF
and -INF as +1.0e150, and will not pass any of the values NA and UNDF. When
you specify the translation modifier retainspecials, AIMMs will pass all special
numbers by their internal representation as a double precision floating point
number. You can use the AiMMs API functions discussed in Section 34.4 to
obtain the MapVal value (see also Table 6.1) associated with each number. The
translation modifier retainspecials can be specified for numeric arguments
that are passed either as a full array or as an integer handle.

When passing a multidimensional identifier handle to an external DLL, AIMMS
can provide several methods of access to the data associated with the handle
by specifying one of the following translation modifiers:

m ordered: the data retrieval functions will pass the data values according
to the particular ordering imposed any of the domain sets of the iden-
tifier associated with the handle. By default, AiMMs will use the natural
ordering determined by the data entry order of all domain sets.
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m raw: the data retrieval functions will also pass inactive data (see also
Section 25.3). By default, AimMs will not pass inactive data.

The details of ordered versus unordered and raw data transfer are discussed
in full detail in Section 34.4.

AIMMS can pass set elements (in the context of element parameters and sets)
to external procedures in various manners. More specifically, set elements can
be translated into:

m an integer external data type, or
m a string external data type.

When the external data type is string, AiMMs will pass the element name for
each set element. Transfer of element names is always input only. In general,
when the external data type is integer, AIMMS can pass either

m the ordinal number with respect to its associated subset domain (ordi-
nalnumber modifier), or

m the element number with respect to its associated root set (elementnumber
modifier).

Alternatively, when set elements are passed in the context of a set you can
specify the indicator modifier in combination with the integer external data
type. This will result in the transfer of a multidimensional binary parameter
which indicates whether a particular tuple is or is not contained in the set.

When you pass an element parameter as an integer scalar or array argument,
AMMS will assume the ordinalnumber modifier by default. When passed as
integer, element parameters can be input, output or inout arguments. When
element parameters are passed as string arguments, they can be input only.

Element numbers and ordinal numbers each can have their use within an DLL
function. Element numbers remain identical throughout a modeling session
using a single data set, regardless of addition and deletion of set elements, or
any change in set ordering. For this reason, it is best to use element numbers
when the set elements need to be used in multiple calls of the DLL function.
Ordinal numbers, on the other hand, are the most convenient means for pass-
ing permutations that are used within the current external call only. With it,
you can directly access a permuted reference in other array arguments.

Sets can be passed as array arguments to an external DLL function. When pass-
ing set arguments, you have to make a distinction between one-dimensional
root sets, one-dimensional subsets (both either simple or relation), and multi-
dimensional subsets and indexed sets. The following rules apply.
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One-dimensional root sets and subsets can be passed as a one-dimensional
array of length equal to the cardinality of the set. To accomplish this, you can
must pass such a set as

m an array of integer numbers, representing either the ordinal or element
numbers of each element in the set (using the ordinalnumber or element-
number modifier), or

m a string array, representing the names of all elements in the set.

One-dimensional set arguments passed in this manner can only be input argu-
ments. As a specific consequence, you cannot modify the contents of root sets
passed as array arguments.

You can pass any subset (whether it is simple, relation or indexed) as a mul-
tidimensional integer indicator array defined over its respective domain sets,
indicating whether a particular tuple of domain set elements is contained in
the subset (value equals 1) or not (value equals 0). The dimension of such
indicator parameters is given by the following set of rules:

m the dimension for a simple subsetis 1,

m the dimension for a multidimensional relation is the dimension of the
Cartesian product of which the set is a subset,

m the dimension of an indexed set is the dimension of the index domain of
the set plus 1.

Set arguments passed as an indicator argument can be of input, output, or in-
out type. In the latter two cases modifications to the 0-1 values of the indicator
parameter are translated back into the corresponding element memberships of
the subset.

When you pass set arguments to an external DLL, AIMMS will assume no default
translation methods when the set is passed as an integer array, as each type
of set does not allow every translation method. For integer set arguments you
should therefore always specify one of the translation modifiers ordinalnumber,
elementnumber or indicator.

Sets can also be passed by an integer handle. AimMMs offers various API func-
tions (see also Section 34.2) to obtain information about the domain of the set,
its cardinality and elements, and to add or remove elements to the set.

11.3 WiN32 calling conventions

The 32-bit Windows environment (WIN32) supports several calling conventions
that influence the precise manner in which arguments are passed to a function,
and how the return value must be retrieved. When calling an external function
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or procedure in this environment, AiMMs will always assume the WINAPI call-
ing convention. The following macro in C makes sure that the WINAPI calling
convention is used. That same macro also makes sure that the function or
procedure is automatically exported from the DLL.

#include <windows.h>
#define DLL_EXPORT(type) __declspec(dllexport) type WINAPI

You can add this macro to the implementation of any function that you want
to call from within A1MMS, as illustrated below.

DLL_EXPORT (double) Cobb_Douglas( int n, double *a, double *c )
{

/* Implementation of Cobb_Douglas goes here */

}

By default, C++ compilers will perform a process referred to as name man-
gling, modifying each function name in your source code according to its pro-
totype. By doing this, C++ is able to deal with the same function name defined
for different argument types. If you want to export a DLL function to AIMMS,
however, you must prevent name mangling to take place, ensuring that AIMMS
can find the exported function name within the DLL. You can do this by declar-
ing the prototype of the function using the following macro, which accounts
for both C and C++.

#ifdef __cplusplus

#define DLL_EXPORT_PROTO(type) extern "C" __declspec(dllexport) type WINAPI
#else

#define DLL_EXPORT_PROTO(type) extern __declspec(dllexport) type WINAPI
#endif

Thus, to make sure that a C++ implementation of Cobb_Douglas is exported
without name mangling, declare its prototype as follows before providing the
function implementation.

DLL_EXPORT_PROTO(double) Cobb_Douglas( int n, double *a, double *c );

Function declarations like this are usually stored in a separate header file. Note
that along with this prototype declaration, you must still use the DLL_EXPORT
macro in the implementation of Cobb_Douglas.

When your external DLL requires initialization statements to be executed when
the DLL is loaded, or requires the execution of some cleanup statements when
the DLL is closed, you can accomplish this by adding a function D11Main to your
DLL. When the linker finds a function named D11Main in your DLL, it will exe-
cute this function when opening and closing the DLL. The following example
provides a skeleton D11Main implementation which you can directly copy into
your DLL source code.

163

Prevent C++
name mangling

DLL
initialization



Chapter 11. External Procedures and Functions

#include <windows.h>

BOOL WINAPI D11Main(HINSTANCE hd11, DWORD reason, LPVOID reserved)
{
switch( reason ) {
case DLL_THREAD_ATTACH:
break;
case DLL_PROCESS_ATTACH:
/* Your DLL initialization code goes here */
break;
case DLL_THREAD_DETACH:
break;
case DLL_PROCESS_DETACH:
/* Your DLL exit code goes here */
break;
}
return 1; /* Return 0 in case of an error */

}

To prevent name mangling to take place, you can best declare the function
D11Main as follows.

#ifdef __cplusplus

extern "C" BOOL WINAPI D11Main(HINSTANCE hd11, DWORD reason, LPVOID reserved);
#else

BOOL WINAPI D11Main(HINSTANCE hd11, DWORD reason, LPVOID reserved);

#endif

11.4 External functions in constraints

AimmMS allows you to use external functions in the constraints of a mathe-
matical program. To accommodate this, AIMMS makes a distinction between
function arguments of type Parameter and arguments of type Variable. When
a function is executed as part of an expression in an ordinary assignment,
AIMMS makes no distinction between both types of arguments. In the context
of a mathematical program, however, AiMMs will provide the solver with the
derivative information for all variable arguments of the function, while it will
not do so for parameter arguments. The actual computation of the derivatives
is explained in the next section.

11.4.1 Derivative computation

Whenever you use external functions with variable arguments in constraints
of a mathematical program, the following rules apply.

m AIMMS requires that the mathematical program dependent on these con-
straints be declared as nonlinear.

m All the actual variable arguments must correspond to formal arguments
which have been locally declared as Variables.

If you fail to comply with these rules, a compiler error will result.

Variable
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During the solution process of a mathematical program containing such func-
tions, partial derivative information of the function with respect to all the vari-
able arguments must be passed to the solver. AIMMS supports three methods
to compute the derivatives of a function:

m you provide the actual statements for computing the derivatives as a part
of the function declaration,
m AIMMS estimates the derivatives using a simple differencing scheme.

In the DerivativeCall attribute of an external function you can specify the call
to the DLL procedure or function, to which the derivative computation must be
relayed. The syntax of the DerivativeCall attribute is the same as that of the
BodyCall, and is most conveniently completed using the wizard in the Model
Explorer.

If the nonlinear solver only needs a function value, AIMMs will simply call the
function specified in the BodyCall attribute. If the nonlinear solver requests
derivative information as well, AiMmMs will only call the function specified in the
DerivativeCall attribute, and require that this function compute the function
value as well. By combining these two computations in a single call, AiMMS
allows you to take advantage of any possible optimization that can be obtained
in your code from computing the function value and derivative at the same
time.

For every function argument which is a variable, you must assign the partial
derivative value(s) to the .Derivative suffix of that variable. Note that this
will have an impact on the number of indices. If the result of a block-valued
function is m-dimensional, the derivative information with respect to an n-
dimensional variable argument will result in an (m + n)-dimensional identifier
holding the derivative.

Consider a function f with an index domain (i1,...,i;) and a variable argu-
ment x with index domain (j1,..., jn). Then the matrix with partial derivatives
of f with respect to the argument x must be provided as assignments to the
suffix x.Derivative(ii,...,im, ji,---,Jn). Each element of this identifier rep-
resents the partial derivative

of(it,...,im)
OX(Ju,---5Jn)

Consider the Cobb-Douglas function discussed above. Although AIMMS is ca-
pable of computing its partial derivatives automatically, you may verify that
the derivative with respect to argument c; can also be written more compactly

as follows:

04 _Gicp,,..

, Ck)
Jci ¢
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Consider the following C function Cobb_Douglas_Der which computes the Cobb-  Implementation
Douglas function and, if required, also the partial derivatives with respect to inC

the input argument c. The function Cobb_Douglas_No_Der is added to support

computation of the Cobb-Douglas function without derivatives.

double Cobb_Douglas_Der( int n, double *a, double *c, double *c_der ) {
int i;
double (D = 1.0 ;
for (i =0;1 <n; i++)
(D = * pow(c[il,ali]) ;

/* Check if derivatives are needed */
if ( c_der )
for (i=0;1<n; i++)
c_der[i] = D * a[i] / c[i] ;

return CD;

}

double Cobb_Douglas_No_Der( int n, double *a, double *c ) {
return Cobb_Douglas_Der( n, a, c, NULL );
}

Note that in the above example the derivative computation is skipped when-  Always skip
ever the pointer c_der is null. You should always check for this condition unwanted
when implementing a derivative computation, because AiMMS will pass a null  derivatives
pointer (and hence reserve no memory for storing the derivative) whenever the
corresponding actual argument is not a variable but a parameter.

When an internal function makes a call to a FORTRAN procedure to compute ...in FORTRAN
derivative values, then it is not so easy to discover the presence of null pointer  code
argument. To overcome this, you can call your FORTRAN procedure from

within a wrapper function written in C, and provide your FORTRAN code with

the information whether or not derivatives need to be computed for a particu-

lar variable argument via an additional argument to your FORTRAN routine.

To pass the partial derivatives computed in the external procedure back to  Passing
AIMMS, the argument list of the external procedure called in the Derivative at-  derivative
tribute of the internal function should contain arguments for the .Derivative arguments
suffices of all variable arguments. AiMMs will implicitly consider such deriva-

tive arguments as Output arguments. They can be passed either as a full array

or as an integer handle. In the latter case AIMMS API functions have to be used

to pass back the relevant partial derivatives (see also Chapter 34).
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The following external function declaration provides an interface to the above
Cobb-Douglas function with derivative computations, which is ready to be
used both inside and outside the context of constraints.

ExternalFunction CobbDouglasPlusDerivative {

Arguments : (a,0);

Range 1 nonnegative;

DLLName : "Userfunc.d11";

ReturnValue : double;

BodyCall : Cobb_Douglas_No_Der( card : InputFactors, array: a, array: C );

DerivativeCall : {
Cobb_Douglas_Der( card : InputFactors, array: a,
array: c, array: c.Derivative );

When the DerivativeCall attribute to compute the derivatives of an external
function has not been specified, AiMMs employs a simple differencing scheme
to estimate the derivatives. For example, if AIMMS requires the derivative of
a function f(xi,x2,...,Xxx) at the point (X1, X2,...,Xx), then AiMMS will ap-
proximate each partial derivative as follows:

- Nf()_Cl,...,)_Ci-i-E,...,)_(k)—f()_Cl,...,)_Ck)

0 ..o .
a_xif(xl,XZ,...,Xk)N :

where ¢ is the current value of the global option Differencing_Delta.

While the numerical differencing scheme does not require any action from the
user, there are two distinct disadvantages.

m First of all, numerical differencing is not always a stable process, and the
results may not be accurate enough. As a result, a nonlinear solver may
have trouble converging to a solution.

m Secondly, the process can be computationally very expensive.

In general, it is recommended that you do not rely on numerical differencing.
This is especially the case when the function body is quite extensive, or when
the function, at the individual level, has a lot of variable arguments or contains
conditional loops.

11.5 C versus FORTRAN conventions

For any external procedure or function you can specify whether the DLL pro-
cedure or function to which the execution is relayed, is written in C-like lan-
guages (such as C and C++) or FORTRAN (see also Section 11.2). For FORTRAN
code AiMMS will make sure that

m scalar values are always passed by reference (i.e. as a pointer), and
» multidimensional arrays are ordered in a FORTRAN-compatible manner.
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By default, AimmMs will use C conventions when passing arguments to the DLL
procedure or function.

AmmuMms will not directly translate strings into FORTRAN format, because most  Strings excluded
FORTRAN compilers use their own particular string representation. Thus, if

you want to pass strings to a fortran subroutine, you should write your own

C interface which converts C strings into the format appropriate for your FOR-

TRAN compiler.

When a multidimensional parameter (or parameter slice) is specified as a array  Array
argument to an external procedure, AIMMS passes an array of the specified dimensions and
type which is constructed as follows. If the actual argument has n remaining ordering

(i.e. non-sliced) dimensions of cardinality Ny,..., N,, respectively, then the as-

sociated values are passed as a (one-dimensional) array of length Ny - - - Nj,.

The value associated with the tuple (iy,...,1,) is mapped onto the element

in +'PJn(in—l +']Vn—l(" '(i2 +-P02i1)- "))

for running indices i; = 0,...,N; — 1 (C-style programming). For PAsCAL-like
languages (with indices running from 1,..., N) all running indices in this for-
mula must be decreased by 1, and the final result increased by 1. This ordering
is compatible with the C declaration of e.g. the multidimensional array

double arr[N1][N2]1...[Nnl;

The C function ComputeAverage defined below computes the average of a 2-  Multidimen-
dimensional parameter a(i,j) passed as an argument in AIMMS. sional example
inC
DLL_EXPORT(void) ComputeAverage( double *a, int card_i, int card_j, double *average )
{int 1, J;
double sum_a = 0.0;
#define _A(i,7) a[j + i*¥card_j]
for (i =0; i <card_i; i++ )
for ( j =0; j <card_j; j++ )
sum_a += __A(i,j);

*average = sum_a / (card_i*card_j);

}

Within your AiMMS model, you can call this procedure via an external proce-
dure declaration ExternalAverage defined as follows.

ExternalProcedure ExternalAverage {

Arguments : (x,res);
DLLName : "Userfunc.d11";
BodyCall : ComputeAverage(double array: x, card: i, card: j, double scalar: res);

}

where the argument x and res are declared as
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Parameter x {

IndexDomain : (i,3j);

Property : Input;
}
Parameter res {

Property : Output;
}

When you specify the FORTRAN language convention for an external procedure,
A1MMS will order the array passed to the external procedure such that the tuple
(i1,...,1n) is mapped onto the element

i1 +Ni(i2—1+Na(++ - (in-1 =1+ Np1(in—1)) -+ +))

for running indices i; = 1,...,N;. This is compatible with the default storage
of multidimensional arrays in FORTRAN, and allows you to access such array
arguments using the ordinary multidimensional notation.

Consider a parameter a(i,j), where the index i is associated with the set {1, 2}
and j with the set {1, 2, 3}. When this parameter is passed as a array argument
to an external procedure, the resulting array (as a one-dimensional array with
6 elements) is ordered as follows in the C convention (default).

Element # 0 1 2 3 4 5
Value a(l,D | a(1,2) | a(1,3) | a(2,1) | a(2,2) | a(2,3)

With the FORTRAN language convention, the ordering is changed as follows.

Element # 1 2 3 4 5 6
Value a1, | a2,1) | a(1,2) | a(2,2) | a(1,3) | a(2,3)
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Chapter 12

The AIMMS Sparse Execution Engine

In this chapter, we look under the hood of the AIMMS sparse execution engine.
It is not only interesting to know what AiMmMsS can do, but also, to some ex-
tent, how it is done. An understanding of the inner workings of the AiMMS
execution engine may also give you a framework for understanding why some
formulations of AIMMS statements are more efficient than others, leading to
more efficient applications. Increasing the efficiency of your application will
help make it a success.

The AIMMS execution system borrows and extends two simple but powerful
concepts from sparse matrix technology. These concepts are:

m only store the non-zero values, and
m do not compute 0+0 and 0*x (x any number), because these computations
always result in 0.0 and these results are consequently not stored.

The AIMMS extensions to these borrowed concepts are that:

m only non-default values are stored, where the default is a selectable
value, and

m many operations such as OR and AND have similar behaviors as + and *
respectively.

Note, however, that other operators, such as the / and = operators, will have
to consider zeros:

m the computation 0.0 / 0.0 results in UNDF, and
m the computation 0.0 = 0.0 resultsin 1.0

The results of these computations are not equal to 0.0 and need to be stored;
and therefore ’sparse execution’ is not applicable to these operators.

12.1 Storage and basic operations of the execution engine

In this section we present, in a step-by-step manner, the operations that, when
combined, build up the AiMMS sparse execution engine. The data storage
method with which these operations work is called an ordered view.
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The AIMMS execution engine stores the data according to the concept of an
ordered view. An ordered view is an ordered, sparse collection of the non-
default elements of an identifier. The order is the lexicographical order of the
indices of that identifier. Because of this order:

m the non-default elements of the identifier can be visited in a lexicographic
order one at a time, and
m a particular tuple can be found efficiently using values for the indices.

The running example, used in this section and presented below, contains the
two parameters A(i,j) and B(i,j), where i and j are indices in a set S contain-
ing the elements {al..a5}. The default values of these parameters are 0.0, and
they contain the following data:

A(i,j) := data table B(i,j) := data table
al a2 a3 a4 a5 al a2 a3 a4 a5
| om oo oo oo - | e e e e o
al 2 5 al 3 2
a2 2 3 2 a2
a3 a3 5 12
a4 4 a4 4
a5 H a5 ;

The ordered views of A and B are presented in the composite tables below:

Composite table: Composite table:
i jA i jB
[, [
al a2 2 al a2 3
al a5 5 al a5 2
a2 al 2 a3 al 5
a2 a3 3 aj a3l
a2 a4 2 a3 a4 2
a4 al 4 ; a4 al 4 ;

There is nothing really new here; an ordered view corresponds to an rela-
tional table in database terminology, with a (database) index on the primary
keys i and j. A characteristic of both representations is that they can be easily
searched given explicit values for i and j.

In the following sections, we will classify the algebraic operations in AIMMS
according to their behavior in the AIMMS sparse execution engine, and discuss
the effects of combining multiple operations or changing the natural index
order.
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12.1.1 The + operator: union behavior
The first statement in the running example is the simple addition of the match-
ing elements resulting in parameter C(i,j):

C(i,3) = AG,3) + B(i,3);

As illustrated in Figure 12.1, this statement can be executed in a sparse man-
ner by merging the ordered views of A and B and adding the values as one
progresses.

i A i B
al a2 ~  al a2 3
al a5 «—— > al a5 2
a2 al

a2 a3
a2 a4

N W N U N

«— a3 al
«— a3 a3

«— a3 a4

N S R Al

a4 al4 <— a4 al

Figure 12.1: Sparse execution of the + operator

In this figure, each arrow represents a computed result. The behavior of the
+ operator is referred to as sparse union behavior: the union of rows from A
and B is taken to form the rows of C and it is sparse because we do not need to
consider those tuples (i,j) for which A(i,j) and B(i,j) are both 0.0.

Other operators, such as OR, XOR, <, > and <> have a similar behavior. They can
also be implemented using the union of rows and performing the appropriate
operation.

12.1.2 The * operator: intersection behavior

The second statement in the running example is the simple multiplication of
the matching elements resulting in parameter D(i,J):

D(,3) = AGi,3) * B(i,3);
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This statement can be executed in a sparse manner by intersecting the ordered
views of A and B and multiplying the corresponding values. Intersection is
sufficient because only for those tuples (i,3j) for which both A(i,3j) and B(i,j)
are non-zero, will a non-zero be computed. This is illustrated in the Figure 12.2

i A i jB
al a2 2 =———— 3l a2 3  Match; store result
al a5 5 <«——— a3l a5 2  Match; store result
a2 al 2
a2 a3 3
a2 a4 2
~ a3 als First a mismatch: search the left or-
/// a3a31l dered view as represented by the
P dashed arrow; thereafter search the
- - a3 a4 2 right ordered view; followed by the
a4 al 4 “€— a4 a3l 4 finalmatch

Figure 12.2: Sparse execution of the * operator

Note that the ordered views of both A and B are searchable and, thus, finding
the matching elements can be efficiently implemented. We call this behavior
sparse intersection behavior. Because only matching rows need to be consid-
ered, sparse intersection operators are much more efficient than sparse union
operators.

Other operators, such as the AND and $ operators, exhibit similar behavior.
They can also be implemented using the intersection of the rows and perform-
ing the appropriate operation.

12.1.3 The = operator: dense behavior

The third statement in the running example checks whether corresponding
values are equal.

ECGi,3) = (AG,3) = B(,3));

This statement is admittedly somewhat artificial. However, such conditions
are frequently part of larger expressions and must be considered. The key
observation is that the comparison 0.0 = 0.0 evaluates to true. In AIMMS the
value ’'true’ is represented by the numerical value 1.0. Therefore, the result of
E(i,]) is:
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E(i,j) := data table
al a2 a3 a4 a5

al 1 11

a2 1 1

a3 1 1

a4 11111

a5 11111 ;

Given that the comparison of two zeros also results in a non-zero, all possi-
ble combinations of (i,j) have to be considered. Therefore, this operation
exhibits dense behavior, i.e. the operation cannot be performed in a sparse
manner. Dense operators have the worst possible efficiency.

Other operators, such as /, **, <= and => demonstrate similar behavior. They
also need to be implemented by considering all the possibilities and evaluating
as one progresses.

Increasing the number of indices, or increasing the size of the sets will make
the number of rows to be considered in such operations grow rapidly. Large-
dimensional dense operations are a potential cause of performance glitches in
an application.

12.1.4 Behavior of combined operations

The fourth statement is a variation of the third statement:

EP(i,3) := CA(,3) = B(i,3) ) $ AG,);

Although the operation = remains dense, the entire right hand side of the as-
signment statement is limited to only those tuples (i,j) for which A(i,j) is
non-zero. This is known as a domain condition on the expression. The net
effect on the expression is that this condition speeds up efficient behavior by
moving from dense to sparse behavior. The result of this fourth assignment
is:

EP(i,j) := data table

al a2 a3 a4 a5

| om oo oo oo -

al

a2

a3

a4 1

a5 ;
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If your model contains a statement that performs badly due to a dense oper-
ation, using a domain condition can remedy the problem. Often, it is possible
to formulate a domain condition that does not alter the result of the computa-
tion, but which does allow AIMMS to execute the statement in a sparse manner.

12.1.5 Summation

The fifth statement, as detailed below, is a step towards the sixth statement
and illustrates a language construct where sparse evaluation is straightfor-
ward. This fifth statement is a simple aggregation of the parameter A(i,j) in
a parameter AI(i):

AI(i) := Sum( 3, AGi,3) );

This operation is illustrated in Figure 12.3.

al a2
al a5
a2 al
a2 a3
a2 a4
a4 al

AN W N U
— ——
~

~

Figure 12.3: Sparse execution of the Sum operator

Each pairing represents a group of values corresponding to a particular value
of i. As the elements in a group are adjacent in this ordered view, the result
of AI can be computed in a single pass over the ordered view of A. The order
of the running indices in the statement is [i,j]. The first running index i is
already part of the left hand side of the assignment, and j is added to this list
as part of the sum.

Because the order of the running indices matches the order of the indices in
the identifier A(i,j), the results of the sum can be computed in a single pass
over the ordered view of A(i,j).

12.1.6 Reordered views

The sixth statement is a small variation to the fifth statement above. This sixth
statement is an aggregation of the parameter A in a parameter AJ(j):

AI(G) :=SumC 1, AG,3) );
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This time, the elements that belong to the same group j are not adjacent in the
ordered view of A as the order of the indices in this statement is [j,i] which
does not match the order of the indices in A(1, j).

In order to regain adjacency of the elements in the same group, AIMMS main-
tains other views of the parameter A known as reordered views. A reordered
view of an ordered view is a lexicographic order of the elements such that the
order of the indices in the identifier matches the order of the running indices.
A reordered view, and the grouping according to this view, are illustrated in
Figure 12.4.

iA
al a2
al a4
a2 al
a3 a2
a4 a2
a5 al

VIR W 1
L R R
SN w N (o))

Figure 12.4: Sparse execution of the reordered Sum operator

Again, each pairing represents a group of values corresponding to a particular
value of j. As the elements in a group are adjacent in this reordered view, the
results of AJ can be computed by a single pass over this reordered view of A.
AIMMS generates and maintains reordered views on an as needs basis. They
do, however, take up memory.

12.2 Modifying the sparsity

Now that we’ve glanced at the execution engine’s inner workings, you may be
wondering about the following questions.

m Does sparse execution influence the results of a model?
m Does AIMMS have sparse versions of operators that are dense by nature?

Sparse execution never changes the results of your model. AIMMS only applies
sparse intersection or sparse union when it is applicable. It does not in any
way influence the results of your model compared to simply considering all
the possible combinations of the running indices, but only the efficiency with
which these results are obtained.
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AIMMS does support sparse versions of some dense operators, but this time
the sparse versions will in general lead to different results. Adding $ characters
to dense operators modify these operators to sparse ones. That is why we call
the $ characters added to these operators sparsity modifiers.

Sparsity modifiers may be added to the left-hand side of a dense operator, to
the right-hand side, or to both. It causes the operator only to return a non-zero
result if the associated operand(s) are non-zero. Such a change to an operator
may, however, change its results in a way you may, or may not, want.

Let us now consider a few examples where such a modification is applica-
ble. The first example of using a sparsity modifier is in the efficient guarding
against division by zero errors. Without the use of sparsity modifiers, we can
accomplish this as follows.

! Leave A(i,j) zero when C(i,j)+D(i,j) is zero in order to

! avoid division by zero errors.

! This is accomplished by repeating the denominator in the condition.
AGi,j) = (B@G,3) / (C(H,3)+DG,3)) ) 8 (CGH,3)+DG,T)) 5

In the example, we only divide by C(i)+D(i) if this sum is non-zero. Note that
this subexpression is actually computed twice. AIMMS provides a notational
convenience in the form of $ sparsity modifiers as follows.

Leave A(i,j) zero when C(i,j)+D(i,j) is zero in order to
avoid division by zero errors.

This is accomplished by using the /$ division operator
which sparsely skips 0.0’s.

A(i,3) := BGLI) /8 (CGLIDE,T)) 5

The /$ operator is defined as the / operator except when the right hand side is
0.0. In that case, the $ sparsity modifier defines it as 0.0. An added advantage
is that the sub-expression C(i)+D(i) is only computed once.

A second example is in the merging of new results in a set of existing results.
Without the use of a sparsity modifier you can accomplish this as follows.

Only overwrite elements of E(i,j) when the result
F(i,3) + G(i,j) is non-zero.

This is accomplished by repeating the RHS of the
assignment as a domain condition.

ECG,3) | FG,3)4GG,3)) 1= FGLIHG3E,T) 5

Using the $ sparsity modifier this can be equivalently obtained as follows.

Only overwrite elements of E(i,j) when the result
F(i,3) + G(,j) is non-zero.

This is accomplished by using the $§ sparsity
modifier on the assignment operator:

EG,3) =% FG,+GGE, D
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Table 12.1 summarizes the operators to which the $ sparsity modifier can be
applied, and whether it can be applied to the left-hand side operand, to the
right-hand side operand, or to both.

Operator | Sparsity modifier allowed
$ left $ right
" yes yes
* no no
/ no yes
+ - no no
= <, <, yes yes
<=, >, >=
= yes yes
4=, -= yes no
¥=, /=, "= yes yes
$, ONLYIF no no
AND, OR, XOR

Table 12.1: Sparsity modifiers of binary operators

In addition to modifying the behavior of binary operators, the $ sparsity modi-
fier can also be applied to iterative operators. The effect in this case is that the
iterative operator in the presence of a $ modifier will only be applied to tuples
for which the expression yields a non-zero value.

The third and final example of the $ sparsity modifier provided here is on the
Min operator. Suppose you want to find the smallest non-zero distance between
a particular node and other nodes. This can be modeled as follows:

! Find the smallest non-zero distance:
MinimalDistance(i) := Min(j | Distance(i,j), Distance(i,j));

The 'non-zero’ restriction is taken care of by repeating the argument of the
Min operator in its domain condition. By using the $ sparsity modifier we can
shorten the above as follows:

! Find the smallest non-zero distance:

MinimalDistance(i) := Min$(j, Distance(i,j));

Table 12.2 summarizes the iterative operators to which the $ sparsity modifier
can be applied.
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Iterative operator Sparsity modifier allowed
$ added

Sort, NBest yes

Intersection, yes

First, Last, Nth no

ArgMin, ArgMax yes

Sum, Union no

Prod yes

Min, Max yes

Statistical operators yes
(see also page 82)

ForAll no

Other logical operators no
(see also page 90)

Table 12.2: Sparsity modifiers of iterative operators

To conclude, we can say that the $ sparsity modifier is notationally a conve-  Usage of
nience which you may or may not like. In the end it is up to you whether you  sparsity
use it or not. You decide this by weighing its advantage and disadvantages.  modifiers
Our view on this is discussed briefly below.

Using sparsity modifiers has the following advantages. Advantages

m It enables a more compact notation. In the examples above, the domain
condition is replaced by a strategically placed $ sparsity modifier thereby
reducing the overall expression. Many models have with multiple line
subexpressions and with these the reduction is not insignificant.

m It is more efficient. There are usually abundant zeros in a model. You
want them ignored so that the corresponding entries do not appear in the
results. In addition, you want them to be ignored as quickly as possible:
S0 as not to waste any computation time on them.

As with any new notation it takes time to get used to it. This holds both  Disadvantages
for you as a modeler and also for the people you want to communicate your

model to. In order to alleviate this disadvantage you may want to add a few

brief comments on the modified operators you use such as “:=$ operator used

here to merge the result into the existing data”.

12.3 Overview of operator efficiency

In this section you will find an overview of the efficiency of all unary, binary = Operator
and iterative operators in AIMMS. efficiency
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The unary operators and functions presented in Table 12.3 are divided in two
groups: sparse and dense.

m sparse: Here, when the argument is 0.0, the result is 0.0. The result
needs to be computed only for those tuples for which the argument has
a non-zero value.

m dense: Here, when the argument is 0.0, the result is not equal to 0.0. The
results of all possible tuples need to be computed.

sparse dense
- Sinh NOT Cos
Sin Tanh Cos Cosh

Tan ArcSin Exp ArcCos
Round ArcTan Log ArcCosh
Floor ArcSinh | Logl0 Factorial
Ceil ArcTanh
Trunc Sqgr
Sgrt

Table 12.3: Sparsen and dense unary operators and functions

The binary operators presented in Table 12.4 can be divided in three groups:

m intersection sparse: Here, when either of the arguments is 0.0, the result
is 0.0. The result of only those tuples need to be computed where both
arguments are not equal to 0.0. This corresponds to taking the intersec-
tion of the set of tuples for which the arguments are defined.

m union sparse. Here, when both arguments are 0.0, the result is 0.0. The
result of only those tuples need to be computed where at least one of the
arguments is not equal to 0.0. This corresponds to taking the union of
the set of tuples for which the arguments are defined.

m dense: Here, when both arguments are 0.0, the result is not equal to 0.0.
In this case, the expression needs to be evaluated for all possible combi-
nations of values of the indices, unless these combinations are limited by
a sparse operator elsewhere in the same expression. This corresponds
to taking the Cartesian product of the ranges of the indices.

The iterative operators presented in Table 12.5 are divided in three groups as
follows:

m sparse A value 0.0 of an argument does not influence the result and can
safely be ignored. The iterative operator only considers existing entries
of its argument.
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m almost sparse A second 0.0 in the argument does not influence the re-
sult. The execution starts in a dense meaning that the iterative operator
considers all possible tuples. However, after a first 0.0 has been encoun-

Chapter 12. The AiMmMS Sparse Execution Engine

intersection | union | dense

*

$
ONLYIF
AND

N -
<> =
< <=

>=
OR Permutation
XOR Combination

Table 12.4: Sparseness of binary operators

tered, execution continues in a sparse manner.

m dense A value 0.0 in the argument influences the result. The iterative
operator considers all possible combinations.

sparse | almost sparse dense

Sum Max Mean SampleDeviation
Prod Min GeometricMean PopulationDeviation
Exists | ArgMax HarmonicMean Skewness

Forall | ArgMin RootMeanSquare Kurtosis

Count Median RankCorrelation

Table 12.5: Sparseness of iterative operators
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Execution Efficiency Cookbook

Typically, when you start running your model with realistic, large-scale data
sets, execution performance becomes an important issue. In this chapter, we
discuss various techniques that you can use to improve the execution efficiency
of your model.

The running time of AIMMS applications can be divided in the time spent by
AIMMS itself and the time spent by the solution algorithms (i.e. solvers) used
by AIMMS.

The time used by the solvers mostly depends, apart from the quality of the
solver, on the specific formulation of the mathematical program to be solved.
Finding a formulation that can be efficiently solved is often a challenging task
and is beyond the scope of this chapter. For a detailed discussion, you are
referred to the extensive literature that exists on this subject.

A1mMs itself typically spends most of its time on the execution of assignment
statements and the generation of constraints. This time depends on several
factors. A few of these factors are:

m the size of the sets and the data set size used in your model,

m the efficiency of the AIMMS execution engine, and

m the language constructs used to formulate the execution statements and
constraints.

At AIMMS we are committed to continuously improving the efficiency of the
AIMMS execution engine and the AIMMS matrix generator. The efficiency of
your application, however, does not only depend on the efficiency of AIMMS,
but also on the specific formulation of your model and the language constructs
that you have used. A global understanding of the AIMMS execution engine, as
presented in Chapter 12, may provide a good background on which to start re-
considering particular formulations that lead to bottlenecks in execution per-
formance in your application.

This chapter
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In addition, AiMMS provides you with two tools for analyzing execution bottle-
necks, namely the Identifier Cardinalities and Profiler tools. The use of both
tools is described in Chapter 8 of the AiMmmMs User’s Guide.

The Identifier Cardinalities tool can help you to discover identifiers with a
large number of elements. Such identifiers, when used in statements and con-
straints, may lead to efficiency bottlenecks throughout your model. Whenever
you are able to reduce the number of elements associated with such identifiers,
by leaving out irrelevant elements, the execution efficiency of your model will
improve at several places. Naturally, such reductions are not possible when all
the elements are relevant to the computation of the solution. In Section 13.1,
we discuss two frequently observed and effective approaches to reducing the
number of elements in both one-dimensional sets and multidimensional iden-
tifiers.

With the AimMs Profiler tool you can identify the individual statements and
constraints on which the AIMMS execution engine spends most of its time.
Even if the inefficiencies are not the result of superfluous identifier cardinal-
ities, it may still be possible to review and rewrite such statements and con-
straints in order to improve the execution efficiency of your application. In
Section 13.2 we discuss potential bottlenecks and alternative formulations for
particular statements and constraints.

Before you begin tuning your application, you may want to set aside a copy
of the application and inputs with known results. You can then set up a
script that executes each of these tests using the AiMmmMs command line op-
tion --run-only (see also Chapter 18 of AiMMS The User’s guide). In addition,
you may wish to regularly commit your sources to a version control system in
order to track the changes you make over time.

13.1 Reducing the number of elements

In general, one can divide an application in three phases:

1. reading input data, often referred to as reading and preprocessing,
2. processing data, often referred to as the core model, and
3. writing output results, often referred to as reporting.

Interactive applications add the on/off switching of various application fea-
tures, the setting of tuning parameters, the consideration of various scenarios,
the output to screen, and so on. This does not change the basic concept, how-
ever. It only means that the inputs come from various sources and the outputs
go to various destinations. An important observation is that, usually, most of
the computation time is spent in the core model as this involves:

m the execution of assignments,
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m the evaluation of definitions,
m the generation of constraints, and
m the execution of one or more SOLVE statements.

Obviously, the fewer data we have in the core model, the sooner we’re finished.
Often, a considerable percentage of the data read in during the data input
phase is irrelevant to the final result. We could, therefore, consider spending
more time in the data input phase and try to remove such irrelevant data with
the primary objective of reducing the amount of data used in the core model.
Experience shows that this effort is usually, but not always, worthwhile.

In this section, two complementary methods of reducing the model size are
considered, namely reducing the number of elements in

m one-dimensional sets, and
» multidimensional identifiers.

13.1.1 Size reduction of one-dimensional sets

If, after the data input phase, a one-dimensional set contains a large number
of elements that are irrelevant to the core model, there are two possible ap-
proaches to removing them from computations in the core model. These are:

m adding a condition to all identifiers indexed over that set, or
m introducing a subset of active elements, and using an index to that active
subset.

These two approaches are illustrated below.
As a running example, consider a collection of tanks. Let us introduce a few
identifiers related to tanks:

Set Periods {

Index F
}
Set Tanks {
Index ¢ Tnks;
}
Set BrokenTanks {
Subset0f : Tanks;
}
Parameter StrategicReserve {
IndexDomain : Tnks;
}

Parameter SizeOfTank {
IndexDomain : Tnks;

}

Parameter TankIsRelevant {
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IndexDomain : Tnks;
Range : binary;
Definition : {
1$ [ ( not Tnks in BrokenTanks ) AND
( SizeOfTank( Tnks ) > StrategicReserve( Tnks ) ) ]
}
}
Variable TankLevel {
IndexDomain : (t,Tnks) | TanksIsRelevant( Tnks );
}
Constraint TankLimit {
IndexDomain : (t,Tnks) | TanksIsRelevant( Tnks );
Definition : TankLevel( t,Tnks ) <= SizeOfTank( Tnks );
}

The example above illustrates the first approach, in which the restriction on
the tanks is embodied by the parameter TankIsRelevant.

To illustrate the second approach, we change the above model section by in-
troducing the active subset ActiveTanks and modifying the declaration of the
variable TankLevel and the constraint TankLimit as presented below.

Set ActiveTanks {

Subset0f ¢ Tanks;
Index :tnk, tnk2;
Definition : { Tnks | TankIsRelevant(Tnks) };

Variable TankLevel {

IndexDomain : (t,tnk);
}
Constraint TankLimit {

IndexDomain : (t,tnk);

Definition : TankLevel( t,tnk ) <= SizeOfTank( tnk );
}

The core model still consists of the variable TankLevel and the constraint Tank-
Limit but their index domain has been changed. These identifiers are now
declared over active tanks only. Because of this change in the index domain,
the parameter TankIsRelevant is no longer needed in their index domain con-
dition.

186

Introducing
active subsets



Chapter 13. Execution Efficiency Cookbook

One may argue that nothing is gained because the selection through TankIs-
Relevant is now replaced by the index tnk of the active subset ActiveTanks.
However, the AIMMS execution engine has been tuned to select relevant ele-
ments of parameters and variables through indices in subsets. The selection
via a condition such as TankIsRelevant(Tnks) will force AIMMS to retrieve the
values for:

m the parameter or variable at hand,
m the parameter TanksIsRelevant, and then
m combine these values using the ’such that’ operator |.

Both approaches produce identical results and limit the core model execution
to relevant elements only. The first approach using the TankIsRelevant condi-
tion takes more execution time than the second approach using an index in
the active subset ActiveTanks because this latter approach selects the relevant
elements more directly.

Intuitively you might expect the improvement to be minor because probably
only a few tanks, if any, are removed from the collection of all tanks. However,
for other indices of the model the gain may be significant. More significant
gains may be observed, for example, when

you study a few periods from a large model calendar,

you study a few scenarios from a large database of scenarios,

you study a rather limited region,

there are only a few crudes available from a large collection of available
crudes, or

m there are only a few products ordered from a large catalog.

A large dimensional identifier, indexed over multiple active subsets, will have
the effect.

What if your model does not limit the number of elements in one-dimensional
sets at all? Following the active subset approach, as illustrated above, you will
have to modify the core model wherever you use the root set or an index in
the root set. In such a situation, you can also implement “active subsets” by
introducing a superset of the root set, and letting the original root set take on
the role of an active subset.

We continue the running example by presenting a core model version of it.

Set Periods {

Index ot
}
Set Tanks {
Index Totnk;

}

187

Speedup by
active subsets

Multiple active
subsets

Starting with a
core model

Example



Chapter 13. Execution Efficiency Cookbook

Parameter SizeOfTank {

IndexDomain : tnk;
}
Variable TankLevel {
IndexDomain : (t,tnk);
}
Constraint TankLimit {
IndexDomain : (t,tnk);
Definition : TankLevel( t,tnk ) <= SizeOfTank( tnk );
}

In implementing the active subset approach, we introduce a new superset Al1-
Tanks and redefine the original set Tanks as an active subset of the superset
A11Tanks as follows.

Set AllTanks {

Index : Tnks;
}
Set BrokenTanks {
Subset0f : AllTanks;
}
Parameter StrategicReserve {
IndexDomain : Tnks;
}
Parameter TankIsRelevant {
IndexDomain : Tnks;
Range t binary;
Definition : {
1 $ [ ( not Tnks in BrokenTanks ) AND
( SizeOfTank( Tnks ) > StrategicReserve( Tnks ) ) ]
}
}
Set Tanks {
Subset0f : AllTanks;
Index Totnk;
Definition : { Tnks | TankIsRelevant(Tnks) };
}
Parameter SizeOfTank {
IndexDomain : Tnks;
Comment : Now Wrt Al11Tanks instead of Tanks;
}

Note that the variable and constraint declarations in the core model above have
not been altered, but their size has been reduced by the size reduction in the
set Tanks.

13.1.2 Size reduction of multidimensional identifiers

Having illustrated limiting the number of elements in one-dimensional sets, we
want to consider limiting the number of elements in multidimensional param-
eters, variables, and constraints. The AiMMS language facilitates this through
the IndexDomain attribute.

188

Limiting multi-
dimensional
identifiers



Chapter 13. Execution Efficiency Cookbook

Domain conditions can be specified in the IndexDomain attribute of multidimen-
sional parameters, variables, and constraints. Whenever such an identifier is
assigned, generated, or referenced in an expression, AIMMS will automatically
add the domain condition so keeping your assignments and constraints more
concise and efficient.

We illustrate this by extending the above example as follows.

Variable Flow {
IndexDomain : (t,tnk,tnk2);
}
Constraint TankLevelBalance {
IndexDomain : (t,tnk) | t <> first(Periods);
Definition : {
TankLevel(t-1,tnk) ! Level of previous period
- Sum( tnk2, Flow(t,tnk,tnk2) ) ! Flow out of the tank
+ Sum( tnk2, Flow(t,tnk2,tnk) ) ! Flow in to the tank

TankLevel(t, tnk) I Current level

}
Comment {

"Level at end of previous period

minus outflow

plus inflow is

Tevel at end of current period”
}

}

Note that, using this formulation, AIMMS generates matrix columns for every
possible pair of tanks, whereas in practice only a small selection can have an
actual flow. If this selection of possible connections between tanks is repre-
sented by a relation TankConnections, the constraint TankLevelBalance could be
written more efficiently as:

Set TankConnections {
Subset0f : (Al11Tanks, Al1Tanks);

Variable Flow {
IndexDomain : (t,tnk,tnk2);
}
Constraint TankLevelBalance {
IndexDomain : (t,tnk) | t <> first(Periods);
Definition : {
TankLevel(t-1,tnk)
- Sum( tnk2 | (tnk,tnk2) in TankConnections, Flow(t,tnk,tnk2) )
+ Sum( tnk2 | (tnk2,tnk) in TankConnections, Flow(t,tnk2,tnk) )
= TankLevel(t,tnk)

}

Note the repetition of the condition in the above formulation. This is because
the condition is actually a restriction on the Flow variable, and should therefor
be a part of its declaration. This leads to a much more concise formulation, as
presented below.
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Variable Flow {
IndexDomain : (t,tnk,tnk2) | (tnk,tnk2) in TankConnections;
}
Constraint TankLevelBalance {
IndexDomain : (t,tnk) | t <> first(Periods);
Definition : {
TankLevel(t-1,tnk)
- Sum( tnk2, Flow(t,tnk,tnk2) )
+ Sum( tnk2, Flow(t,tnk2,tnk) )
= TankLevel(t,tnk)

A frequently observed alternative to using relations is the use of binary param-
eters. The above example could then be written as follows:
Parameter TankIsConnected {
IndexDomain : (tnk,tnk2);
Range . {0, 1};
}
Variable Flow {
IndexDomain : (t,tnk,tnk2) | TankIsConnected(tnk,tnk2);
}

The outflow term of TankLevelBalance will then be generated as if it were writ-
ten:

Sum( tnk2, Flow(t,tnk,tnk2) § TankIsConnected(tnk,tnk2) )

The notation using binary parameters is equivalent to that with relations.
Which option you use is only a matter of taste and style.

We would encourage you to employ index domain conditions, as using them
has the following advantages:

1. Index domain conditions speed up the execution because:

m They exclude irrelevant elements in assignments to parameters
with an index domain condition,

m Having index domain conditions on variables effectively makes the
referencing of such variables sparse, as only relevant columns are
generated, and

m Index domain conditions on a constraint avoid the generation of
irrelevant rows of that constraint.

2. Index domain conditions permits concise formulations. As illustrated
above, you do not need to include the domain condition of the Flow vari-
ables while constructing the TankLevelBalance constraint. Moreover, you
do not need to worry that you mightforget such a condition at a particu-
lar place in the model.

3. Whenever you determine a more restrictive condition on an identifier A,
you only need to change your model at one place, namely in the index
domain condition of that identifier A. You don’t need to go through the
entire model changing every reference to the identifier A.
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To make index domain conditions as effective as possible, they should remove
all, or almost all, irrelevant combinations. Constructing such “tight” index
domain conditions, can be far from straightforward. However, the time spent
on constructing tight index domain conditions often pays off with a significant
reduction in the total execution time of your model.

13.2 Analyzing and tuning statements

As illustrated in the previous section, carefully reviewing the number of ele-
ments in active subsets and the index domain conditions may lead to signif-
icant reductions in execution time. Additional reductions can be obtained by
analyzing and rewriting specific time-consuming statements and constraints.
In this section we will discuss a procedure which you can follow to identify
and resolve potential inefficiencies in your model.

You can use the AiMMS profiler to identify computational bottlenecks in your
model. If you have found a particular bottleneck, you may want to use the
checklist below to quickly find relevant information for the problem at hand.
For each question that you answer with a yes you may want to follow the
suggested option.

m Is the bottleneck a repeated expression where the combined execution of
all instances takes up a lot of time? If so, you can either

- manually replace the expression by a new parameter containing
the repeated expression as a definition. Do not forget to check the
NoSave property if you do not want that newly defined parameter
to be stored in cases.

- or let AiMMS do it for you, by setting the option subst Tow dim expr
class to an appropriate value for your application. See also the
help associated with that option.

For a worked example, see also Subsection 13.2.4

m Is the bottleneck due to debugging/obsolete code? If so, delete it, move it
to the Comment attribute, or enclose the time-consuming debugging code
in something like an IF ( DebugMode ) THEN and ENDIF pair.

m Are you using dense operators such /, =, ", or dense functions such as
Log, Exp, Cos in which a zero argument has a non-zero result? An overview
of the efficiency of such functions and operators can be found in Sec-
tion 12.3. Could you add index domain conditions to make the execu-
tion of the time-consuming expressions more sparse, without changing
the final result?

m Is the bottleneck part of a FOR statement? If so, is that FOR statement
really necessary? For a detailed discussion about the need for and alter-
natives to FOR statements, see Section 13.2.1.

m Is the bottleneck the condition of the FOR statement that takes up most
of the time? This is shown in the profiler by a large net time for the FOR
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statement. Section 13.2.2 discusses why the conditions of FOR statements
may absorb a lot of computational time and discusses alternatives.

m Does the body of a FOR, WHILE, or REPEAT statement contain a SOLVE state-
ment, and is AIMMS spending a lot of time regenerating constraints (as
shown in the profiling times of the constraints)? If so, consider modify-
ing the generated mathematical programs directly using the Gmp library
as discussed in Chapter 16.

m Does your model contain a defined parameter over an index, say t, and
do you use this parameter inside a FOR loop that runs over that same in-
dex t? Inefficient use of this construct is indicated by the AiMMs profiler
through a high hitcount for that defined parameter. See Section 13.2.3
for an example and an alternative formulation.

m [s the bottleneck an expression with several running indices? Contains
this expression non-trivial sub-expressions with fewer running indices?
If the answer is yes, consult Section 13.2.4 for a detailed analysis of two
examples.

m Does the expression involve a parameter or a variable that is bound with
a non-zero default? Section 13.2.5 discusses the possible adverse timing
effects of using non-zero defaults in expressions, and how to overcome
these.

m Would you expect a time-consuming assignment to take less time given
the sparsity of the identifiers involved? This may be one of those rare
occasions in which the specific order of running indices has an effect on
the execution speed. Although tackling this type of bottleneck may be
very challenging, Section 13.2.6 hopefully offers sufficient clues through
an illustrative example.

m Are you using ordered sets? Reordering the elements in a set can slow
execution significantly as detailed in Section 13.2.7.

13.2.1 Consider the use of FOR statements

The AiMMS execution system is designed for efficient bulk execution of as-
signment statements, plus set and parameter definitions and constraints. A
consequence of this design choice is that computation time is spent, just be-
fore the execution of such an executable object, analyzing and initializing that
object. This is usually worthwhile except when only one element is computed
at a time. Consider the following two fragments of AiMMS code that have the
same final result. The first fragment uses a FOR statement:

for ( (i,3) | B(i,j) ) do ! Only when B(i,j) exists we want to

AGi,3) =BG, I overwrite A(i,j) with it.
endfor ;

The second fragment avoids the FOR statement:

ACGi,3) | B(@i,3)) :=B(i,j); ! Overwrite A(i,j) only when B(i,j) exists
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In the first fragment, the initialization and analysis is performed for every it-
eration of the FOR loop. In the second fragment the initialization and analysis
is performed only once. Using the $ sparsity modifier on the assignment op-
erator := (see also Section 12.2), the statement can be formulated even more
compactly and efficiently as:

AGi,3) :=8 B(i,3); ! Merge B(i,3) in A(i,J)

In the above example, the FOR statement is used only to restrict the domain
of execution of a single assignment. While using the FOR statement in this
manner may seem normal to programmers, the execution engine of AIMMS
can deal with conditions on assignment statements much more efficiently. As
such, the use of the FOR statement is superfluous and time consuming.

Now that the FOR statement has been made to look inefficient, you are probably
wondering why has it been introduced in the AiMMs language in the first place?
Well, simply because sometimes it is needed. And it is only inefficient if used
unnecessarilly. So when is the FOR statement applicable? Two typical examples
are:

m generating a text report file, and
m in algorithmic code inside the core model.

We will discuss these examples in the next two paragraphs.

The AiMMs DISPLAY statement is a high level command that outputs an identi-
fier in tabular, list, or composite list format with a limited amount of control.
In addition, the output of the DISPLAY statement can always be read back by
AIMMS, and, to enable that requirement, the name of the identifier is always
included in the output. Thus, the AiMMS DISPLAY statement usually fails to
meet the specific formatting requirements of your application domain, and
you end up needing control over the position of the output on an element-by-
element basis. This requires the use of FOR statements. However, depending
on the purpose of your text report file, there might be very good alternatives
available:

m When this reporting is for printing purposes only, you may want to con-
sider the AiMMS print pages as explained in AiMMS The User’s Guide
Chapter 14. These print pages look far better than text reports.

m When the report file is for communication with other programs, you may
want to consider whether communication using relational databases (see
Chapter 27), or through XML (see Chapter 30) form better alternatives.
For communication with EXCEL or OpenOffice Calc, a library of dedicated
functions is built in AiMMS (see Chapter 29).
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A FOR statement is needed whenever your model contains two statements
where:

m the computation of the last statement depends on the computation of
the first statement, and

m the computation of the first statement depends on the results of the last
statement obtained during a previous iteration.

FOR statements may be especially inefficient, if the condition of a FOR statement
allows elements for which none of the statements inside the FOR loop modify
the data in your model or generate output. This is illustrated in the following
example.

Consider a distance matrix, D(i,j), with only a few entries per row in its lower
left half containing the distances to near neighbors. You also want it to contain
the reverse distances. One, inefficient, but valid, way to formulate that in
AIMMS is as follows:

for ( (i,j) | i > j ) do ! The condition ’i > j’ ensures we only

D(i,3) :=D(j,i) ; ! write to the upper right of D.
endfor ;

There are two reasons why the above is inefficient:

m Although there is a condition on the FOR loop, this condition permits
many combinations of (i,j) that do not invoke execution as D(i,j) was
sparse to begin with. A tempting improvement would be to add D(j, i) to
the condition on the FOR loop. However, this will lead to other problems,
however, as will be explained in the next section.

m As explained in Section 12.1.6, AiMMS maintains reordered views. For
each non-zero value computed and assigned to the identifier D(i,j),
AIMMS will need to adapt the reordered view for D(j, 1), and re-initialize
searching in that reordered view.

In the example at hand we can move the condition on the FOR loop to the
assignment itself and simply remove the FOR statement altogether (but not its
contents). The example then reads:

D((i,3) | i > 3) :=D(,i) ; ! The condition i > j’ ensures we only
! write to the upper right of D.

We can improve the assignment further by noting that we are actually merging
the transposed lower half in the identifier itself, and that there is no conflict in
the elements. This can be achieved by a $ sparsity modifier on the assignment
operator. The $ sparsity modifier and the opportunity it offers are introduced
in Section 12.2. The example can then be written as:

D(i,3) :=$ D(j,i); ! Merge the transpose of the Tower half in the identifier itself.
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13.2.2 Ordered sets and the condition of a FOR statement

The condition placed on a FOR statement is like any other expression evalu-
ated one element at a time. However, during that evaluation, the identifiers
referenced in the condition may have been modified by the statements inside
the FOR loop. In general, this is not a problem, except when the range of the
running index of the FOR statement is an ordered set. In that situation, the eval-
uation of the condition itself becomes time consuming as the tuples satisfying
the condition have to be repeatedly computed and sorted, as illustrated below.

Let us again consider the example of the previous section with the parameter
D now added to the FOR loop condition, and the set S ordered lexicographically.
As an efficient formulation has already been presented in the previous sec-
tion, it looks somewhat artificial, but similar structures may appear in real-life
models.

Set S {
Index HE
OrderBy : i ! lexicographic ordering.;
Body {
for ( (i,3) | (i >3 ) AND D(j,i) ) do ! Only execute the statements in the
D(i,3) := D(,1) ; ! loop when this is essential.
endfor
}
}

First note that the FOR statement respects the ordering of the set S. Because of
this ordering, AimmMs will first evaluate the entire collection of tuples satisfy-
ing the condition ( i > j ) AND D(j,1i), and subsequently order this collection
according to the ordering of the set S. Next, the body of the FOR statement is
executed for every tuple in the ordered tuple collection. However, when an
identifier, such as D in this example, is modified inside the body of the FOR
loop AiMMS will need to recompute the ordered tuple collection, and continue
where it left off. This not only sounds time consuming, it is.

If the following three conditions are met, the condition of a FOR statement
becomes time consuming;:

m the indices of a FOR statement have a specified element order,

m the condition of the FOR statement is changed by the statements inside
the loop, and

m the product of the cardinality of the sets associated with the running
indices of the FOR statement is very large.

if these three conditions are met, AiIMMS will issue a warning when the number
of re-evaluations reaches a certain threshold.
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There are several ways to improve the efficiency of inefficient FOR statements.
To understand this, it is necessary to explain a little more about the execution
strategies available to AiMMS when evaluating FOR statements, as each strategy
has its own merits and drawbacks. Therefore, consider the FOR statement:

for ( (i,3,k) | Expression(i,j,k) ) do
| statements ...
endfor;

where i, j and k are indices of some sets, each with a specified ordering, and
Expression(i,j,k) is some expression over the indices 1, j and k.

The first strategy, called the sparse strategy, fully evaluates Expression(i,j,k),
and stores the result in temporary storage before executing the FOR statement.
Subsequently, for each tuple (i,j,k) for which a non-zero value is stored, the
statements within the FOR loop are executed. If an identifier is modified during
the execution of these statements, then the condition Expression(i,j,k) has to
be fully re-evaluated.

The second strategy, called the dense strategy, evaluates Expression(i,j,k) for
all possible combinations of indices (i,j,k). As soon as a non-zero result is
found the statements are executed. Re-evaluation is avoided, but at the price
of considering every (i,j,k) combination.

The third strategy, called the unordered strategy, uses the normal sparse ex-
ecution engine of AIMMS but ignores the specified order of the indices. This
may, however, give different results, especially when the FOR loop contains one
or more DISPLAY/PUT statements or uses lag and lead operators in conjunction
with one or more of the ordered indices.

By prefixing the FOR statement with one of the keywords SPARSE, ORDERED, or
UNORDERED (as explained in Section 8.3.4), you can force AIMMS to adopt a par-
ticular strategy. If you do not explicitly specify a strategy, AIMMS uses the
sparse strategy by default, and only issues a warning if an identifier referenced
inside the FOR loop is modified and the second evaluation of Expression(i,j,k)
gives a non-empty result.

Given the above, you have the following options for improving the efficiency
of the FOR statement.

m Rewrite the FOR statement such that the condition does not change during
each iteration.

m Prefix the FOR statement with the keyword UNORDERED such that the un-
ordered strategy will be set. You can safely choose this strategy if the
element order is not relevant for the FOR statement. In all other cases,
the semantics of the FOR statement will be changed.
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m Prefix the FOR statement with the keyword ORDERED such that the dense
strategy is selected. You can safely choose this strategy if the condition
on the running indices evaluates to true for a significant number of all
possible combinations of the tuples (i,j,k).

m Prefix the FOR statement with the keyword SPARSE to adopt the sparse
strategy. However, all warnings will be suppressed relating to the condi-
tion on the running indices needing to be evaluated multiple times. You
can choose this strategy if the condition needs to be re-evaluated in only
a few iterations.

13.2.3 Combining definitions and FOR loops

As explained in Section 7.1, the dependency structure between set and param-
eter definitions is based only on symbol references. AIMMS’ evaluation scheme
recomputes a defined parameter in its entirety even if only a single element in
its inputs has changed. This negatively affects performance when such a de-
fined parameter is used inside a FOR loop and its input is changed inside that
same FOR loop.

A typical example occurs when using definitions in simulations over time. In
simulations, computations are often performed period by period, referring
back to data from previous period(s). The relation used to computate the stock
of a particular product p in period t can easily be expressed by the following
definition and then used inside the body of a procedure.

Parameter ProductStock {

IndexDomain : (p,t);
Definition : ProductStock(p,t-1) + Production(p,t) - Sales(p,t);
}
Procedure ComputeProduction {
Body : {
for (t) do
! Compute Production(p,t) partly based on the stock for period (t-1)
Production(p,t) := Max( ProductionCapacity(p),
MaxStock(p) - ProductStock(p,t-1) + Sales(p,t) );
endfor ;
}
}

During every iteration, the production in period t is computed on the basis of
the stock in the previous period and the maximum production capacity. How-
ever, because of the dependency of ProductStock with respect to Production,
AIMMS will re-evaluate the definition of ProductStock in its entirety for each
period before executing the assignment for the next period. Although the FOR
loop is not really necessary here, it is used for illustrative purposes.
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In this example, execution times can be reduced by moving the definition of Improved
ProductStock to an explicit assignment in the FOR loop. formulation

Parameter ProductStock {
IndexDomain : (p,t);
I Definition attribute is empty.

}
Procedure ComputeProduction {
Body : {
for (t) do
! Compute Production(p,t) partly based on the stock for period (t-1)
Production(p,t) := Max( ProductionCapacity(p),
MaxStock(p) - ProductStock(p,t-1) + Sales(p,t) );
| Then compute stocks for current period t
ProductStock(p,t) := ProductStock(p,t-1) + Production(p,t) - Sales(p,t);
endfor ;
}
}

In this formulation, only one slice of the ProductStock parameter is computed
per period. A drawback of this formulation is that it will have to be restated
at various places in your model if the inputs of the definition are assigned at
several places in your model.

As an alternative, you might consider the use of a Macro (see also Section 6.4) to  Use of macros
localize the defining expression of ProductStock at a single node in the model

tree. The disadvantage of macros is that they cannot be used in DISPLAY state-

ments, or saved to cases.

As illustrated above, it is best to avoid definitions, if, within a FOR loop, you  When to avoid
only need a slice of that definition to modify the inputs for another slice of  definitions
that same definition. AIMMS is not designed to recognize this situation and

will repeatly evaluate the entire definition. The AiMMS profiler will expose

such definitions by their high hitcount.

13.2.4 Identifying lower-dimensional subexpressions

Repeatedly performing the same computation is obviously a waste of time. In  Lower-

this section, we will discuss a special, but not uncommon, instance of such  dimensional
behavior, namely lower-dimensional sub-expressions. A lengthy expression, subexpressions
that runs over several indices, can have distinct subexpressions that depend

on fewer indices. Let us illustrate this with two examples, the first being an

artificial example to explain the principle, and the second a larger example

that has actually been encountered in practice and permits the discussion of

related issues.
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Consider the following artificial example:
FGLIO 1= GGLK) * Sum[j | AGL3) = B(,3), HGIT ;5

For every value of i, the sub-expression Sum[j | A(i,j) = B(i,j), H(G)] re-
sults in the same value for each k. Currently, the AIMMS execution engine will
repeatedly compute this value. It is more efficient to rewrite the example as
follows.

FP(i) := Sum[j | A(i,3) = B(i,3), H(DT ;
FGL,K) = GG,k) * FP(D)

The principle of introducing an identifier for a specific sub-expression often
leads to dramatic performance improvements, as illustrated in the following
real-life example.

Consider the following 4-dimensional assignment involving region-terminal-
terminal-region transports. Here, sr and dr (source region and destination
region) are indices in a set of Regions with m elements and st and dt (source
terminal and destination terminal) are indices in a set of Terminals with n ele-
ments.

Transport( (sr,st,dt,dr) | TRDistance(sr,st) <= MaxTRDistance(st) AND
TRDistance(dr,dt) <= MaxTRDistance(dt) AND
sr <> dr AND MinTransDistance <= RRDistance(sr,dr) <= MaxTransDistance AND
st <> dt AND MinTransDistance <= TTDistance(st,dt) <= MaxTransDistance
) := Demand(sr,dr);

The domain condition states that region-terminal-terminal-region transport
should only be assigned if the various distances between regions and/or ter-
minals satisfy the given bounds.

The <= operator is dense and be evaluated for all possible values of the indices.
The subexpression TRDistance(sr,st) <= MaxTRDistance(st), for example, will
be evaluated for every possible value of dr and dt, even though it only depends
on sr and st. In other words, we’re computing the same thing over and over
again.

There are multiple AND operators in this example. The AND operator is sparse,
and oten, sparse operators make execution quick. However, they fail to do just
that in this particular example. Bear with us. Although the AND operator is a
sparse binary operator, its effectiveness depends on how effectively the inter-
section is taken. What are we taking the intersection of? If we consider a partic-
ular argument of the AND operators: TRDistance(sr,st) <= MaxTRDistance(st),
as the operator <= is dense and this argument will be computed for all tuples
{(sr,st,dt,dr)} even though the results will be mostly 0.0’s. The domain of
evaluation for this argument is thus the full Cartesian product of four sets.
The evaluation domain of the other arguments of the AND operators will be the
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same. So, in this example, we are repeatedly taking the intersection of a Carte-
sian product with itself, resulting in that same Cartesian product. Thus, the
AND operator will be evaluated for all tuples in {(sr,st,dt,dr)} even though
this operator is sparse.

In the formulation below, we’ve named the following sub-expressions.
ConnectableRegionalTerminal( (sr,st) | TRDistance(sr,st) <= MaxTRDistance(st) ) := 1;

ConnectableRegions( (sr,dr) | sr <> dr AND

MinTransDistance <= RRDistance(sr,dr) <= MaxTransDistance ) := 1;
ConnectableTerminals( (st,dt) | st <> dt AND
MinTransDistance <= TTDistance(st,dt) <= MaxTransDistance ) := 1;

In each of these three assignments, each condition depends fully on the run-
ning indices and thus its evaluation is not unnecessarily repeated. By sub-
stituting the three newly introduced identifiers in the condition the original
assignment becomes:

Transport( (sr,st,dt,dr) |

ConnectableRegionalTerminal(sr,st) AND
ConnectableRegionalTerminal(dr,dt) AND
ConnectableRegions(sr,dr) AND

ConnectableTerminals(st,dt) )
:= Demand(sr,dr);

The newly created identifiers are all sparse, and the sparse operator AND can
effectively use this created sparsity in its arguments.

A modified version of the above example was sent to us by a customer. While
the original formulation took several minutes to execute for a given large
dataset, the reformulation only took a few seconds.

Perhaps a modeling style which avoids the need for substitutions is best.
The easy way is to let AimMs identify the places in which such substitutions
can be made by switching the options in the option category Aimms - Tuning
- Substitute Lower Dimension Expressions to appropriate settings. The disad-
vantage of this easy method is that some opportunities are missed as AIMMS
cannot guarantee the equivalence of the formulations, and some replacements
are missed. For instance, in the above example, AIMMS will create an iden-
tifier for both TRDistance(sr,st) <= MaxTRDistance(st) and TRDistance(dr,dt)
<= MaxTRDistance(dt), even though only one suffices. You can avoid substitu-
tions by keeping your expressions brief relating only a few identifiers at a time.
This will also help to keep your model readable.
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13.2.5 Parameters with non-zero defaults

Sparse execution is based on the effect of the number 0.0 on addition and mul-
tiplication. When other numbers are used as a default, all possible elements
of these parameters need to be considered rather than only the stored ones.
The advice is not to use such parameters in intensive computations. In the
example below, the summation operator will need to consider every possible
element of P rather than only its non-zeros.

Parameter P {

IndexDomain : (i,3j);
Default N
Body I

CountP :=.Sum( (,7), PG, )
}

Identifiers with a non-zero default, may be convenient, however, in the inter-
face of your application as the GUI of AiMMS can display non-default elements
only.

For parameters with a non-zero default, you still may want to execute only
for its non-default values. For this purpose, the function NonDefault has been
introduced. This function allows one to limit execution to the data actually
stored in such a parameter. Consider the following example where the non
defaults of P are summed:

CountP := Sum( (i,j)| NonDefault(P(i,j)), P(i,3) );

In the above example the summation is limited to only those entries in P(i,j)
that are stored. If you would rather use familiar algebraic notation, instead of
the dedicated function NonDefault, you can change the above example to:

CountP := Sum( (i,3) | P(i,j) < 1, P(i,3) );

This statement also sums only the non-default values of P. AIMMS recognizes
this special use of the <> operator as actually using the NonDefault function;
the summation operator will only consider the tuples (i,j) that are actually
stored for P.

Note that the suffices .Lower and .Upper of variables are like parameters with a
non-zero default. For example in a free variable the default of the .lower suffix
is -inf and the default of the suffix .upper is inf.

201

Sparse
execution
expects 0.0’s

Appropriate use
of default

The NonDefault
function

Suffices of
variables



Chapter 13. Execution Efficiency Cookbook

13.2.6 Index ordering

In rare cases, the particular order of indices in a statement may have an ad-
verse effect on its performance. The efficiency aspects of index ordering, when
they occur, are inarguably the most difficult to understand and recognize.
Again, this inefficiency is best explained using an example.

Consider the following assignment statement:
FSGi,k) i= SumC 3, AGi,3) * B(3,k) );
If A(i,j) and B(j,k) are binary parameters, where

m for any given 1, the parameter A(i,j) maps to a single j, and,
m for any given j, the parameter B(j,k) maps to a single k,

one would intuitively expect that the assignment could be executed rather ef-
ficiently. When actually executing the statement, it may therefore come as an
unpleasant surprise that it takes a seemingly unexplainable amount of time.

In the qualitative analysis above, implicitly the index order i selects j, and j
selects a few k’s, or, in AIMMS terminology, a running index order [i,j,k]. The
actual running index order of AIMMS is, however, first the indices [i,k] from
the assignment operator, followed by the index [j] from the summation oper-
ator: [i,k,j]. The effect of the actual index order is that, for a given value of
index 1, the relevant values of index k cannot be restricted using the param-
eter chain A(i,j)-B(j,k) without the aid of an intermediate running index j.
Consequently, AIMMS has to try every combination of (i,k).

Given the above analysis, the preferred index ordering [i,j,k] can be accom-
plished by introducing an intermediate identifier FSH(i, j,k), and replacing the
original assignment by the following statements.

FSH(i,3,k) := AGH,3) * B(3,Kk);
FSGi,k) := Sum( j, FSHG,3,k) );

With a real-life example, where the range of the indices i, j and k contained
over 10000 elements, the observed improvement was more than a factor 50.
A similar improvement could be obtained for the following example:

FSP(i,k) := Sum(C j, AGi,3) + B(3,k) );

Here a value is computed for each (i,k) of FSP, because, for every i, there is a
non-zero A(i,j), and for every k, there is a non-zero B(j,k).
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13.2.7 Set element ordering

By default, all elements in a root set are numbered internally by AIMMS in a
consecutive manner according to their data entry order, i.e. the order in which
the elements have been added to the set. Such additions can be either explicit
or implicit, and may take place, for example when the model text contains
references to explicit elements in the root set, or by reading the set from files,
databases, or cases.

The storage of multidimensional data defined over a root set is always based
on this internal and consecutive numbering of root set elements. More ex-
plicitly, all tuple-value pairs associated with a multidimensional identifier are
stored according to a strict right-to-left ordering based on the respective root
set numberings.

By default, all indexed execution taking place in AIMMS, either through implied
loops induced by indexed assignments or through explicit FOR loops, employs
the same strict right-to-left ordering of root set elements. Thus, there is a
perfect match between the execution order and the order in which identifiers
referenced in such loops are stored internally. As a consequence, it is very easy
for AiMMSs to synchronize the tuple for which execution is currently due with
an ordered route through all the non-zero tuples in the identifiers involved
in the statement. This principle is the basis of the sparse execution engine
underlying AiMMS.

Inefficiency is introduced if the elements in a set over which a loop takes place
have been ordered differently from the data entry order, either because of an
ordering principle specified in the OrderBy attribute of the set declaration or
through an explicit Sort operation. Consequently, there will no lomger be a
direct match between the execution order of the loop and the storage order
of the non-zero identifier values. Depending on the precise type of statement,
this may result in no, slight or serious increase in the execution time of the
statement, as AIMMS may have to perform randomly-placed lookups for par-
ticular tuples. These random lookups are much more time consuming than
running over the data only once in an ordered fashion.

In particular, you should avoid using FOR statements in which the running in-
dex is an index in a set with a nondefault ordering whenever possible. If not,
A1mus is forced to execute such FOR statements using the imposed nondefault
ordering and, as a result, all identifier lookups within the FOR loop are random.
In such a situation, you should carefully consider whether ordered execution
is really essential. If not, it is advisable to leave the original set unordered, and
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create an ordered subset (containing all the elements of the original set) for
use when the nondefault element ordering is required.

In most situations, the efficiency of indexed assignments is not affected by
the use of indices in sets with a nondefault ordering. AiMmMs has only to rely
on the nondefault ordering if an assignment contains special order-dependent
constructs such as lag and lead operators. In all other cases, AIMMS can use
the default data entry order.

If a nondefault ordering of some sets in your model causes a serious increase
in execution times, you may want to apply the CLEANDEPENDENTS statement (see
also Section 25.3) to those roots sets that are the cause of the increase of exe-
cution times. The CLEANDEPENDENTS statement will fully renumber the elements
in the root set according to their current ordering, and rebuild all data defined
over it according to this new numbering.

As all identifiers defined over the root set have to be completely rebuilt, CLEAN-
DEPENDENTS is an inherently expensive operation. You should, therefore, only
use it when really necessary.

13.2.8 Using AiMmMS’ advanced diagnostics

In order to help you create correct and efficient applications, AIMMS is regu-
larly extended with diagnostics that incorporate the recognition of new types
of problematic situations. These diagnostics may help you detect model for-
mulations that lead to sub-optimal performance and/or ambiguous results.
These diagnostics can be controled through various options in the Warning
category.

As the list of diagnostic options is regularly extended, and some of the for-
mulation problems depend on the model data and, thus, can only be detected
at runtime, you are advised to apply the diagnostics provided by AIMMS on a
regular basis during your application tests. Section 8.4.4 describes a way in
which you can switch on all the diagnostic options by just changing the value
of the two options strict_warning_default and common_warning_default.
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Below we provide a list of performance-related diagnostics that may help you
tune the performance of your model:

m Warning_repeated_iterative_evaluation: If the arguments of an iterative
operator do not depend on some of the indices, the iterative operator
is repeatedly evaluated with the same result. Consider the assignment
a(i) := sum(j,b(j)); in which the sum does not depend on the index i
and so the same value is computed for every value of i. See also Subsec-
tion 13.2.4.

m Warning_unused_index: If an index is not used inside the argument(s) or
index domain condition of an iterative iterator, this leads to inefficient
execution. In the assignment a(i) := sum((j,k),b(i,j));, the index k is
not used in the summation. Further, when an index in the index domain
of a constraint is not used inside the definition of that constraint this is
likely to lead to the generation of duplicate rows.

m Warning_duplicate_row: At the end of generating a mathematical pro-
gram it is verified that there are no duplicate rows inside that mathemat-
ical program. This might be caused by two constraints having the same
definition. Besides consuming more memory, duplicate rows cause the
problem to become degenerate and may cause the problem to become
more difficult to solve. This warning is not supported for mathematical
programs of type MCP or MPCC because, for these types the row col map-
ping is also relevant and duplicate rows cannot be simply eliminated.

m Warning_duplicate_column: At the end of generating a mathematical pro-
grram it is verified that there are no duplicate columns inside that math-
ematical program. Besides consuming more memory, duplicate columns
result in the generated mathematical program having non-unique solu-
tions.

m Warning_trivial_row: Generating and eliminating trivial rows such as
0 <=1 takes time.

The help for the option category AIMMS - Progress, errors & warnings - warnings
provides more information on these options.

13.3 Summary

This chapter consists of a recipe for fine tuning an existing AiMMSs application
such that AiMMS more efficiently executes the definitions and statements and
efficiently generates the constraints. The recipe consists of the following three
steps:

m First, construct active subsets by removing all elements for which the
variables are fixed in advance. These active subsets should then be used
throughout your core model. This reduces the work each time, even in
the evaluation of the index domain conditions to be constructed next.
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m Second, construct index domain conditions for the parameters, variables,
and constraints of the core model. This will make several dense expres-
sions seemingly execute more sparse, because only a limited number of
elements are evaluated. Especially with variables and constraints this
avoids the generation of columns for fixed variables and empty con-
straints. Thus the number of bottlenecks in your application is further
reduced.

m Finally, use the AiMMS profiler to pinpoint those assignment statements,
FOR loops, and constraints that still absorb a considerable amount of
computation time, and analyze and possible modify them. A checklist
that can be used for this analysis has been presented in Section 13.2.
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Chapter 14

Variable and Constraint Declaration

The word variable does not have a uniform meaning. In general, programmers
view a variable as a known but varying quantity that receives its value through
direct assignments. However, in the context of constraints in AIMMS, the word
variable denotes an unknown quantity. Constraints can be grouped together
to form a system of simultaneous equations and/or inequalities, which is re-
ferred to as a mathematical program. Variables in a mathematical program
are assigned values when a solver (a solution algorithm) finds a solution for
the unknowns in the system.

When used outside the scope of constraints and the solution of mathematical
programs, variables in AIMMS behave essentially the same as parameters in
AIMMS. Like parameters, variables can be initialized, used as known quantities
in assignment statements, and be referred to as data from within the graphical
user interface.

14.1 Variable declaration and attributes

Variables have some additional attributes above those of parameters. These
extra attributes are used to steer a solver, or to hold additional information
about solution values provided by the solver. The possible attributes of vari-
ables are given in Table 14.1.

By specifying the IndexDomain attribute you can restrict the domain of a vari-
able in the same way as that of a parameter. For variables, however, the domain
restriction has an additional effect. During the generation of individual con-
straints AIMMS will reduce the size of the generated mathematical program by
including only those variables that satisfy all domain restrictions.

The values of the Range attribute of variables determine the bounds that are
passed on to the solver. In addition, during an assignment, the Range attribute
restricts the range of allowed values that can be assigned to a particular inter-
val (as for parameters). The possible values for the Range attribute are:
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Variable and Constraint Declaration

Attribute Value-type See also
page

IndexDomain index-domain 42

Range range 43

Default constant-expression 44

Unit unit-expression 45,513

Priority expression

NonvarStatus | expression

RelaxStatus expression

Property NoSave, numeric-storage-property, Inline 34, 45
SemiContinuous, Basic, Stochastic, Adjustable
ReducedCost, ValueRange, CoefficientRange,
constraint-related-sensitivity-property

Text string 19

Comment comment string 19

Definition expression 34, 44

Stage expression 216, 316

Dependency expression 216, 343

Table 14.1: Variable attributes
m one of the predefined ranges Real, Nonnegative, Nonpositive, Integer or

Binary,

any one of the interval expressions [a, b], [a, b), (a,b] or (a,b), where
a and b can be a constant number, inf, -inf, or a parameter reference
involving some or all of the indices on the index list of the declared
variable,

any enumerated integer set expression, e.g. {a ..
above, or

an integer set identifier.

b} with a and b as

If you specify Real, Nonnegative, Nonpositive, or an interval expression, AIMMS
will interpret the variable as a continuous variable. If you specify Integer,
Binary or an integer set expression, AIMMS will interpret the variable as a bi-
nary or integer variable.

The following example illustrates a simple variable declaration.

Variable Transport {

IndexDomain
Range

}

: (i,3) in Connections;
: [ MinTransport(i), Capacity(i,j) 1;

The declaration of the variable Transport(i,j) sets its lower bound equal to
MinTransport(i) and its upper bound to Capacity(i,j). When generating the
mathematical program, the variable Transport will only be generated for those

Example

209
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tuples (i,j) that lie in the set Connections. Note that the specification of the
lower bound only uses a subdomain (i) of the full index domain of the variable

(i,3).

Besides using the Range attribute to specify the lower and upper bounds, you
can also use the .Lower and .Upper suffices in assignment statements to accom-
plish this task. The .Lower and .Upper suffices are attached to the name of the
variable, and, as a result, the corresponding bounds are defined for the entire
index domain. This may lead to increased memory usage when variables share
their bounds for slices of the domain. For this reason, you are advised to use
the Range attribute as much as possible when specifying the lower and upper
bounds.

You can only make a bound assignment with either the .Lower or .Upper suffix
when you have not used a parameter reference (or a non-constant expression)
at the corresponding position in the Range attribute. Bound assignments via
the .Lower and .Upper suffices must always lie within the range specified in the
Range attribute.

Consider the variable Transport declared in the previous example. The fol-
lowing assignment to Transport.Lower(i,j) is not allowed, because you have
already specified a parameter reference at the corresponding position in the
Range attribute.

Transport.Lower(i,j) := MinTransport(i) ;

On the other hand, given the following declaration,

Variable Shipment {
IndexDomain : (i,j) in Connections;
Range : Nonnegative;

}

the following assignment is allowed:

Shipment.Lower(i,j) := MinTransport(i);

AIMMS will produce a run-time error message if any value of MinTransport(i)
is less than zero, because this violates the bound in the Range attribute of the
variable Shipment.

Variables that have not been initialized, evaluate to a default value automati-
cally. These default values are also passed as initial values to the solver. You
can specify the default value using the Default attribute. The value of this at-
tribute must be a constant expression. If you do not provide a default value,
AimmMs will use a default of 0.
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Providing a Unit for every variable and constraint in your model will help you
in a number of ways.

m AMMS will help you to check the consistency of all your constraints and
assignments in your model, and
m AIMMS will use the units to scale the model that is sent to the solver.

Proper scaling of a model will generally result in a more accurate and robust
solution process. You can find more information on the definition and use of
units to scale mathematical programs in Chapter 32.

It is not unusual that symbolic constraints in a model are equalities defining
just one variable in terms of others. Under these conditions, it is preferable
to provide the definition of the variable through its Definition attribute. As
a result, you no longer need to specify extra constraints for just variable def-
initions. In the constraint listing, the constraints associated with a defined
variable will be listed with a generated name consisting of the name of the
variable with an additional suffix “_definition”.

The following example defines the total cost of transport, based on unit trans-
port cost and actual transport taking place.

Variable TransportCost {
Definition : sum( (i,j), UnitTransportCost(i,j)*Transport(i,j) );

}

14.1.1 The Priority, Nonvar and RelaxStatus attributes

With the Priority attribute you can assign priorities to integer variables (or
continuous variables when using the solver BARON). The value of this attribute
must be an expression using some or all of the indices in the index domain of
the variable, and must be nonnegative and integer. All variables with priority
zero will be considered last by the branch-and-bound process of the solver. For
variables with a positive priority value, those with the highest priority value
will be considered first.

Alternatively, you can specify priorities through assignments to the .Priority
suffix. This is only allowed if you have not specified the Priority attribute. In
both cases, you can use the .Priority suffix to refer to the priority of a variable
in expressions.

The solution algorithm (i.e. solver) for integer and mixed-integer programs ini-
tially solves without the integer restriction, and then adds this restriction one
variable at a time according to their priority. By default, all integer variables
have equal priority. Some decisions, however, have a natural order in time or
space. For example, the decision to build a factory at some site comes before
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the decision to purchase production capacity for that factory. Obeying this
order naturally limits the number of subsequent choices, and could speed up
the overall search by the solution algorithm.

You can use the NonvarStatus attribute to tell Aimms which variables should
be considered as parameters during the execution of a SOLVE statement. The
value of the NonvarStatus attribute must be an expression in some or all of the
indices in the index list of the variable, allowing you to change the nonvariable
status of individual elements or groups of elements at once.

The sign of the NonvarStatus value determines whether and how the variable is
passed on to the solver. The following rules apply.

m If the value is O (the default value), the corresponding individual variable
is generated, along with its specified lower and upper bounds.

m If the value is negative, the corresponding individual variable is still gen-
erated, but its lower and upper bounds are set equal to the current value
of the variable.

m If the value is positive, the corresponding individual variable is no longer
generated but passed as a constant to the solver.

When you specify a negative value, you will still be able to inspect the corre-
sponding reduced cost values. In addition, you can modify the nonvariable
status to zero without causing AIMMS to regenerate the model. When you
specify a positive value, the size of the mathematical program is kept to a
minimum, but any subsequent changes to the nonvariable status will require
regeneration of the model constraints.

Alternatively, you can change the nonvariable status through assignments to
the .NonVar suffix. This is only allowed if you have not specified the Nonvar-
Status attribute. In both cases, you can use the .NonVar suffix to refer to the
variable status of a variable in expressions.

By altering the nonvariable status of variables you are essentially reconfiguring
your mathematical program. You could, for instance, reverse the role of an in-
put parameter (declared as a variable with negative nonvariable status) and an
output variable in your model to observe what input level is required to obtain
a desired output level. Another example of temporary reconfiguration is to
solve a smaller version of a mathematical program by first discarding selected
variables, and then changing their status back to solve the larger mathematical
program using the previous solution as a starting point.
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With the RelaxStatus attribute you can tell AiMMS to relax the integer restric-
tion for those tuples in the domain of an integer variable for which the value
of the relax status is nonzero. AIMMS will generate continuous variables for
such tuples instead, i.e. variables which may assume any real value between
their bounds.

Alternatively, you can relax integer variables by making assignments to the
.Relax suffix. This is only allowed if you have not specified the RelaxStatus
attribute. In both cases, you can use the .Relax suffix to refer to the relax
status of a variable in expressions.

When solving large mixed integer programs, the solution times may become
unacceptably high with an increase in the number of integer variables. You
can try to resolve this by relaxing the integer condition of some of the integer
variables. For instance, in a multi-period planning model, an accurate integer
solution for the first few periods and an approximating continuous solution
for the remaining periods may very well be acceptable, and at the same time
reduce solution times drastically.

As you will see in Chapter 15, there are several types of mathematical pro-
grams. By changing the nonvariable and/or relax status of variables you may
alter the type of your mathematical program. For instance, if your constraints
contains a nonlinear term x*y, then changing the nonvariable status of either x
or y will change it into a linear term. Eventually, this may result in a nonlinear
mathematical program becoming a linear one. Similarly, changing the nonva-
riable or relax status of integer variables may at some point change a mixed
integer program into a linear program.

14.1.2 Variable properties

Variables can have one or more of the following properties: NoSave, Inline,
SemiContinuous, ReducedCost, CoefficientRange, ValueRange, Stochastic, and Adj-
ustable. They are described in the paragraphs below.

You can also change the properties of a variable during the execution of your
model by calling the PROPERTY statement. Identifier properties are changed
by adding the property name as a suffix to the identifier name in a PROPERTY
statement. When the value is set to off, the property no longer holds.

With the property NoSave you indicate that you do not want to store data asso-
ciated with this variable in a case. This property is especially suited for those
identifiers that are intermediate quantities in the model, and that are not used
anywhere in the graphical end-user interface.
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With the property Inline you can indicate that AiMmms should substitute all
references to the variable at hand by its defining expression when generating
the constraints of a mathematical program. Setting this property only makes
sense for defined variables, and will result in a mathematical program with less
rows and columns but with a (possibly) larger number of nonzeros. After the
mathematical program has been solved, AiMmMs will compute the level values
of all inline variables by evaluating their definition. However, no sensitivity
information will be available.

To any continuous or integer variable you can assign the property SemiContin-
uous. This indicates to the solver that this variable is either zero, or lies within
its specified range. Not all solvers support semi-continuous variables. In
the latter case, AIMMS will automatically add the necessary constraints to the
model.

14.1.3 Sensitivity related properties

With the Basic property you can instruct AIMMS to retrieve basic information
of a specific variable from the solver. If retrieved, basic information can be
accessed through the .Basic suffix. The basic information is presented as an
element in the predefined AiMMS set AT1BasicValues (i.e. {Basic, Nonbasic, Su-
perbasic}). In linear programming a variable will either be basic or nonbasic,
while in nonlinear programming the number of variables with zero reduced
cost can be larger than the number of constraints. The solution algorithm
then divides these variables into so-called basics and superbasics. The basic
variables define a square system of nonlinear equations which is solved for
fixed values of the remaining variables. The superbasics are assigned a fixed
value between their bounds, while the nonbasics take their value at a bound.

You can use the ReducedCost property to specify whether you are interested
in the reduced cost values of the variable after each SOLVE step. Storing the
reduced costs of all variables may be very memory consuming, therefore, the
default in AIMMS is not to store these values. If reduced costs are requested,
the stored values can be accessed through the suffices .ReducedCost or .m.

The reduced cost indicates by how much the cost coefficient in the objective
function should be reduced before the variable becomes active (off its bound).
By definition, the reduced cost value of a variable between its bounds is zero.
The precise mathematical interpretation of reduced cost is discussed in most
text books on mathematical programming. Note: if a basic or superbasic vari-
able has a reduced cost of zero then it will be displayed as 0.0, but if a nonbasic
variable has a reduced cost of zero then it will be displayed as ZERO.
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When the variables in your model have an associated unit (see Chapter 32), spe-
cial care is required in interpreting the values returned through the .Reduced-
Cost suffix. To obtain the reduced cost in terms of the units specified in the
model, the values of the .ReducedCost suffix must be scaled as explained in
Section 32.5.1.

With the property CoefficientRange you request AiMMS to conduct a first type
of sensitivity analysis on this variable during a SOLVE statement of a linear
program. The result of this sensitivity analysis are three parameters, repre-
senting the smallest, nominal, and largest values for the objective coefficient
of the variable so that the optimal basis remains constant. Their values are
accessible through the suffices .SmallestCoefficient, .NominalCoefficient and
.LargestCoefficient.

With the property ValueRange you request AIMMS to conduct a second type
of sensitivity analysis during a SOLVE statement of a linear program. The re-
sult of the sensitivity analysis are two parameters, representing the small-
est and largest values that the variable can take while holding the objective
value constant. Their values are accessible through the .SmallestValue and
.LargestValue suffices.

AIMMS only supports the sensitivity analysis conducted through the proper-
ties CoefficientRange and ValueRange for linear mathematical programs. If you
want to apply these types of analysis to the final solution of a mixed-integer
program, you should fix all integer variables to their final solution (using the
.NonVar suffix) and re-solve the resulting mathematical program as a linear
program (e.g. by adding the clause WHERE type:="Tp’ to the SOLVE statement).

Setting any of the properties ReducedCost, CoefficientRange or ValueRange may
result in an increase of the memory usage. In addition, the computations re-
quired to compute the ValueRange may considerably increase the total solution
time of your mathematical program.

Whenever a defined variable (which is not declared Inline) is part of a math-
ematical program, AiMMs implicitly adds a constraint to the generated model
expressing this definition. In addition to the variable-related sensitivity prop-
erties discussed in this section, you can specify the constraint-related sensitiv-
ity properties ShadowPrice, RightHandSideRange and ShadowPriceRange (see also
Section 14.2) for such variables to obtain the sensitivity information that can
be related to these constraint. You can access the requested sensitivity in-
formation by appending the associated suffices to the name of the defined
variable.
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14.1.4 Uncertainty related properties and attributes

The AiMMs modeling language offers facilities for both stochastic programs
and robust optimization models. For both types of models you can specify
special Variable properties and attributes to define uncertainty-related rela-
tionships.

Through the Stochastic property you can indicate that, within a stochastic
model, the variable can hold scenario-dependent solutions. AiMMSs will add a
Stage attribute for every variable for which the Stochastic property has been
set.

The value of the Stage attribute must be a numerical expression evaluating
to in integer number indicating the stage at the end of which the variable
takes its value during the solution process of a stochastic model. Stochastic
programming, and the Stochastic property and Stage attribute are discussed
in full detail in Section 19.2.

By setting the Adjustable property for a variable, you indicate that a variable in
arobust optimization model has a functional dependency on some or all of the
uncertain parameters in the model. If you declare a variable to be adjustable,
the Dependency attribute also becomes available for that variable.

Through the Dependency attribute you specify the precise collection of uncer-
tain parameters on which the variable at hand depends. At this moment,
AiMMS only supports affine relations between uncertain parameters and ad-
justable variables. The precise semantics of the Dependency attribute is dis-
cussed in Section 20.4.

14.2 Constraint declaration and attributes

Constraints form the major mechanism for specifying a mathematical program
in AiMmMS. They are used to restrict the values of variables with interlocking
relationships. Constraints are numerical relations containing expressions in
terms of variables, parameters and constants.

The possible attributes of constraints are given in Table 14.2.

Restricting the domain of constraints through the IndexDomain attribute influ-
ences the matrix generation process. Constraints are generated only for those
tuples in the index domain that satisfy the domain restriction.
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Attribute Value-type See also
page
IndexDomain index-domain 42
Unit unit-valued expression 45,513
Text string 19
Comment comment string 19
Definition expression 44,211
Property NoSave, Sosl, Sos2, IndicatorConstraint 34, 45
Level, Bound, Basic, ShadowPrice, 213

RightHandSideRange, ShadowPriceRange,
IsDiversificationFilter, IsRangeFilter,
IncludeInLazyConstraintPool,
IncludeInCutPool, Chance

SosWeight sos-weights

ActivatingCondition | expression

Probability expression 225, 341
Aproximation element-expression 225, 342

Table 14.2: Constraint attributes

With the Definition attribute of a constraint you specify a numerical relation-
ship between variables in your model. Without a definition a constraint is
indeterminate. Constraint definitions consist of two or three expressions sep-

“_n o«

arated by one of the relational operators “=”, “>=" or “<=".

The following constraints express the simultaneous requirements that the sum
of all transports from a city i must not exceed Supply(i), and that for each city
j the Demand(j) must be met.

Constraint SupplyConstraint {

IndexDomain : i;

Unit : kton;

Definition : sum( j, Transport(i,j) ) <= Supply(i);
}
Constraint DemandConstraint {

IndexDomain : j;

Unit : kton;

Definition : sum( i, Transport(i,j) ) >= Demand(j);

If a and b are expressions consisting of only parameters and f(x,...) and
g(x,...) are expressions containing parameters and variables, the following
two kinds of relationships are allowed.

a<f(x,...)<b or flx,...)zg(x,...)

where = denotes any of the relational operators , “>=" or “<=". Either a or b
can be omitted if there is no lower or upper bound on the expression f(x,...),
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respectively. When both a and b are present, the constraint is referred to as
a ranged constraint. The expressions may have linear and nonlinear terms,
and may utilize the full range of intrinsic functions of AiMMs except for the
random number functions.

You must take extreme care to ensure continuity when the constraints in your
model contain logical conditions that include references to variables. Such
constraints are viewed by AIMMS as nonlinear constraints, and thus can only
be passed to a solver that can handle nonlinearities. It is possible that the out-
come of a logical condition, and thus the form of the constraint, changes each
time the underlying solver asks AiMMs for function values and gradients. For
example, if x(i) is a decision variable, and a constraint contains the expression

sum[ i, if ( x(i) > 0 ) then x(i)"2 endif ]

it may or may not contain the term x(i) "2, depending on the current value
of x(i). In this example, both the expression and its gradient are continuous
functions at x(i) = 0.

14.2.1 Constraint properties

With the Property attribute you can specify further characteristics of the con-
straint at hand. The possible properties of a constraint are NoSave, Sos1, Sos2,
Level, Bound, Basic, ShadowPrice, RightHandSideRange, and ShadowPriceRange.

When you specify the NoSave property you indicate that you do not want AIMMS
to store data associated with the constraint in a case, regardless of the speci-
fied case identifier selection.

14.2.2 SOS properties

The constraint types Sosl and Sos2 are used in mixed integer programming,
and mutually exclusive. In the context of mathematical programming SOS is
an acronym for Special Ordered Sets. A SOS set is associated with every (indi-
vidual) constraint of type Sosl or Sos2.

When you specify that a constraint is of type Sosl or Sos2, an additional SOS-
specific attributes becomes available, namely the SosWeight attributes. With
this attributes, you can provide further information to the solver about the
contents and ordering of the SOS set to be associated with the constraint.
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A type Sosl constraint specifies to the solver that at most one of the variables
within the SOS set associated with the constraint is allowed to be nonzero,
while all other variables in the SOS set must be zero. Inside a Sosl constraint
all variables in the SOS set must have a lower bound of zero and an upper
bound greater than zero.

A type Sos2 constraint specifies to the solver that at most two consecutive
variables within the SOS set associated with the constraint are allowed to be
nonzero, while all other variables within the SOS set must be zero. All indi-
vidual variables within the SOS set must have a lower bound of zero and an
upper bound greater than zero. The order of the individual variables within the
SOS set is determined by their weights (as specified in the SosWeight attribute),
where the ordering is from low to high weight.

With the SosWeight attribute you must specify the contents of the SOS set to be
associated with a Sosl or Sos2 constraint, as well the ordering of its elements.
Section 7.5 of the AiMMS book on Optimization Modeling describes how these
weights are used during the branch-and- bound process. The syntax of the
SosWeight attribute is as follows.

sos-weights :

)
J—Qvariable—reference ° reference

Within the SosWeight attribute you can (but need not) specify a weight for ev-
ery variable occurring in the constraint. Each weight must be an expression
using all the indices in the index domain of the variable plus some or all of the
indices in the index domain of the constraint. All weights specified for a par-
ticular constraint must be unique, i.e. you cannot specify the same weight for
two (individual) variables. The SOS set to be associated with the constraint will
be constructed from all variables—within the domain of both the constraint
and variable—for which a nonzero weight has been specified in the SosWeight
attribute, i.e. if the value of the specified weight is 0.0 for a particular tuple,
the corresponding individual variable will not be included in the SOS set. The
ordering of variables within the SOS set is from low to high weight.

If you do not specify SOS weights, AimMms will make sure that ordering of vari-
ables in each SOS set is consistent over all SOS sets. If you specify SOS weights
yourself, you have to make sure that the variable orderings of all SOS sets of
type Sos2 are consistent, or your model might become infeasible if feasibility
requires that two adjacent variables in one SOS set become nonzero, which are
ordered inconsistently in another SOS set. Therefore, AIMMS requires that you
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specify the SosWeight attributes for all SOS constraints in your model, when-
ever you specify it for one SOS constraint.

The following is specification of Sos2 constraint to determine the variable y
piece-wise linearly from a variable x(i).

Constraint DetermineY {

Property 1 S0s2;
Definition :y = sum[ i, x(i)*c(i) 1;
SosWeight 2 x(i) @ XWeight(i);

14.2.3 Solution pool filtering

During the solution process of a MIP problem, the solvers CPLEX and GUROBI
are capable of storing multiple feasible integer solutions in a solution pool,
for instance, to capture solutions with attractive properties that are hard to
express in a linear fashion.

While populating the solution pool, CPLEX offers advanced filtering capabili-
ties, allowing you to control which solutions end up in the solution pool. CPLEX
provides two predefined ways to filter solutions:

m if you want to filter solutions based on their difference as compared to a
reference solution, use a diversity filter, or

m if you want to filter solutions based on their validity in an additional
linear constraint, use a range filter.

To enable filters the CPLEX option Do_Populate need to be on.

A diversity filter allows you to generate solutions that are similar to (or differ-
ent from) a set of reference values that you specify for a set of binary variables.
In particular, you can use a diversity filter to generate more solutions that are
similar to an existing solution or to an existing partial solution. Several diver-
sity filters can be used simultaneously, for example, to generate solutions that
share the characteristics of several different solutions.

In AIMMS, a constraint is used as a diversity filter if the constraint property
IsDiversificationFilter has been set. In a diversification filter, the Abs func-
tion is used to measure the distance from a given binary variable, and all vari-
ables should only occur as the argument of an Abs function.
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This following diversification filter forces the solutions to have a distance of
at least 1 from variable x.

Constraint filterl {
Property : IsDiversificationFilter;
Definition : Abs(x - 1) >= 1;

A range filter allows you to generate solutions that obey a new constraint,
specified as a linear expression within a range. Range filters can be used to
express diversity constraints that are more complex than the standard form
implemented by diversity filters. In particular, range filters also apply to gen-
eral integer variables, semi-integer variables, continuous variables, and semi-
continuous variables, not just to binary variables.

In AiMMS, a constraint is used as a range filter if the constraint property
IsRangeFilter has been set for the constraint.

The following range filter specifies that any solution to be added to the solu-
tion pool should satisfy the following constraint.

Contraint filter2 {
Property . IsRangeFilter;
Definition : Xx + vy + z >= 2;

14.2.4 Indicator constraints, lazy constraints and cut pools

An indicator constraint is a new way of controlling whether or not a constraint
takes effect, based on the value of a binary variable. Traditionally, such rela-
tionships are expressed by so-called big-M formulations. Big-M formulations,
however, can introduce unwanted side-effects and numerical instabilities into
a mathematical program. Using indicator constraints, such relationships be-
tween a constraint and a variable can be directly expressed in the constraint
declaration. Indicator constraints are supported by the solvers CPLEX, GUROBI
and ODH-CPLEX.

You can specify that a constraint is an indicator constraint by settings it Indi-
catorConstraint property. For indicator constraints, a new attribute called
ActivatingCondition will become available in the constraint declaration.

Through the ActivatingCondition attribute you can specify under which con-
dition the constraint definition should become active during the solution pro-
cess. Its value should be an expression of the form

binary-variable = expression
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where the expression must take one of the values 0 or 1. Note: stochastic
variables and parameters are not allowed inside an activation condition.

Consider the following big-M constraint
Constraint BigMConstraint {

Definition : x1 + x2 <= M*y;

}

where y is a binary variable. Using the IndicatorConstraint property, the con-
straint can be reformulated as an indicator constraint as follows

Constraint NonBigMConstraint {

Property : IndicatorConstraint;
ActivatingCondition :y = 0;
Definition : x1 + x2 = 0;

}

The constraint only becomes effective, whenever the binary variable y takes
the value 0. To solve the model with the indicator constraint, you need the
CPLEX, GUROBI or ODH-CPLEX solver.

Sometimes, for a MIP formulation, a user can already identify a group of con-
straints that are unlikely to be violated (lazy constraints). Simply including
these constraints in the original formulation could make the LP subproblem of
a MIP optimization very large or too expensive to solve. CPLEX, GUROBI and
ODH-CPLEX can handle problems with lazy constraints more efficiently, and
therefore AiMmms allows you to identify lazy constraints in your model.

You can specify that a constraint should be added to the pool of lazy con-
straints considered by CPLEX, GUROBI or ODH-CPLEX by setting the property
IncTudeInLazyConstraintPool. You need the CPLEX, GUROBI or ODH-CPLEX solver
to use this constraint property. When solving your MIP model, CPLEX, GUROBI
and ODH-CPLEX will only consider these constraints when they are violated.

As discussed in Section 15.2, AIMMS allows you to add cuts to your mathemati-
cal program on the fly during the solution process by using the CallbackAddCut
callback. However, when the set of cuts you want to generate is fixed and
known upfront, using the CallbackAddCut may add significant overhead to the
solution process of your model while you don’t need its flexibility. For those
situations, CPLEX allows you to specify a fixed pool of user cuts during the
generation of your mathematical program.

By setting the constraint property IncludeInCutPool you can indicate that this
constraint should be included in the pool of user cuts associated with your
mathematical program. You need the CPLEX solver to use this constraint prop-
erty. When solving your MIP model, CPLEX will consider the user cuts added in
this manner when appropriate.
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14.2.5 Constraint levels, bounds and marginals

A constraint in AIMMS can conceptually be divided such that one side consists
of all variable terms, whereas the other side consists of all remaining constant
terms. The level value of a constraint is the accumulated value of the variable
terms, while the constant terms make up the bound of the constraint.

With the Level, Bound, Basic and ShadowPrice properties you indicate whether
you want to store (and have access to) particular parametric data associated
with the constraint.

m When you specify the Level property AIMMS will retain the level values of
the constraint as provided by the solver. You can access the level values
of a constraint by using the constraint name as if it were a parameter.

m By specifying the Bound property, AiMmMs will store the upper and lower
bound of the constraint as employed by the solver. You get access to
the bounds by using the .Lower and .Upper suffices with the constraint
identifier.

m If the Basic property has been specified, AIMMS stores basic information
is available through the .Basic suffix as an element in of the predefined
AIMMS set Al1BasicValues. A constraint is said to be basic (nonbasic or
superbasic) if its associated slack variable is basic (nonbasic or superba-
sic).

m With the ShadowPrice property you indicate that you want to store the
shadow prices as computed by the solver. You can access these shadow
prices by means of the .ShadowPrice attribute.

The shadow price (or dual value) of a constraint is the marginal change in
the objective value with respect to a change in the right-hand side (i.e. the
constant part) of the constraint. This value is determined by the solver after
a SOLVE statement has been executed. The precise mathematical interpretation
of the shadow price is discussed in detail in many text books on mathematical
programming. Note: if a basic or superbasic constraint has a shadow price of
zero then it will be displayed as 0.0, but if a nonbasic constraint has a shadow
price of zero then it will be displayed as ZERO.

When the variables and constraints in your model have an associated unit
(see Chapter 32), special care is required in interpreting the values returned
through the .ShadowPrice suffix. To obtain the shadow price in terms of the
units specified in the model, the values of the .ShadowPrice suffix must be
scaled as explained in Section 32.5.1.
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By specifying the RightHandSideRange property you request AIMMS to conduct a
first type of sensitivity analysis on this constraint during a SOLVE statement of
a linear program. The result of this sensitivity analysis are three parameters
defined over the domain of the constraint. Two of these parameters represent
the smallest and largest values of an interval over which an individual right-
hand side (or left-hand side) value can be varied such that the basis remains
constant. Consequently, the shadow prices and the reduced costs remain un-
changed for variations of a single value within the interval. The third parame-
ter specifies the nominal value for the right-hand side (or left-hand side) of the
constraint.

There are three cases we have to consider for the RightHandSideRange property:

m if the constraint is single sided (i.e. f(x) < a) then the smallest, nom-
inal, and largest value for the constraint side are reported (both when
constraint is binding and not binding)

m if the constraint is of range type (i.e. a < f(x) < b) and it is binding at
one side, then the smallest, nominal, and largest value for the binding
side of the constraint are reported

m if the constraint is of range type (i.e. a < f(x) < b) and it is not binding
at neither side, then the lowest upper bound and the highest lower bound
are reported.

The values are accessible through the suffices .SmallestRightHandSide, .Nomin-
alRightHandSide, and .LargestRightHandSide.

With the ShadowPriceRange property you request AIMMS to conduct a second
type of sensitivity analysis on this constraint during a SOLVE statement of a
linear program. The result of the sensitivity analysis are two parameters de-
fined over the domain of the variable. The values assigned to the parame-
ters will be the smallest and largest values that the shadow price of the con-
straint can take while holding the objective value constant. The smallest and
largest values of the constraint marginals are accessible through the suffices
.SmallestShadowPrice and .LargestShadowPrice.

As with the advanced sensitivity properties of variables (see Section 14.1.2),
AIMMS also supports the advanced sensitivity analysis conducted through the
properties RightHandSideRange and ShadowPriceRange for linear mathematical
programs only. Again, if you want to apply these types of analysis to the fi-
nal solution of a mixed-integer program, you should fix all integer variables to
their final solution (using the .NonVar suffix) and re-solve the resulting mathe-
matical program as a linear program.
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Setting any of the properties ShadowPrice, ShadowPriceRange or RightHandSide-
Range may result in an increase of the memory usage. In addition, the compu-
tations required to compute the ShadowPriceRange may considerably increase
the total solution time of your mathematical program.

14.2.6 Constraint suffices for global optimization

AIMMS provides a number of constraint suffices especially for the global opti-
mization solver BARON. They are:

m the .Convex suffix, and
m the .RelaxationOnly suffix.

By providing additional knowledge, that cannot be determined automatically
by BARON itself, about the constraints in your model through these suffices,
the BARON solver may be able to optimize your global optimization model
in a more efficient manner. For more detailed information about the spe-
cific capabilities of the BARON solver, you are referred to the BARON website
http://www.theoptimizationfirm.com/.

The algorithm of the BARON solver exploits convexity—either identified auto-
matically by BARON itself or explicitly supplied in the model formulation—in
order to generate polyhedral cutting planes and relaxations for multivariate
non-convex problems. Through the .Convex suffix you can explicitly indicate
that a particular constraint is convex if BARON is unable to determine its con-
vexity automatically.

Using the .RelaxationOnly suffix, you can considerably enhance the convexi-
fication capabilities 